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6. Hausdorffness and Compactness. We would like to be able to say that
all quasi-projective varieties are Hausdorff and that projective varieties are
the only compact varieties. After all, this is the case when the varieties are
manifolds and we consider them with their “ordinary” manifold topologies.

But the Zariski topology is a strange topology, and when we take the
literal definitions of Hausdorff and compact, we find the exact opposite!

• All the open subsets ∅ 6= U ⊆ Y of a quasi-projective variety are dense
(as in Proposition 2.3(b)) so a variety (other than a point) is never Hausdorff.

• All open covers Y = ∪Ui admit finite subcovers, since the complements
Y − U1 ⊇ Y − (U1 ∪ U2) ⊇ ... are a descending chain of closed sets, which is
eventually stationary (Proposition 2.3(d)). So all varieties are compact.

This is a puzzle, until we realize that the ordinary definitions rely on the
fact that the product of topological spaces has the product topology. This is
not the case with the Zariski topology on a product of varieties, and explains
why the correct categorical definitions of Hausdorff and compact differ from
the naive ones. With the correct definitions, we will get our desired result.

Remark: There are many key moments in the development of the theory
of varieties (and later schemes) where category theory “saves the day” by
giving precise meaning to geometric properties of varieties. This is one of
the many extraordinary insights due to Grothendieck.

Definition: A pair of objects X and Y in a category C has a product,
denoted X×Y , if X×Y is another object of C, equipped with “projections:”

πX : X × Y → X and πY : X × Y → Y

that are universal in the sense that given any object Z and morphisms:

p : Z → X and q : Z → Y

there is a unique morphism, which we will denote (p, q) : Z → X × Y with
the property that πX ◦ (p, q) = p and πY ◦ (p, q) = q.

Observation: Any two product objects are naturally isomorphic. If (X×Y )′

is another product with projections π′X and π′Y , then the unique morphisms
(π′X , π

′
Y ) : (X ×Y )′ → X ×Y and (πX , πY ) : X ×Y → (X ×Y )′ are inverses

to one another by the uniqueness in the definition.
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Examples: (a) The product of a pair of sets is the Cartesian product.

(b) The product of a pair of topological spaces is the Cartesian product
with the product topology.

(c) The product of a pair of differentiable manifolds is a patched product
(i.e. if X = ∪Ui and Y = ∪Vj then X × Y = ∪(Ui × Vj) with product
homeomorphisms to open sets in Rn+m). X × Y has the product topology.

Proposition 6.1: Every pair of affine varieties has a product affine variety.

Proof: Given X ⊆ Cm with C[X] = C[x1, ..., xm]/P and Y ⊆ Cn with
C[Y ] = C[y1, ..., yn]/Q, consider the Cartesian product:

X × Y ⊆ Cm+n

First of all, X × Y is a closed set. If P = 〈{fi}i∈I〉 for fi ∈ C[x1, ..., xm] and
Q = 〈{gj}j∈J〉 for gj ∈ C[y1, ..., yn], then X × Y = V (〈{fi}i∈I ∪ {gj}j∈J〉).
Secondly, X × Y is irreducible. If X × Y = Z1 ∪Z2 is a union of closed sets,
then for each a ∈ X, the variety {a} × Y ∼= Y is a union of closed sets:

{a} × Y = (Z1 ∩ ({a} × Y )) ∪ (Z2 ∩ ({a} × Y ))

so since Y is irreducible, either {a}× Y ⊆ Z1 or {a}× Y ⊆ Z2. But the sets

Xi := {a ∈ X | {a} × Y ⊆ Zi} ⊆ X

are also closed since Xi = ∩b∈Y (Zi ∩ (X ×{b})) thought of as an intersection
of subsets of X. Since X is irreducible and X1∪X2 = X, it follows that either
X1 = X (and then Z1 = X × Y ) or else X2 = X (and then Z2 = X × Y ).

The two projections πX(a, b) = a and πY (a, b) = b are regular maps
by Proposition 3.5, and they have the desired universal property, since any
regular maps p : Z → X and q : Z → Y are given by polynomials h1, ..., hm
and k1, ..., kn, respectively (Proposition 3.5 again), and then the (unique)
map to the Cartesian product (p, q) = (h1, ..., hm, k1, ...kn) is also regular.

