
Math 6130 Notes. Fall 2002.

1. Two Hilbert Theorems. To get started, we need two theorems of
Hilbert on the properties of ideals in the polynomial rings:

C[x1, ..., xn]

The ideal I ⊆ C[x1, ..., xn] generated by f1, ..., fm will be written:

〈f1, ..., fm〉 := {
m∑
i=1

gifi | g1, ..., gm ∈ C[x1, ..., xn]}

Thinking of ideals as kernels of ring homomorphisms yields bijections:

{ideals I ⊆ C[x1, ..., xn]} ↔ {quotient rings A = C[x1, ..., xn]/I}
{prime ideals P ⊂ C[x1, ..., xn]} ↔ {quotient domains D = C[x1, ..., xn]/P}
{maximal ideals m ⊂ C[x1, ..., xn]} ↔ {quotient fields K = C[x1, ..., xn]/m}

It may be hard to find a finite set of generators of a given ideal, but:

Hilbert’s Basis Theorem: Every ideal I ⊆ C[x1, ..., xn] can be generated
by a finite set of polynomials f1, ..., fm.

In the case of maximal ideals, we can be much more specific:

Hilbert’s Nullstellensatz: Every maximal ideal m ⊂ C[x1, ..., xn] can be
generated by polynomials x1 − a1, ..., xn − an for constants a1, .., an ∈ C.

Proof of the Basis Theorem: We prove a more general result.

Definition: A commutative ring A with 1 is Noetherian if every ideal I ⊆ A
can be generated by finitely many elements of A.

Proposition 1.1: If A is Noetherian, then:

(i) Every ascending chain of ideals I1 ⊆ I2 ⊆ I3 ⊆ ... ⊆ A is eventually
stationary (i.e. there is an n such that In = In+1 = ...) and

(ii) the polynomial ring A[y] is Noetherian.

(The basis theorem follows by induction since C is obviously Noetherian)

Proof: For (i), notice that I :=
⋃∞
n=1 In is an ideal, hence by assumption

it is finitely generated. If f1, ..., fm are generators, then they are all contained
in some In, and then In = In+1 = ... = I.
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For (ii), let J ⊆ A[y] be any ideal and consider the ideals Id ⊆ A of leading
coefficients of polynomials f(y) ∈ J of degree d. That is, a ∈ Id if and only
if there is a polynomial f(y) = ayd + ad−1y

d−1 + ... + a0 ∈ J . The ideals Id
form an ascending chain: I0 ⊆ I1 ⊆ I2 ⊆ ... ⊆ A which must be eventually
stationary, say In = In+1 = ... by (i). Let Id = 〈ad,1, ..., ad,md〉 for each d ≤ n
and for each pair (d, i) choose some fd,i(y) = ad,iy

d + ad−1y
d−1 + ...+ a0 ∈ J .

Then the fd,i(y) together generate J .

Example: If V ⊂ C2 is any subset, then we find generators of the ideal:

I(V ) := {f(x, y) ∈ C[x, y] | f(p, q) = 0 for all (p, q) ∈ V }

(in principle) by this method, regarding C[x, y] = C[x][y]. For example, if

V = {(0, 0), (0, 1), (1, 0)} then:

I0 = 〈x2 − x〉 (since a(x) ∈ I0 ⇔ a(0) = a(1) = 0)

I1 = 〈x〉 (since a0(x) + a(x)y ∈ I1 ⇔ a(0) = a0(0) = 0 and a0(1) = 0)
and we can choose xy ∈ I(V )

I2 = 〈1〉 and we can choose y2 − y ∈ I(V )

and we stop here because at this point I2 is a large as it can get. So:

I(V ) = 〈x2 − x, xy, y2 − y〉

Corollary 1.2: If M is a finitely generated module over a Noetherian ring
(e.g. C[x1, ..., xn]), then every submodule S ⊆M is also finitely generated.

