
Math 6130 Notes. Fall 2002.

9. Normal Varieties. Let’s get back to our original motivation...to find
an analogue in algebraic geometry of the ring of integers of a number field.
That is, we want to fill in a finite field extension C(x1, ..., xn) ⊂ K:

C[X] ⊂ K
∪ ∪

C[x1, ..., xn] ⊂ C(x1, ..., xn)

uniquely with the coordinate ring of a affine variety X such that K = C(X).

In number theory, one fills in with a Dedekind domain. We will fill in with
the integral closure of C[x1, ..., xn] in K. We will see that integral closures are
coordinate rings of “normal” affine varieties, and that any affine (or quasi-
projective) variety Y can be canonically normalized in a finite field extension
C(Y ) ⊂ K, i.e. there is a normal variety X with C(X) = K and a finite
map Φ : X → Y . In this section, we will explore normal varieties and show
how Zariski’s main theorem follows from Grothendieck’s Theorem (§7).

Definition: For an inclusion A ⊂ K of a Noetherian domain A in a field K,

(a) an element α ∈ K is integral over A if α is a root of some monic
polynomial xd + ad−1x

d−1 + ...+ a0 with coefficients in A, and

(b) the set of α ∈ K that are integral over A is the integral closure A ⊂ K.

(c) A is integrally closed if A = A when K is the field of fractions of A.

Remark: Each a ∈ A is the root of x − a, so A ⊆ A (for every K). If
A ⊂ K ⊂ L, then A (in K) is contained in A (in L), so the integral closure
of A in its field of fractions is contained in all other integral closures.

Proposition 9.1 Given A ⊂ K, then α ∈ K is integral over A if and only if
A[α] ⊂ K is a finitely generated A-module.

Proof: If α ∈ K is integral over A, then α is a root of a polynomial
xd + ad−1x

d−1 + ...+ a0, and then 1, α, ...αd−1 generate A[α] as an A-module.
Conversely, if A[α] ⊂ K is finitely generated as an A-module, then the chain
A ⊆ A+ αA ⊆ A+ αA+ α2A ⊆ .. ⊆ A[α] must be eventually stationary, so
αd = −a0 − a1α− ...− ad−1α

d−1 for some d and a0, ..., ad−1 ∈ A, and then α
is a root of the monic polynomial xd + ad−1x

d−1 + ...+ a0.
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Corollary 9.2: Each integral closure A ⊂ K is a domain.

Proof: We need A to be closed under subtraction and multiplication.
Once it is a ring, then it is a domain since it is contained in a field.

Given α, β ∈ K integral over A, then by Proposition 9.1, A[α] is a finitely
generated A-module and a Noetherian domain and β is then integral over
A[α] ⊂ K, so by Proposition 9.1 again, A[α, β] is a finitely generated A[α]-
module, hence also finitely generated as an A-module.

Since A[α − β] and A[αβ] are submodules of A[α, β], they must also be
finitely generated A-modules by Proposition 1.2, and then α− β and αβ are
integral over A by Proposition 9.1, hence they both belong to A.

Examples: (a) The integral closure of the ordinary integers Z ⊂ K in a
finite extension of Q is called the ring of integers of K, often denoted OK .

(b) C[t2, t3] is not integrally closed. The rational function t = t3

t2
∈ C(t)

is a root of the monic polynomial x2 − t2, so it is integral over C[t2, t3], but
not contained in C[t2, t3]. In fact, C[t2, t3] = C[t] ⊂ C(t) (see Remark (a)).

(c) If Φ : X → Y is a finite map of affine varieties, then C[X] is a finitely
generated C[Y ]-module. By Proposition 9.1, each α ∈ C[X] is integral over
C[Y ]. So if C[X] is integrally closed, then C[X] = C[Y ] ⊂ C(X).

Remarks: (a) Every UFD A is integrally closed (in its field of fractions K).

Suppose a
b
∈ K is in lowest terms and a

b
is a root of a monic polynomial

xd + ad−1x
d−1 + ... + a0. Then ad = −b(ad−1 + ... + bd−1a0) so b divides ad,

which can only happen if b is a unit, i.e. a
b
∈ A.

(b) If S ⊂ A is a multiplicative set, then (AS) = (A)S in any field K.