Remark: Invoking the Nullstellensatz, we have proved that√
〈{fi} ∪ {gj}〉 = I(X × Y ) ⊂ C[x1, .., xm, y1, ..yn]

is prime. The ideal 〈{fi}∪{gj}〉 itself is prime, but this is left as an exercise.

2



Proposition 6.2: Every pair of varieties has a product variety.

Proof: We nearly proved this already for a pair of projective spaces
CPm,CPn in Proposition 5.4. The Segre “variety” Sm,n has the desired
properties, but we haven’t actually proved that Sm,n is irreducible. To see
this, as in Proposition 6.1, we only need to know that the sets:

{a} ×CPn ⊂ Sm,n and CPm × {b} ⊂ Sm,n

are closed and isomorphic to CPn and CPm respectively. But not only
are they closed, they are intersections of Sn,m with the linear subspaces of
CP(m+1)(n+1)−1 with respective ideals:

〈{aixkl − akxil}〉 and 〈{bjxkl − blxkj}〉
and it follows that the bijections CPn ↔ {a}×CPn and CPm ↔ CPm×{b}
are isomorphisms. For a general pair of projective varieties X ⊆ CPm and
Z ⊆ CPn, let I(X) = 〈F1, ..., Fr〉 ∈ C[x0, ..., xm] and I(Z) = 〈G1, ..., Gs〉 ∈
C[y0, ..., yn]. Then the Cartesian product X × Z ⊆ Sm,n is the closed set:

V (〈{F α(x0l, ..., xml), Gβ(xi0, ..., xin)}〉) ⊂ Sm,n

And if W ⊆ X and Y ⊆ Z are open subsets (i.e. quasi-projective varieties)
whose complements have ideals 〈Hγ〉 and 〈Kδ〉, respectively, then:

W × Y = X × Z − (X × V (〈Kδ〉) ∪ (V (〈Hγ〉)× Z) =

X × Z − V (〈{Hγ(x0l, ..., xnl)Kδ(xi0, ..., xim)}〉)
and irreduciblity is proved as for projective space, and the universal property
with respect to regular maps follows immediately from Proposition 4.4.

Before we get to some peculiarities and examples of this product, here is
a consistency result which isn’t immediately obvious.

Corollary 6.3: The products of affine varieties in Propositions 6.1 and 6.2
yield isomorphic quasi-projective varieties.

Proof: By the universal property, all we need to do is to prove that
the quasi-projective product from Proposition 6.2 is an affine variety! But if
W = W − V (x0) and Y = Y − V (y0) as in Proposition 4.7, then:

W × Y = W × Y − V (〈{x0lxi0}〉)
by Proposition 6.2. But the equations x00xil = x0lxi0 (for the Segre variety)
tell us V (〈{x0lxi0}〉) = V (x00) so W × Y = W × Y − V (x00), is isomorphic
to an affine variety by Proposition 4.7.
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Examples: (a) In the quadric CP1 × CP1 = V (x00x11 − x01x10) ⊂ CP3,
each further V (xij) is a pair of intersecting projective lines on the quadric:

V (x00) = {(0 : a01 : 0 : a11)} ∪ {(0 : 0 : a01 : a11)}

V (x01) = {(a00 : 0 : a01 : 0)} ∪ {(0 : 0 : a01 : a11)}
V (x10) = {(a00 : a01 : 0 : 0)} ∪ {(0 : a01 : 0 : a11)}
V (x11) = {(a00 : a01 : 0 : 0)} ∪ {(a00 : 0 : a01 : 0)}

and
CP1 ×CP1 − V (x00) = {(1 : a01 : a10 : a01a10)}

(setting a00 = 1 and using the equation) is isomorphic to C2 = C1 ×C1.

