
Lesson Fifteen

Math 6080 (for the Masters Teaching Program), Summer 2020

15. Parallel Processing Arithmetic of Large Numbers. The remainders:

{0, .....,m− 1} modulo m

have an arithmetic: they add and multiply, obeying all the associative, commutative
and distributive laws, via the “clock arithmetic” rule:

r + s = (r + s)%m and rs = (rs)%m

Exampls. (i) Modulo 13, we have:

7 + 8 = 15%13 = 2 and 7 ∗ 8 = 56%13 = 4

(ii) Draw addition and muliplication tables for numbers modulo 5 and 6.

Python Exercise. Prompt the user for a modulus and output the addition and
multiplication tables with that modulus. To make this look nice, we should probably
import some Python code, e.g. tabulate.

Proposition. A remainder r has a multiplicative inverse (i.e. a reciprocal) among
the numbers modulo m if and only if r and m are relatively prime.

Proof. Suppose r and m are relatively prime. Then the enhanced Eucild’s
algorithm produces an equation of the form:

ar + bm = 1

But this means that ar%m = 1, i.e. a is the multiplicative inverse of r.

On the other hand, if r has a multiplicative inverse, i.e. if there is an s in the
numbers modulo m with the property that rs%m = 1, then

rs = 1 + bm

for some integer b (by definition of %) and then every common divisor of r and m
is a divisor of 1, which means that 1 is the greatest common divisor.

Corollary. If gcd(r,m) = 1, then for every remainder b, the equation:

rx = b

has a unique solution among the numbers modulo m.

Proof. Multiply both sides by the multiplicative inverse of r.

Fix relatively prime numbers x and y.Then:

Chinese Remainder II. The function

f(r) = (r%x, r%y)

is an isomorphism with inverse function g as in Lesson Thirteen.

By this we mean that f is a bijection and:

f(q + r) = f(q) + f(r) and f(qr) = f(q)f(r)

where the arithmetic on {0, ..., x− 1} × {0, ...., y − 1} is defined by:

(s, t) + (u, v) = (s + u, t + v) and (s, t)(u, v) = (su, tv)

i.e. the arithmetic modulo xy transfers over to the arithmetics modulo x and y.
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This is used in computer science (and certainly by Python) to “parallel process”
the arithmetic of large numbers.

Example. Let x = 30 and y = 31. Then:

(−1)30 + (1)31 = 1

and using Lesson Thirteen, g(s, t) = −30t + 31s is the inverse function of f(r).
Since 30 · 31 = 930, we can “parallel process” arithmetic of numbers, provided the
answer doesn’t exceed 930. For example, to calculate:

15 ∗ 33− 400

we parallel process it to:

f(15 ∗ 33− 217) = f(15) ∗ f(33)− f(217) =

= (15, 15)(3, 2)− (10, 28) = (15, 30)− (10, 28) = (5, 2)

and
g(5, 2) = −30(2) + 31(5) = −60 + 155 = 95

This is very useful when doing many operations with large numbers, because the
final recovery of the number via g is the only “large number” calculation that needs
to be done.

Exercise. Given a number n = x ∗ y written as a product of relatively prime
numbers x and y, write a Python function to multiply any pair of numbers a ∗ b
by multiplying them first modulo x and then modulo y, and then recovering the
product moduli x ∗ y. Use your function to compute products of numbers modulo:

2 ∗ 3 ∗ 5 ∗ 7 ∗ 11 ∗ 13 ∗ 17 ∗ 19 = 9, 699, 690 (basically 10 million)

(1) Call the function to farm the arithmetic out to the two factors:

2 ∗ 19 ∗ 3 ∗ 17 and 5 ∗ 13 ∗ 7 ∗ 11

(2) Recursively, farm out each of these two arithmetics to their factors:

2 ∗ 19 and 3 ∗ 17 and 5 ∗ 13 and 7 ∗ 11

and then finally farm each of these out to their factors.