Suppose α ∈ K is a root of xd + ad−1x
d−1 + ...+ a0 for ai ∈ A. Then each

α
s
∈ K is a root of xd + ad−1

s
xd−1 + ...+ a0

sd
. So (AS) ⊇ (A)S.

Conversely, if α ∈ K is a root of xd + ad−1

sd−1
xd−1 + ... + a0

s0
, let s =

∏
si.

Then sα is a root of xd + sad−1

sd−1
xd−1 + ... + sda0

s0
, and the coefficients of this

polynomial are all in A, so α = sα
s
∈ (A)S, thus (AS) ⊆ (A)S

Definition: An affine variety X is normal if C[X] is integrally closed.

Examples: (a) Cn is normal, since C[x1, ..., xn] is a UFD.

(b) C[X] is not normal if X = V (y2 − x3) ⊂ C2, since C[X] ∼= C[t2, t3].
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Proposition 9.3: If X is any affine variety then any finite field extension
C(X) ⊂ K of the field of rational functions on X fills in with:

C[Y ] ⊂ K
∪ ∪

C[X] ⊂ C(X)

where Y is a uniquely determined affine variety such that: (i) Y is normal,
(ii) C(Y ) = K, and (iii) C[Y ] is a finitely generated C[X]-module

Proof: First, uniqueness. If C[Y ] is a finitely generated C[X]-module,
then C[Y ] ⊆ C[X]. But if C(Y ) = K and Y is normal, then C[Y ] = C[Y ]
(in K) and so C[Y ] = C[X] is the integral closure in K, hence unique.

To prove the existence of Y , let A = C[X]. Letting S = C[X] − 0 in
Remark (b) above, we see that AS is the integral closure of C(X) in K, which
is K itself, since C(X) ⊂ K is a finite extension of fields. So K is the field of
fractions of A. Thus once we know that A = C[Y ] for some affine variety Y ,
then Properties (i) and (ii) are immediate. We will prove below that A is a
finitely generated C[X]-module, which will give us Property (iii) and the fact
that A = C[Y ], since a domain A that is a finitely generated module over a
ring of the form C[x1, ..., xn]/P is itself of the form C[x1, ..., xn, y1, ..., ym]/Q.

To prove finite generatedness, we take another field theory interlude.

Field Theory III: If K ⊂ L is a finite field extension, then:

TrL/K : L× L→ K; (α, β) 7→ TrL/K(αβ)

is a symmetric bilinear form over K. The extension is separable if the form
is non-degenerate, in which case each basis {α1, ..., αn} of L as a K-vector
space has a dual basis {β1, ..., βn} defined by the property:

TrL/K(αiβj) = δij :=

{
1 if i = j
0 if i 6= j

If char(K) = 0 (i.e. Z ⊂ K), then all extensions of K are separable,
since TrL/K(αα−1) = n = [L : K] is non-zero and then we say K is perfect.
If char(K) = p (i.e. Z/pZ ⊂ K) then the form may be degenerate for
extensions of degree divisible by p. Since all our fields are of characteristic
zero, we will not worry about the characteristic p subtleties here.
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If A is integrally closed in its field of fractionsK, andK ⊂ L is a finite field
extension, then each α ∈ L that is integral over A has minimal polynomial
λd + ad−1λ

d−1 + ... + a0 with coefficients in A. That is because each root of
the minimal polynomial (in its splitting field) is integral over A, and so the
coefficients of the minimal polynomial, being symmetric polynomials in the
roots, must be integral over A (by the proof of Corollary 9.2) and being in
K, must therefore also be in A. This generalizes the same result in §8, which
was more easily proved using Gauss’ Lemma when A is a UFD.

Finite Generatedness of Integral Closure: If A is a Noetherian domain
that is integrally closed in its field of fractions K, and if K ⊂ L is a finite
separable extension, then A ⊂ L is a finitely generated A-module.

Proof: Start with a basis {v1, ..., vn} of L over K. By Remark (b) above,
we know that L = AS where S = A − 0, so we may multiply the vi by
elements si ∈ A ⊂ K to obtain a basis {α1, ..., αn} of L where each αi ∈ A.

Let {β1, ..., βn} be the dual basis. I claim that A ⊂ β1A+ ...+ βnA.