Proof: The generators allow us to express M as a quotient q : Am →M ,
and then S is the image of q−1(S), which is a submodule of Am. So it suffices
to prove that submodules of Am (for any m) are finitely generated. When
m = 1, this is the definition of Noetherian, since submodules are ideals. In
general, we proceed by induction on m. If S ⊂ Am and:

0→ Am−1 i→ Am
p→ A→ 0

is the projection onto the last factor, then i−1(S) is finitely generated, by the
inductive assumption, and p(S) is finitely generated, as it is an ideal. The
generators of the former together with arbitrary lifts of the generators of the
latter will then generate S.
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Proof of the Nullstellensatz: We start with a field theory reminder.

Field Theory I: The transcendence degree of an extension K ⊂ L of fields
(denoted trdK(L)) is the cardinality of (every) subset {α1, ..., αd} ⊂ L that
is maximal with the property that the αi have no non-trivial polynomial
relations with coefficients in K. Do not confuse this with the degree [L : K]
of a finite field extension, which is the dimension of L as a K-vector space.

The transcendence degree has the following properties:

• trdK(K(x1, ..., xd)) = d.

• trdK(L) = d− 1 if L is the field of fractions of K[x1, ..., xd]/f and f
is any non-constant polynomial in the x1, ..., xd.

• trdK(L) = 0 for all finite field extensions K ⊂ L.

• trdK(L) + trdL(M) = trdK(M) if K ⊂ L ⊂M .

Reminder: C is algebraically closed, so every non-trivial field extension
C ⊂ K has positive transcendence degree.

Next, we prove a very useful lemma:

Noether Normalization Lemma: If D ∼= C[x1, ..., xn]/P is a domain
whose field of fractions K has transcendence degree d over C, then there are
linear combinations:

yi =
n∑
j=1

aijxj ; i = 1, ..., d

so that C[y1, ..., yd] ↪→ D and D is finitely generated as a C[y1, ..., yd]-module.

Proof: If n = d, then P = 0 is forced by the transcendence degree, and
there is nothing to prove. Otherwise, the images x1, ..., xn of x1, ..., xn in D
satisfy a polynomial relation f(x1, ..., xn) = 0. If, as a polynomial in xn,
f = axdn + {lower order in xn} for some non-zero constant a ∈ C, then D
is generated by 1, xn, ..., x

d−1
n as a C[x1, ..., xn−1]/P ∩C[x1, ..., xn−1]-module,

and we can proceed by induction. In general, f may not have this form, but if
we let yi = xi+aixn for i = 1, ..., n−1, then as a function of y1, y2, ..., yn−1, xn,
f always has the form f = g(a1, ..., an−1)xdn + {lower order in xn} where g is
a non-zero polynomial in the ai. We can choose constants a1, ..., an−1 so that
g(a1, ..., an−1) 6= 0 and then in terms of the new coordinates y1, ..., yn−1, xn,
f does have the desired form. Now proceed by induction.

3



Back to the Nullstellensatz: Let m ⊂ C[x1, ..., xn] be a maximal ideal
and consider the field extension: C ↪→ K = C[x1, ..., xn]/m.

Since C is algebraically closed, this is either trivial or else of positive
transcendence degree. In the first case, let ai be the image of xi in K = C.
Then xi − ai ∈ m for all i, hence m = 〈x1 − a1, ..., xn − an〉 as desired.

On the other hand, if d > 0 is the transcendence degree of K over C,
then applying Noether Normalization to the domain D = K would give us:

C ⊂ C[y1, ..., yd] ↪→ K

with K finitely generated as a C[y1, ..., yd]-module. But this is nonsensical.
For example, take any f ∈ C[y1, ..., yd] and consider the ascending chain:

C[y1, ..., yd] ⊂ f−1C[y1, ..., yd] ⊂ f−2C[y1, ..., yd] ⊂ ... ⊂ K

of submodules of K. This chain is eventually stationary (Exercise 3(b)). But:

f−nC[y1, ..., yd] = f−n−1C[y1, ..., yd]

implies f−n−1 = f−ng can be solved with g ∈ C[y1, ..., yd], and then g = f−1

which is ridiculous. Nonconstant polynomials don’t have inverse polynomials!