(b) On the other hand, the intersection of the quadric with a plane
V (
∑
cijxij) is not, in general, a pair of intersecting lines. For instance:

C1 := V (x00 − x11)− V (x00) = {(1 : a01 :
1

a01

: 1)}

is a hyperbola,and V (x00 − x11) = C1 ∪ {(0 :1 :0 :0)} ∪ {(0 : 0 :1 :0)} and

C2 := V (x10 − x01)− V (x00) = {(1 : a01 : a01 : a2
01)}

is a parabola (in C2 = {(1 :a :a :b)}) with V (x10−x01) = C2∪{(0 :0 :0 :1)}
(c) According to the prescription of Proposition 6.2, the equations for the

point (1 : 0)× (1 : 0) = V (x1)× V (y1) ∈ CP1 ×CP1 ⊂ CP3 are:

V (x00x11 − x10x01, x10, x11, x01, x11) = (1 : 0 : 0 : 0)

which are more equations than we need, but that doesn’t matter.

Crucial Fact: Products of varieties do not have the product topology.

Recall that a set Z ⊂ X × Y is closed for the product topology when
Z is an intersection of sets of the form ZX × ZY . In C1, for example, the
closed sets are all finite (or C1), so the only closed sets in C2 for the product
topology would be of the form (SX ×Y )∪ (X ×SY )∪S where SX , SY and S
are all finite. But there are plenty of other closed sets in the Zariski topology,
such as the diagonal:

∆ = V (x− y) ⊂ C2
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Definitions: Let Y be an object in a category of topological spaces where
products always exist and are always Cartesian products (as sets).

(a) Consider the diagonal map δ : Y → Y × Y applying the universal
property to the pair of identity morphisms p, q : Y → Y , and let ∆ := δ(Y ).
Then ∆ ⊂ Y × Y is the diagonal, and Y is separated if ∆ ⊂ Y × Y is closed.

(b) Y is proper if Y is separated and if for every object W , the projection
morphism πW : W × Y → W is closed (i.e. maps closed sets to closed sets).

Proposition 6.4: Y as above is separated if and only if for every X and
pair of morphisms p, q : X → Y , the following subset is closed:

{p = q} := {x ∈ X | p(x) = q(x)} ⊆ X

Proof: Notice first that ∆ = {π1 = π2} ⊂ Y ×Y , for the two projections
πi : Y ×Y → Y . Next, notice that the unique morphism (p, q) : X → Y × Y
has the property that {p = q} = (p, q)−1(∆). If ∆ is closed, then this is
always closed since the morphisms are all continuous.

Proposition 6.5: (a) If products have the product topology in the category,
then Y is Hausdorff if and only if Y is separated.

(b) Quasi-projective varieties are always separated.

Proof: (a) Hausdorff means that if x 6= y ∈ Y then there are open sets
x ∈ Ux, y ∈ Uy ⊂ Y with empty intersection. If Y is Hausdorff and Y ×Y has
the product topology, then Ux×Uy is open, so Y ×Y −∆ is covered by open
sets Ux×Uy and ∆ is closed. Conversely, if Y × Y has the product topology
and x 6= y ∈ Y , then if ∆ is closed, it follows that (x, y) ∈ U ⊂ Y × Y −∆
and U is a union of open sets of the form U1 × U2. One (or more) of these
contains (x, y), which then can be declared to be Ux × Uy.

(b) It suffices to prove CPn is separated, since once ∆ ⊂ CPn ×CPn is
closed, then the diagonal in Y × Y is closed for any Y ⊂ CPn since Y × Y
has the induced topology. But the diagonal is given by explicit equations:

∆ = V (〈{xij − xji}〉) ⊂ Sn,n = V ({xijxkl − xilxkj}) ⊂ CP2n+1

so of course it is closed.
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Example: The closure of the parabola in the earlier example is the diagonal:

∆ = V (x01 − x10) ⊂ V (x00x11 − x01x10) = CP1 ×CP1 ⊂ CP3

and V (x01 − x10) = V (x00x11 − z2) is the smooth projective conic from §4
(in the plane CP2 ∼= V (x01 − x10) with coordinates x00, x11, z = x01 = x10).

Non-example: If X is any topological space together with a sheaf OX of
regular functions that admits an open cover by finitely many affine varieties,
then X is often called a prevariety. A quasi-projective variety is one example,
but there are other prevarieties. For example, the “affine line with 2 origins:”

X := (C1 − {0}) ∪ {0′} ∪ {0′′}

can be given a topology and sheaf OX so that the subsets U ′ = X − {0′′}
and U ′′ = X − {0′} are open and isomorphic to C1 with 0′ (respectively 0′′)
replacing 0 as the origin. X is not separated because (Proposition 6.4) the
maps p : C1 ∼→ U ′ ⊂ X and q : C1 ∼→ U ′′ ⊂ X give {p = q} = C1 − {0},
which isn’t closed in C1. So X is not isomorphic to a quasi-projective variety.

