Lesson Fifteen

Math 6080 (for the Masters Teaching Program), Summer 2020
15. Parallel Processing Arithmetic of Large Numbers. The remainders:

$$
\{0, \ldots . ., m-1\} \text { modulo } m
$$

have an arithmetic: they add and multiply, obeying all the associative, commutative and distributive laws, via the "clock arithmetic" rule:

$$
r+s=(r+s) \% m \text { and } r s=(r s) \% m
$$

Exampls. (i) Modulo 13, we have:

$$
7+8=15 \% 13=2 \text { and } 7 * 8=56 \% 13=4
$$

(ii) Draw addition and muliplication tables for numbers modulo 5 and 6 .

Python Exercise. Prompt the user for a modulus and output the addition and multiplication tables with that modulus. To make this look nice, we should probably import some Python code, e.g. tabulate.
Proposition. A remainder r has a multiplicative inverse (i.e. a reciprocal) among the numbers modulo m if and only if r and m are relatively prime.

Proof. Suppose r and m are relatively prime. Then the enhanced Eucild's algorithm produces an equation of the form:

$$
a r+b m=1
$$

But this means that $a r \% m=1$, i.e. a is the multiplicative inverse of r.
On the other hand, if r has a multiplicative inverse, i.e. if there is an s in the numbers modulo m with the property that $r s \% m=1$, then

$$
r s=1+b m
$$

for some integer b (by definition of $\%$) and then every common divisor of r and m is a divisor of 1 , which means that 1 is the greatest common divisor.
Corollary. If $\operatorname{gcd}(r, m)=1$, then for every remainder b, the equation:

$$
r x=b
$$

has a unique solution among the numbers modulo m.
Proof. Multiply both sides by the multiplicative inverse of r.
Fix relatively prime numbers x and y.Then:
Chinese Remainder II. The function

$$
f(r)=(r \% x, r \% y)
$$

is an isomorphism with inverse function g as in Lesson Thirteen.
By this we mean that f is a bijection and:

$$
f(q+r)=f(q)+f(r) \text { and } f(q r)=f(q) f(r)
$$

where the arithmetic on $\{0, \ldots, x-1\} \times\{0, \ldots, y-1\}$ is defined by:

$$
(s, t)+(u, v)=(s+u, t+v) \text { and }(s, t)(u, v)=(s u, t v)
$$

i.e. the arithmetic modulo $x y$ transfers over to the arithmetics modulo x and y.

This is used in computer science (and certainly by Python) to "parallel process" the arithmetic of large numbers.
Example. Let $x=30$ and $y=31$. Then:

$$
(-1) 30+(1) 31=1
$$

and using Lesson Thirteen, $g(s, t)=-30 t+31 s$ is the inverse function of $f(r)$. Since $30 \cdot 31=930$, we can "parallel process" arithmetic of numbers, provided the answer doesn't exceed 930. For example, to calculate:

$$
15 * 33-400
$$

we parallel process it to:

$$
\begin{gathered}
f(15 * 33-217)=f(15) * f(33)-f(217)= \\
=(15,15)(3,2)-(10,28)=(15,30)-(10,28)=(5,2)
\end{gathered}
$$

and

$$
g(5,2)=-30(2)+31(5)=-60+155=95
$$

This is very useful when doing many operations with large numbers, because the final recovery of the number via g is the only "large number" calculation that needs to be done.
Exercise. Given a number $n=x * y$ written as a product of relatively prime numbers x and y, write a Python function to multiply any pair of numbers $a * b$ by multiplying them first modulo x and then modulo y, and then recovering the product moduli $x * y$. Use your function to compute products of numbers modulo:

$$
2 * 3 * 5 * 7 * 11 * 13 * 17 * 19=9,699,690 \text { (basically } 10 \text { million) }
$$

(1) Call the function to farm the arithmetic out to the two factors:

$$
2 * 19 * 3 * 17 \text { and } 5 * 13 * 7 * 11
$$

(2) Recursively, farm out each of these two arithmetics to their factors:

$$
2 * 19 \text { and } 3 * 17 \text { and } 5 * 13 \text { and } 7 * 11
$$

and then finally farm each of these out to their factors.