To see this, note that any α ∈ A expands as α =
∑
γjβj for γj ∈ K, since

the βj are a basis, and therefore we can recover the γi coefficients as:

TrL/K(ααi) =
∑
j

TrL/K(γjβjαi) = γi

But each ααi ∈ A, so γi = TrL/K(ααi) ∈ A, and the claim is proved.

Back to Proposition 9.3: The proposition now follows if X is normal.
Otherwise, let C[y1, ..., yd] ⊂ C[X] come from Noether normalization. Since
C[X] is a finitely generated C[y1, ..., yd]-module, it follows that the integral
closures of C[y1, ..., yd] and of C[X] in K are the same.

Example: If X is any affine variety, then the affine variety Y satisfying:

C[X] = C[Y ] ⊂ C(X)

comes with a birational finite map Φ : Y → X, the canonical normalization
of X in its own field of fractions. The canonical normalization is the unique
(up to isomorphism) birational finite map from a normal affine variety to X.

Next, we look for a local characterization of normality.
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Definition: If X is any variety, then the stalk of OX at p ∈ X is the ring:

OX,p :=
⋃

{U |p∈U}
OX(U) ⊂ C(X)

consisting of all germs of rational functions defined at p.

Note: The stalk of germs of analytic functions at a point p ∈ X of a complex
manifold is the ring of convergent power series at 0 ∈ Cn, and is truly local
in nature, saying nothing about the global geometry of X. The stalks OX,p,
however, do retain information about the global geometry of a variety. For
example, the field of fractions of OX,p is C(X), the field of rational functions!

Observations: (a) If V ⊂ X is an open set containing p, then OV,p = OX,p.
This follows immediately from the fact that OX(U) ⊂ OX(W ) when W ⊂ U .

(b) Each ring OX,p is a local ring with maximal ideal:

mp := {φ ∈ OX,p | φ(p) = 0}

(since all other germs of rational functions in OX,p are invertible)

(c) For any regular map Φ : X → Y there are pull-backs of stalks:

Φ∗ : OY,q → OX,p with Φ∗(mq) ⊆ mp

whenever Φ(p) = q (see Proposition 7.4 and the Remark following it).

(d) If p ∈ Y and Y is affine, let I(p) ⊂ C[Y ] be the maximal ideal. Then:

OY,p = C[Y ]I(p) ⊂ C(Y )

since the regular functions on Y that can be denominators of germs of rational
functions at p are precisely those that do not vanish at p. And if Φ : X → Y
is a regular map of affine varieties and Φ(p) = q, then:

Φ∗(mq) = Φ∗(I(q)C[Y ]I(q)) = Φ∗(I(q))OX,p ⊂ mp

by the fundamental (localization) correspondence of §7.

(e) If U ⊂ X is open, then (by definition!) OX(U) =
⋂
{p|p∈U}OX,p and

in particular, if X is affine, then by Proposition 3.3,

C[X] = OX(X) =
⋂

{p|p∈X}
OX,p =

⋂
p∈X

C[X]I(p)

and if U = X−V (g) ⊂ X is a basic open affine, then C[X ]g =
⋂
{p|p∈U}C[X]I(p)
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Proposition 9.4: An affine variety X is normal if and only if each of the
stalks OX,p is integrally closed (in its field of fractions C(X)).

Proof: Using Remark (b), it follows immediately that if X is normal,
i.e. if C[X] = C[X], then every localization C[X]S = C[X]S . In particular,
each stalk OX,p = C[X]I(p) is integrally closed.

For the converse, use Observation (e) and Proposition 3.3. If each OX,p
is integrally closed, then:

C[X] ⊆
⋂
p∈X
OX,p =

⋂
p∈X
OX,p = C[X]

Definition: A quasi-projective variety X is normal at p if the stalk OX,p is
integrally closed (in C(X)). X is normal if X is normal at all of its points.

Note: By Proposition 9.4, the two notions of normal agree for affine varieties.

Example: If X has an open cover by open subsets of Cn, then X is normal.

Proposition 9.5: In every quasi-projective variety X, the subset:

Norm(X) := {q ∈ X | X is normal at q} ⊂ X

is open and dense (i.e. not empty).

