
Lesson Fourteen

Math 6080 (for the Masters Teaching Program), Summer 2020

14. Euler’s φ Function. We’ve tested numerically in Lesson Twelve that for any
fixed modulus m, the primes distribute themselves evenly among the remainders:

p%m = r

that are relatively prime to m (i.e. gcd(m, r) = 1). The number of such remainders
(between 1 and m− 1) is the output of the Euler φ function:

φ(m)

Let’s start by writing Python code to compute this function with brute force:

(1) Write a function def gcd(x,y) that returns the gcd of x and y.

(2) Initiate a counter phi = 0

(3) For r in range(1.m − 1), call the function gcd to get gcd(m,r). If this is 1,
then increase the counter phi by one.

(4) print the counter phi.

Notice that when m = p is a prime number:

φ(p) = p− 1

because each gcd(p,r) is a divisor of the prime p (and less than p), so it must be 1.

Similarly, when m = p2 is the square of a prime, then only the remainders that
are multiples of p fail to be relatively prime to p2. Between 1 and p2, there are
p− 1 of these:

p, 2p, ...., (p− 1)p, so

φ(p2) = (p2 − 1)− (p− 1) = p2 − p
(the number of numbers from 1 to p2 minus the number of multiples of p). Similarly,

φ(pn) = (pn − 1)− (pn−1 − 1) = pn − pn−1

is the number of numbers from 1 to pn minus the number of multiples of p.

So what about the numbers that are not primes or powers of primes? (like 6)

Chinese Remainder I. Let x and y be natural numbers and consider the function:

f(r) = (r%x, r%y)

that maps emainders for the modulus xy to ordered pairs of remainders for the
moduli x and y. The function is a map:

f : {0, 1, ..., xy − 1} → {0, 1, ...., x} × {0, 1, ...., y}
between two sets of xy elements.

Theorem. If x and y are relatively prime, then f is a bijective map.

Proof. Using the enhanced Euclid’s algorithm, we can solve:

ax+ by = 1

with integers a and b because gcd(x, y) = 1. Now suppose that

(s, t) ∈ {0, 1, ...., x} × {0, 1, ...., y}
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Then
g(s, t) = (ax)t+ (by)s % xy ∈ {0, ...., xy − 1}

satisfies:

(a) g(s, t)%x = (by)s%x(bx)x+ (by)s%x = s%x and

(b) g(s, t)%y = (ax)t%y = (ax)t+ (ay)t%y = t%y.

In other words, g(s, t) is the inverse function of f(r). So f(r) is bijective.

Example. Take x = 5 and y = 7. Then running the enhanced Euclid gives:

(3)5 + (−2)7 = 1

so the function g(s, t) is:
g(s, t) = 15t− 14s

Lets’ try it out.

g(3, 5)%35 = 15(5)− 14(3) = 75− 42 = 33 and f(33) = (3, 5). Check!

Exercise. Implement this inverse function with a Python program, prompting the
user for x and y and two remainders s and t, and outputting the value g(s, t).

This is a good party trick. Ask a friend to give your the remainder of their age
when it is divided by 11 and 13, and then find the age of the friend.

Corollary. If x and y are relatively prime, then:

φ(xy) = φ(x)φ(y)

Proof. The bijective function f maps numbers relatively prime to xy to ordered
pairs of numbers relatively prime to x and to y, respectively. �

Strategy for Computing the Euler φ function of n.

Step 1. Factor n as a product of powers of primes (this is tough when n is big!).

Step 2. Use the formulas for φ(pn) and the Chinese Remainder Theorem I

Examples. (i) φ(45) = φ(5 · 32) = φ(5)φ(32) = 5(32 − 3) = 30.

(i) φ(144) = φ(24 · 32) = (24 − 23)(32 − 3) = 8 · 6 = 48.

(Check these against your program.)

Exercise. Write a function def factor(n) to factor a number n, returning an ordered
list of the prime factors. Then call this function from a program that uses it to
compute the value of the phi function for n. Try this out with a large number. It
will run much faster than your original program (why?).


