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Complex Algebraic Geometry is concerned with:

(i) Finite field extensions:

C(x1, . . . , xn) ⊂ K

of the fields of rational functions in n variables over C and:

(ii) the smooth complex projective varieties X that “model” K, in
the sense that:

C(X) ∼= K

is the “field of rational functions” on X.

Remarks: (i) The number of variables is the transcendence degree of K
(as a field extension of C) and is an invariant of K.

(ii) It is a non-trivial theorem, originally due to Hironaka, that a
smooth projective model exists for every such field K.

This begs the following questions:

Question 1: Why the complex numbers and not some other field, or
even commutative ring (e.g. Z) of coefficients?

Question 2: What is a variety, and what is the advantage in having
it as a model of a field?

The answer to Question 1 is that there is, in fact, no necessity to
limit ourselves to doing algebraic geometry over the field of complex
numbers (or indeed over any particular field). Grothendieck’s theory of
schemes is well suited to the study of both individual varieties and of
families of varieties, as well as other more exotic objects that allow one,
for example, to explore infinitessimal properties of varieties. However,
the machinery involved in Grothendieck’s theory is substantial, and we
will refer to it only as needed. There are several very good reasons,
however, for focusing on the field of complex numbers:

• The complex numbers are an algebraically closed field; polynomials
in one variable always have roots, and similarly, polynomials in many
variables have loci of zeroes with predictable properties.

• The complex numbers are a field of characteristic zero. This means,
for example, that the derivative of a polynomial is identically zero if
and only if the polynomial is a constant. In the same vein, it also
means that there are no inseparable field extensions.
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• The locus of zeroes of a system of polynomials in C[x1, . . . , xn] has
an “analytic” structure, allowing for simultaneous study by algebraic,
analytic and topological techniques.

As for Question 2, a variety is a “geometric” object, consisting of:

(a) A set X with a (Zariski) topology with some unusual properties,

(b) A sheaf OX of (finitely generated) C-algebras on X

that is locally affine and separated (which substitutes for Hausdorff).

Two basic examples of varieties are:

Affine varieties, whose points are in bijection with the maximal ideals
of an integral domain C[X] that is finitely generated as C-algebra, and

Projective varieties, whose points are in bijection with the “nearly
maximal” homogeneous ideals of a graded integral domain R•(X) with
R0(X) = C that is finitely generated as a C-algebra.

Back to Question 2, every point x ∈ X of a variety has a canonical
Zariski tangent space TxX that is finite-dimensional as a vector space
over C, of dimension at least as great as the transcendence degree of
C(X), which is the dimension of X. Moreover, the set of points of X
for which the Zariski tangent space is equal to the dimension of X is
open and dense in (the Zariski topology on) X. Such points are non-
singular points of X, and X is smooth if all its points are non-singular.

Smooth projective models X for K have the following nice properties:

• They vary in families, leading to a well-defined notion of “moduli.”

• They are compact complex analytic manifolds, so they are oriented
and have a graded cohomology ring that satisfies Poincaré duality and
is equipped with a “Hodge structure” that extends to families.

• They are uniquely determined in dimension one, and, though they
are not unique in dimension two, there are essentially unique “minimal”
models for most fields. However, in dimensions three and more, one
needs to allow singularities in order to find a minimal model.

• They can be used to define algebraic invariants, e.g. plurigenera
and irregularity, via spaces of (pluri)-differential forms that are defined
in terms of a particular smooth projective model, and then proven to
be independent of the choice of model. These are (among) the discrete
invariants of a field K that are not at all evident without invoking the
projective models.
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This semester, I want to focus on specific examples, namely curves,
surfaces and toric varieties, though we will need to build upon some of
the general theory (e.g. from Hartshorne’s book), including:

• Varieties and schemes (separatedness and properness)
• Divisors and linear series
• Line bundles and vector bundles
• Coherent sheaves and sheaves of differentials
• Blowing up
• Cohomology of coherent sheaves
• Serre duality
• Flatness and families

Curves and their Jacobians: Not necessarily in this order,

• The genus of a curve
• Degrees of divisors
• Riemann-Hurwitz and Riemann-Roch for curves
• Degeneracy loci and special divisors
• The Jacobian of a curve
• Why is the Jacobian an abelian variety?
• Abel’s theorem
• Riemann’s singularity theorem
• The Hurwitz “scheme”
• Petri’s explicit equations for a canonical curve
• Tropical curves?!

References:
Mumford, Curves and their Jacobians,
Arbarello -Cornalba-Griffiths-Harris, Geometry of algebraic curves

Surfaces:

• The intersection form on divisors
• Riemann-Roch for surfaces
• Ruled and rational surfaces
• Castelnuovo’s criterion
• Lüroth’s theorem
• Kodaira dimension
• Introducing K3 surfaces
• First steps towards classification

Reference: Beauville, Complex algebraic surfaces

Toric varieties:

• Lots of cool stuff

Reference: Fulton, Toric varieties