Corollary 1.3: Given polynomials f1, ..., fm ∈ C[x1, ..., xn], then either
there is a point (a1, ..., an) ∈ Cn so that fi(a1, ..., an) = 0 for all i or else:

1 =
m∑
i=1

gifi can be solved with g1, ..., gm ∈ C[x1, ..., xn]

Proof: If there is no such point, then f1, ..., fm do not all belong to any
maximal ideal, by the Nullstellensatz, so they must generate C[x1, ..., xn]!

Example: The polynomials x3 − y4, x4 + y5, x5 + y2 − 1 ∈ C[x, y] have no
common zeroes in C2, so we know there are polynomials g1, g2, g3 ∈ C[x, y]
such that:

1 = g1(x3 − y4) + g2(x6 + y5) + g3(x3 + y2 − 1)

but the Nullstellensatz and its Corollary give us no clue about how to find
the polynomials g1, g2, g3 or even any sort of upper bound on their degrees.
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Corollary 1.4: For ideals I ⊆ C[x1, ..., xn] and subsets V ⊆ Cn, define:

V (I) = {(a1, ..., an) ∈ Cn | f(a1, ..., an) = 0 ∀f ∈ I} and

I(V ) = {f ∈ C[x1, ..., xn] | f(a1, ..., an) = 0 ∀(a1, ..., an) ∈ V }.
Then I(V (I)) =

√
I := {f ∈ C[x1, ..., xn] | fN ∈ I for some N > 0}.

(In particular, I(V (P )) = P whenever P ⊂ C[x1, ..., xn] is a prime ideal.)

Proof: It is clear that
√
I ⊆ I(V (I)). On the other hand, if we choose

generators I = 〈f1, ..., fm〉 then for any f ∈ I(V (I)), consider:

J = 〈f1, ..., fm, 1− xn+1f〉 ⊂ C[x1, ..., xn+1]

We get ∅ = V (J) ⊂ Cn+1 by assumption, so by Corollary 1.3, we can solve:

1 =
m∑
i=1

figi + (1− xn+1f)g

where the g’s are polynomials in x1, ..., xn+1. Now subsitute f−1 for xn+1:

1 =
m∑
i=1

fi(x1, ..., xn)gi(x1, ..., xn, f
−1)

and clear denominators by multiplying by a sufficiently large power of f .
This gives fN ∈ 〈f1, ..., fm〉, as desired.

Examples: (a) Consider the ideals 〈xy − a〉 ⊂ C[x, y] for a ∈ C.

C[x, y]/〈xy − a〉 → C[t, t−1]; x 7→ t, y 7→ at−1 is an isomorphism when a 6= 0

so in particular, each 〈xy − a〉 is a prime ideal, but

C[x, y]/〈xy〉 ↪→ C[s]×C[t];x 7→ (s, 0), y 7→ (0, t) and 〈xy〉 is not prime

You should think of this as the family of hyperbolas V (xy − a) for a 6= 0
(which we visualize in R2 since C2 is inaccessible to our 3-dimensional minds)
degenerating to the union of the x and y axes when a = 0. From the point
of view of isomorphism types of the quotient rings, this is a constant family
(of domains isomorphic to C[t, t−1]) degenerating to a non-domain.
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(b) The ideals I = 〈y2 − (x3 − a)〉 for a ∈ C have a different flavor. The
quotients are domains when a 6= 0 as can be seen by Eisenstein’s criterion but
they are not all isomorphic to each other (though this is far from obvious!)
The sets V (y2 − (x3 − a)) ⊂ C2 are called plane cubics in Weierstrass form.