Let’s begin our discussion of properness with a simple observation:

Proposition 6.6: If Y ⊂ CPn is a quasi-projective variety and Y 6= Y ,
then Y isn’t proper.

Proof: Recall that all quasi-projective varieties are separated. If Y 6= Y ,
consider:

Z := ∆ ∩ (Y × Y ) ⊂ Y × Y
Then Z is closed in Y ×Y but πY (Z) = Y ⊂ Y isn’t closed in Y because

it is an open subset and Y is irreducible. So Y isn’t proper.

Remark: Recall that a basic open subset U ⊂ Y of an affine variety is affine
(Proposition 3.6). When we prove below that projective varieties are proper,
it follows from Proposition 6.6 that no open subset U ⊂ X of a projective
variety (except X itself) is isomorphic to a projective variety. For this reason,
proper varieties are often called complete.

The two notions of compactness and properness agree when products
have the product topology, once we dispose of some pathological cases. For
example, in the category of sets with the discrete topology, all objects are
proper because all subsets are closed, but no such infinite set is compact!
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Proposition 6.7: (a) If products in a given category have the product
topology, then compact implies proper. If there some object W with a chain
W ⊇ W1 ⊇ · · · of open sets so that ∩Wi ⊂ W isn’t open, and if every open
cover of Y has a countable subcover, then proper implies compact for Y .

(b) Projective varieties are always proper.

Proof of (a) Y is compact if it is Hausdorff and if every open cover Y =
∪λ∈ΛUλ has a finite subcover. Hausdorff and separated agree by Proposition
6.5. Given a compact Y and a closed subset Z ⊂ Y×W , pick w ∈W−πW (Z).
Then for each point y ∈ Y , we can find a product neighborhood Uy ×Wy of
(y,w) which is disjoint from the closed set Z. Thus Y = ∪y∈Y Uy, so since
Y is compact, a finite number Uy1 , ..., Uyr will also cover, and it follows that
w ∈ ∩ri=1Wyi, and moreover that this open subset of W is in the complement
of πW (Z). Thus πW (Z) is closed and Y is proper.

Conversely, suppose Y is proper and that the extra conditions hold. Given
an open cover Y = ∪λ∈ΛUλ, take a countable subcover Y = ∪∞n=1Uλn and
consider the ascending chain of open sets Vn = Uλ1 ∪ ... ∪ Uλn . We want to
prove that this chain is eventually stationary, filling Y . In the product Y ×W
(for the W in the Proposition) consider the set Z := Y ×W −∪∞n=1Vn×Wn.
I claim that if Vn is not eventually Y , then πW (Z) = W − ∩Wi, which
isn’t closed, contradicting the properness of Y . To see this, suppose that
w ∈ ∩Wn. For each y ∈ Y , we can find a Vn from ascending chain so that
y ∈ Vn, and then (w, y) ∈ Wn × Vn so (w, y) 6∈ Z. Since we can do this
for every y, it follows that w 6∈ πW (Z) and πW (Z) ⊆ W − ∩Wn. On the
other hand, if w 6∈ Wn for some (minimal) n and if the increasing chain of
V ’s isn’t eventually stationary, it follows in particular that that there is a
y ∈ Y − Vn for this n, and that y 6∈ Vm for all m ≤ n, so for this choice of y,
(w, y) 6∈Wn × Vn for all n. Thus (w, y) ∈ Z and w ∈ πW (Z).

Remark: The conditions in (a) are very mild. In most reasonable settings,
there are chains of open sets W ⊇ W1 ⊇ ... with ∩Wn = {w} for any w ∈ W ,
so unless points are open (the discrete topology case!) almost any W will do.
And every open cover has a countable subcover in most reasonable settings,
such as open subsets of Rn or manifolds patched from finitely many of them.