Proof: If X = ∪Ui is a open cover by affine varieties and the Proposition
holds for each Ui, then it holds for X. So we may assume that X is affine.

Consider the normalization map Φ : Y → X. Since Φ is birational, we
know from Proposition 8.5 that there is an open subset U ⊂ X such that
Φ : Φ−1(U) → U is an isomorphism. But then Φ∗ : OX,q → OY,Φ−1(q) is an
isomorphism of stalks at every q ∈ U , so U ⊆ Norm(X).

A little care shows that Norm(X) is itself open. If q ∈ Norm(X), then
C[Y ] = C[X] ⊂ C[X]I(q) = C[X]I(q) so any generators φ1, ..., φm ∈ C[Y ] as a
C[X]-module can be written as φi = ai

bi
where ai, bi ∈ C[X] and bi(q) 6= 0. Let

f =
∏
bi. Then q ∈ X − V (f) and C[Y ]f ⊂ C[X]f , hence C[X]f = C[X]f ,

and so the basic open set X − V (f) is normal and contained in Norm(X).
Since this is true at every point of Norm(X), we see that Norm(X) is open.

Next, I want to normalize an arbitrary quasi-projective variety Y in an
arbitrary finite extension C(Y ) ⊂ K of its field of fractions.
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The Construction: For each point q ∈ Y , let

Sq = {maximal ideals in OY,q ⊂ K}

and then let
Φ : X =

∐
q∈Y

Sq → Y ; p 7→ q ⇔ p ∈ Sq

(this defines the normalization as a set mapping to Y ).

The Topology: If q ∈ U ⊂ Y is an affine neighborhood, let ΦU : V → U be
the normalization inK coming from Proposition 9.3, with C[V ] = C[U ] ⊂ K.
I claim there is a natural bijection: Φ−1

U (q)↔ Sq. Indeed, we have:

Φ−1
U (q)↔ {maximal ideals in C[U ] containing I(q)} (Nullstellensatz)

↔ {maximal ideals in C[U ]S for S = C[U ]− I(q)} (Going Up)

↔ {maximal ideals in C[U ]I(q)} = Sq (Localizing Integral Closures)

Notice that this tells us each Sq is a finite set (Proposition 7.5) and allows
us to identify V = Φ−1(U) ⊂ X as a subset of X, which we declare to be
open (making the map Φ continuous). We give X the topology generated by
the open subsets of all such sets V (so the inclusions V ⊂ X are continuous).

The Sheaf: If W ⊂ X is an open set, define:

OX(W ) = {φ ∈ K | φ ∈
(
OY,Φ(w)

)
mw

for all w ∈ W}

where mw ⊂ OY,Φ(w) is the maximal ideal corresponding to w ∈ SΦ(w). In

other words, the stalks of OX are the local rings OX,x :=
(
OY,Φ(x)

)
mx
⊂ K.

And if x ∈ V for some U ⊂ Y affine and open and V = Φ−1(U), then

OV,x = C[U ]I(x) =
(
C[U ]I(Φ(x))

)
mx
⊂ K

so the stalks are the same, and it follows that all the inclusions V ⊂ X are
regular maps, if X is isomorphic to a quasi-projective variety. For now, we
only know that X is covered by affine varieties, not that X is quasi-projective.
On the other hand, it is easy to see that X is the “universal” normalization,
in the sense that a quasi-projective normalization Ψ : X′ → Y , if it exists,
must be isomorphic to this particular X, hence any two such are isomorphic
to each other!

7



Proposition 9.6: The normalization of a projective variety Y in any finite
field extension C(Y ) ⊂ K is a projective variety.

Proof: Let Y ⊂ CPn, with homogeneous ring C[Y ] = C[y0, ..., yn]/P .
Let y =

∑
aiyi ∈ C[Y ]1 be any non-zero element, and consider:

C[Y ] ⊂ C(Y )[y] ⊂ C(Y )(y) = (the field of fractions of C[Y ])

It is easy to see that the integral closure of C[Y ] in K(y):

R := C[Y ] ⊂ K[y] ⊂ K(y)

(recall that K[y] is integrally closed in K(y)) is a graded ring:

R =
∞⊕
d=0

Rd; Rd = R ∩K[y]d

with constants R0 = C. We know R is finitely generated as a C[Y ]-module
(finite generatedness!), so in particular, there are generators z0, ..., zm ∈ K[y]
with R = C[z0, ..., zm]/Q and we would like to argue (as in the affine case)
that R = C[X] for the projective normalization Φ : X → Y .