The a = 0 case is also different and interesting:

C[x, y]/〈y2 − x3〉 ↪→ C[t]; x 7→ t2, y 7→ t3

so 〈y2− x3〉 is still a prime. Note that V (y2− x3) = {(a3, a2) | a ∈ C} ⊂ C2

and when you graph this (in R2 of course), the origin is a “singular” point.
This is called the cuspidal plane cubic.

And while we are on the subject of cubic polynomials in x, y, consider:

C[x, y]/〈y2 − x2(x+ 1)〉 ↪→ C[t]; x 7→ (t2 − 1), y 7→ t(t2 − 1)

which is therefore also a domain, but here V (y2 − x2(x + 1)) has a different
sort of singularity, with two “branches” coming together at the origin. This
one is called the nodal plane cubic.

(c) Consider the ideals 〈y2 − x, x− a〉 for a ∈ C. Then:

C[x, y]/〈y2 − x, x− a〉 ∼= C[y]/〈y2 − a〉

is never a domain, but
√
〈y2 − x, x− a〉 = 〈y2−x, x−a〉 when a 6= 0 whereas√

〈y2 − x, x〉 = 〈y, x〉 6= 〈y2− x, x〉. The algebraic sets V (〈y2− x, x− a〉) are

the intersections of a parabola (lying on its side) with vertical lines. When
the line meets the parabola “transversely” in two points (a,±

√
a), then the

ideal is equal to its “radical” (i.e.
√
I = I), but when the line is the y-axis,

tangent to the parabola, then the ideal is not equal to its radical.
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Exercises 1.

1. (a) Prove that C[x1, ..., xn] is a UFD. (Hint: Gauss’ Lemma)

(b) Prove that C[x] is a principal ideal domain.

(c) For each n > 1, find an ideal I ⊂ C[x, y] that needs n generators.

2. Prove that the power series rings C[[x1, ..., xn]] are Noetherian.

3. (a) If all ascending chains of ideals in a commutative ring A with 1 are
eventually stationary, conclude that A is Noetherian.

(b) Prove that an ascending chain of submodules of a finitely generated
module over a Noetherian ring must be eventually stationary.

4. (a) Prove that C[x, y]/〈xy−1〉 is not finitely generated as a C[x]-module,
but it is finitely generated as a C[x+ ay]-module for any non-zero a.

(b) Prove that if k is any infinite field and g ∈ k[x1, ..., xn] is any non-zero
polynomial, then there are constants a1, ..., an ∈ k so that g(a1, ..., an) 6= 0.
Conclude that Noether Normalization as stated holds over any infinite field.

(c) Find a counterexample to (b) when k is a finite field.

(d) If k is an infinite field, prove that the quotient of k[x1, ..., xn] by a
maximal ideal is a finite extension of k. (This is also true when k is finite,
but Noether Normalization needs to be modified...see Mumford’s Red Book).

5. If f1, f2 ∈ C[x] do not simultaneously vanish at any point a ∈ C, give an
algorithm for producing g1, g2 so that:

1 = f1g1 + f2g2 ∈ C[x]

6. If A = C[x1, ..., xn]/I, show that I(V (I)) = I if and only if A has no
nilpotents (elements a ∈ A− 0 such that am = 0 for some m).

7. Describe V (I) ⊂ C3 (or rather visualize it in R3) and find the ideal√
I = I(V (I)) ⊂ C[x, y, z] for each of the following ideals I. In particular,

determine whether or not I =
√
I and whether or not I is prime.

(a) I = 〈x3y2z〉, (b) I = 〈xz − y2, xyz〉, (c) I = 〈x− yz, y − y2〉
(d) I = 〈xy, xz, yz〉, (e) I = 〈x2, y2, z2〉,
(f) I = 〈x3 − y2, y5 − z3〉, (g) I = 〈xl, ym, zn, x+ y + z − 1〉,
(h) I = 〈xy − z2〉, (i) I = 〈xy, xz〉
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