Lesson Fourteen

Math 6080 (for the Masters Teaching Program), Summer 2020
14. Euler's ϕ Function. We've tested numerically in Lesson Twelve that for any fixed modulus m, the primes distribute themselves evenly among the remainders:

$$
p \% m=r
$$

that are relatively prime to m (i.e. $\operatorname{gcd}(m, r)=1$). The number of such remainders (between 1 and $m-1$) is the output of the Euler ϕ function:

$$
\phi(m)
$$

Let's start by writing Python code to compute this function with brute force:
(1) Write a function def $\operatorname{gcd}(\mathrm{x}, \mathrm{y})$ that returns the gcd of x and y.
(2) Initiate a counter phi $=0$
(3) For r in range $(1 . m-1)$, call the function gcd to $\operatorname{get} \operatorname{gcd}(m, r)$. If this is 1 , then increase the counter phi by one.
(4) print the counter phi.

Notice that when $m=p$ is a prime number:

$$
\phi(p)=p-1
$$

because each $\operatorname{gcd}(\mathrm{p}, \mathrm{r})$ is a divisor of the prime p (and less than p), so it must be 1 .
Similarly, when $m=p^{2}$ is the square of a prime, then only the remainders that are multiples of p fail to be relatively prime to p^{2}. Between 1 and p^{2}, there are $p-1$ of these:

$$
\begin{gathered}
p, 2 p, \ldots,(p-1) p, \text { so } \\
\phi\left(p^{2}\right)=\left(p^{2}-1\right)-(p-1)=p^{2}-p
\end{gathered}
$$

(the number of numbers from 1 to p^{2} minus the number of multiples of p). Similarly,

$$
\phi\left(p^{n}\right)=\left(p^{n}-1\right)-\left(p^{n-1}-1\right)=p^{n}-p^{n-1}
$$

is the number of numbers from 1 to p^{n} minus the number of multiples of p.
So what about the numbers that are not primes or powers of primes? (like 6)
Chinese Remainder I. Let x and y be natural numbers and consider the function:

$$
f(r)=(r \% x, r \% y)
$$

that maps emainders for the modulus $x y$ to ordered pairs of remainders for the moduli x and y. The function is a map:

$$
f:\{0,1, \ldots, x y-1\} \rightarrow\{0,1, \ldots, x\} \times\{0,1, \ldots, y\}
$$

between two sets of $x y$ elements.
Theorem. If x and y are relatively prime, then f is a bijective map.
Proof. Using the enhanced Euclid's algorithm, we can solve:

$$
a x+b y=1
$$

with integers a and b because $\operatorname{gcd}(x, y)=1$. Now suppose that

$$
(s, t) \in\{0,1, \ldots, x\} \times\{0,1, \ldots . y\}
$$

Then

$$
g(s, t)=(a x) t+(b y) s \% x y \in\{0, \ldots ., x y-1\}
$$

satisfies:
(a) $g(s, t) \% x=(b y) s \% x(b x) x+(b y) s \% x=s \% x$ and
(b) $g(s, t) \% y=(a x) t \% y=(a x) t+(a y) t \% y=t \% y$.

In other words, $g(s, t)$ is the inverse function of $f(r)$. So $f(r)$ is bijective.
Example. Take $x=5$ and $y=7$. Then running the enhanced Euclid gives:

$$
(3) 5+(-2) 7=1
$$

so the function $g(s, t)$ is:

$$
g(s, t)=15 t-14 s
$$

Lets' try it out.

$$
g(3,5) \% 35=15(5)-14(3)=75-42=33 \text { and } f(33)=(3,5) . \text { Check }!
$$

Exercise. Implement this inverse function with a Python program, prompting the user for x and y and two remainders s and t, and outputting the value $g(s, t)$.

This is a good party trick. Ask a friend to give your the remainder of their age when it is divided by 11 and 13 , and then find the age of the friend.

Corollary. If x and y are relatively prime, then:

$$
\phi(x y)=\phi(x) \phi(y)
$$

Proof. The bijective function f maps numbers relatively prime to $x y$ to ordered pairs of numbers relatively prime to x and to y, respectively.

Strategy for Computing the Euler ϕ function of n.

Step 1. Factor n as a product of powers of primes (this is tough when n is big!).
Step 2. Use the formulas for $\phi\left(p^{n}\right)$ and the Chinese Remainder Theorem I
Examples. (i) $\phi(45)=\phi\left(5 \cdot 3^{2}\right)=\phi(5) \phi\left(3^{2}\right)=5\left(3^{2}-3\right)=30$.
(i) $\phi(144)=\phi\left(2^{4} \cdot 3^{2}\right)=\left(2^{4}-2^{3}\right)\left(3^{2}-3\right)=8 \cdot 6=48$.
(Check these against your program.)
Exercise. Write a function def factor(n) to factor a number n, returning an ordered list of the prime factors. Then call this function from a program that uses it to compute the value of the phi function for n. Try this out with a large number. It will run much faster than your original program (why?).