For the proof of (b), we will need a new result from commutative algebra
which will have many “geometric” consequences when applied to varieties.
There will be several versions of this result. Here is the first one:
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Nakayama’s Lemma I: Suppose:

• A is a commutative ring with 1,

• M is a finitely generated A-module, and

• I ⊆ A is an ideal that stabilizes M , in the sense that M = IM .

Then there is an a = 1 + b ∈ A with b ∈ I such that am = 0 for all m ∈M .
(i.e. a annihilates the module M).

Proof: Let m1, ...,mn generate M . By assumption, we can solve:

mi =
n∑
j=1

bijmj

with bij ∈ B. This tells us that the matrix In − B annilates each mj , hence
(In −B)m = 0 for each m ∈M (writing m =

∑
ajmj). By Cramer’s rule,

a = det(In −B)

satisfies am = 0 for all m ∈M , and evidently a = 1 + b for some b ∈ I.

Proof of (b) (Due to Grothendieck) If X ⊂ CPn is a projective variety,
then closed subsets of W ×X are closed in W ×CPn, so it suffices to prove
that CPn is proper. We may also assume W is affine. If πW (Z) weren’t
closed for some Z ⊂ W × CPn, then πU(Z ∩ (U × CPn)) = πW (Z) ∩ U ,
wouldn’t be closed in U for some U in an affine open cover of W . Finally, if
W ⊂ Cm is closed, we may replace W by Cm, since subsets of W ×CPn and
W are closed if and only if they are closed in Cm×CPn and Cm respectively.

We will label points of Cm ×CPn by:

(a, b) := ((a1, ..., am), (b0 : ... : bn)) ∈ Cm ×CPn

and the coordinate rings by C[x] = C[x1, ..., xm] and C[y] = C[y0, ..., yn].
We are trying to show that if Z ⊂ Cm ×CPn is closed, then:

πCm(Z) = {a ∈ Cm | (a, b) ∈ Z for some b ∈ CPn} ⊂ Cm

is also closed. We will do this in two steps.
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Step 1: Define a partial grading on C[x, y] by degree in the y-variables, so:

C[x, y] =
∞⊕
d=0

C[x, y]d :=
∞⊕
d=0

C[x]⊗C C[y]d

and homogeneous polynomials and ideals in the usual way for this grading.
For each F ∈ C[x, y]d, it makes sense to ask whether F (a, b) = 0 or not, so
we may define V (I) ⊂ Cm×CPn for homogeneous ideals I. Our first step is
to show that every closed subset Z ⊂ Cm ×CPn is a V (I) for some such I.

Proof: Cover CPn by open sets Ui = Cm ×Cn, with coordinate rings:

C[Ui] ∼= C[x1, ..., xm,
y0

yi
, ...,

yn
yi

],

Define the homogeneous ideal I associated to Z by:

Id := {F ∈ C[x, y]d |
F

ydi
∈ I(Z ∩ Ui) ⊂ C[Ui] for all i}

and define I :=
∑∞
d=0 Id. This is the homogeneous ideal we will use. It is

immediate from the definition that Z ⊆ V (I), since F
ydi
∈ I(Z ∩ Ui) if and

only if F vanishes at every point of Z ∩ Ui.
For the other inclusion, take f ∈ I(Z ∩ Ui). Pick d large enough so

that G := ydi f ∈ C[x, y]d. We do not know that G ∈ Id, but each of the

polynomials fj := G
ydj

vanishes on the set Z ∩ Ui ∩ Uj , so yi
yj
fj ∈ I(Z ∩ Uj)

because this function vanishes on Z ∩ Ui ∩ Uj and on Z ∩ (Uj − Ui). So for
any e > d, we do have F = yei f ∈ Ie satisfying F (x1, ..., xm,

y0

yi
, ..., yn

yi
) = f .

If (a, b) 6∈ Z then (a, b) ∈ Ui for some i, and so there is an f ∈ I(Z ∩ Ui)
such that f(a, b0

bi
, ..., bn

bi
) 6= 0. Any F ∈ Ie constructed above will also satisfy

F (a, b) 6= 0, so we have proved that Z = V (I).

Step 2. For the homogeneous ideal I from Step 1,

πCm(Z) = V (I0)

so in particular the projection is closed, proving (b).
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Proof: Again, it is clear that πCm(Z) ⊆ V (I0). Suppose a 6∈ πCm(Z)
and let ma = 〈x1 − a1, ..., xm − am〉. The closed set π−1

Cm(a) = {a} ×CPn is
disjoint from Z, so intersecting with Ui gives disjoint closed sets Z ∩ Ui and
{a} × Ui in Ui with ideals I(Z ∩ Ui) and 〈ma〉 ⊂ C[Ui] respectively. Thus

I(Z ∩ Ui) + 〈ma〉 = C[Ui]

by the Hilbert Nullstellensatz. In other words, for each i = 0, ..., n there exist
fi ∈ I(Z ∩ Ui), mi,j ∈ ma and gi,j ∈ C[Ui] such that fi +

∑
j gi,jmi,j = 1.

Multiplying through by sufficiently large powers ei of the yi, we get:

Fi +
∑
j

Gi,jmi,j = yeii for Fi ∈ Iei, Gi,j ∈ C[x, y]ei

(and Fi ∈ Iei as in Step 1). If we further take d ≥ ∑ ei, then this gives us

Id +maC[x, y]d = C[x, y]d

since every monomial of degree d contains at least one yi to the power ei.
Now consider the C[x]-module M := C[x, y]d/Id. The equality above tells
us maM = M , hence by Nakayama’s Lemma there is an f ∈ C[x]−ma that
annihilates M , i.e. so that fC[x, y]d ⊆ Id. Thus fydi ∈ Id for all i and it
follows that f ∈ I0. Thus we have found an f ∈ I0 with f(a) 6= 0, as desired.

Example: In C2 ×CP1, consider:

Z = V (〈x1y1 − y0x2, y0y1〉)

When we write this as a union of the two open sets U0, U1, we get:

Z = {(0, a2, 1, 0)} ∪ {(a1, 0, 0, 1)}

so πC2(Z) = V (x1x2) which isn’t readily apparent from the equations for Z.
But the point is that:

x2
1(y0y1)− y0x1(x1y1 − y0x2) = y2

0x1x2, and

x2
2(y0y1) + y1x2(x1y1 − y0x2) = y2

1x1x2

so x1x2 ∈ I0.
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Exercises 6.

1. If C[X] = C[x1, ..., xm]/〈{fi}〉 and C[Y ] = C[y1, ..., yn]/〈{gj}〉 as in
Proposition 6.1, finish the proof that I(X ×Y ) = 〈{fi}∪{gj}〉 and conclude
that:

C[X × Y ] ∼= C[X]⊗C C[Y ]

for any pair X, Y of affine varieties.

2. If X ⊂ CPn is a projective variety, then the affine cone C(X) ⊂ Cn+1 is
the union of the lines parametrized by the points of X. In other words:

(b0, ..., bn) ∈ C(X)⇔ (b0 : ... : bn) ∈ X or (b0, ..., bn) = (0, ..., 0)

Prove that if xi is chosen so that X 6⊂ V (xi), then:

C(X)− V (xi) ∼= (X − V (xi))× (C1 − 0)

hence that C(X)− 0 is covered by such open affine sets.

3. (a) Prove that CPm ×CPn 6= CPm+n when m,n > 0.

(b) Given homogeneous coordinate rings C[x0, ..., xn] and C[y0, ..., yn] on
CPm and CPn, prove that the closed subsets of CPm ×CPn are all of the
form V (I), where I ⊂ C[x0, ..., xm, y0, ..., ym] is a bihomogeneous ideal, i.e. I
is generated by bihomogeneous polynomials F (x, y) (of bidegrees (d, e)) for
the double grading:

C[x0, ..., xm, y0, ..., ym] =
∞⊕
d=0

∞⊕
e=0

C[x0, ..., xm]d ⊗C C[y0, ..., yn]e

(c) Express the twisted cubic curve as a bihomogeneous hypersurface in
CP1 ×CP1.

(d) Which of the irreducible “bihomogeneous hypersurfaces” V (F ) ⊂
CP1×CP1 are intersections of CP1×CP1 = S1,1 ⊂ CP3 with hypersurfaces
in CP3?
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