This line of reasoning is basically correct, but needs more work because
it may not be possible to choose the zi generators to all have degree 1. The
Proposition below will tell us that this will be possible, however, if we replace

Y ⊂ CPn by a suitable Segre reembedding Y = Yn,d ⊂ CP(nd )−1 (see §5).

Proposition 9.7: Suppose that

R = C[z0, ..., zm]/I =
∞⊕
d=0

Rd

is a weighted homogeneous C-algebra, with generators zi of degrees di > 0.
Then there is a degree d such that the sub C-algebra:

R(d) :=
∞⊕
k=0

Rdk ⊂ R

is generated by elements of degree 1 in R(d) (= degree d in R).
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Proof: Let n = lcm({di}) so n = diei for each di and integers ei. We
claim that d = mn will satisfy the Proposition. To see this, suppose

∏m
i=0 z

fi
i

is a monomial of degree
∑
difi = dk for some k > 0. If k = 1, there is

nothing to do. If k > 1, then some fi ≥ ei, and we can pull out a factor of
zeii (of degree n), and we can keep doing this until the left-over monomial has
degree exactly d. Then we can group together the monomials we have pulled
out to express the original

∏m
i=0 z

fi
i as a product of monomials of degree d.

Example: Consider the graded domain:

R = C[z0, z1, z2]/〈z2
0 − z2

1 − z3
2〉 where d0 = d1 = 3, d2 = 2

Then according to the Proposition, we can take d = 12. The monomials:

z4
0 , z

3
0z1, z

2
0z

2
1 , z0z

3
1 , z

4
1 , z

2
0z

3
2 , z0z1z

3
2 , z

2
1z

3
2 , z

6
2

are all the monomials of degree 12, and then using the relation, we only need
z0z

3
1 , z

4
1 , z0z1z

3
2 , z

2
1z

3
2 , z

6
2 to span R12, meaning that we get:

R(12) ∼= C[x0, ..., x4]/P = C[X]

from the Proposition, where X = V (P ) ⊂ CP4. (What are the equations?)

For example, following the proof, we rewrite the following monomial:

z3
0z

3
1z

3
2 = (z2

0)(z0z
3
1z

3
2) = (z2

0)(z2
1)(z0z1z

3
2) = (z2

0z
2
1)(z0z1z

3
2)

as a product of two monomials of degree 12.

Back to the Proof of Proposition 9.6: Apply Proposition 9.7 to the
ring R = C[z0, ..., zm]/Q ⊂ K[y] to get the new ring:

R(d) = C[x0, ..., xl]/Q
′ = C[X] for X = V (Q′) ⊂ CPl

This no longer contains C[Y ], of course, but it does contain the homogeneous

coordinate ring of the Segre re-embedding Y = Yn,d ⊂ CP(nd )−1:

C[Y ](d) = C[Yn,d] ⊂ C(Yn,d)[y
d] ⊂ (the field of fractions of C[Yn,d])

by Exercise 5.?. But now a moment’s reflection will convince you that R(d) is
the integral closure of C[Yn,d] = C[Y ](d) in K[yd] ⊂ K(yd), and then Exercise
7.? gives a finite map Φ : X → Yn,d = Y .
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X is a normal projective variety because C[X] is integrally closed in
its field of fractions K(yd). To see why this implies normality, consider
the affine open sets Ui = Y − V (yi) of Proposition 4.7. Then C[U0] =
C[1, x1

x0
, ..., xl

x0
]/d0(P ′) = C[X]x0 ∩ K[yd]0 ⊂ K = K[yd]0, and so since C[X]

is integrally closed, it follows that C[X]x0 is integrally closed, and so too is
its degree zero part (again after a moment’s reflection). Thus C[U0] and,
likewise, each C[Ui] is integrally closed in its field of fractions K.

So we have a normal variety X mapping finitely to Y with C(X) = K,
the given extension of C(Y ). This tells us precisely that the map Φ : X → Y
is the normalization of Y for the field extension C(Y ) ⊂ K, as desired.

Corollary 9.8: The normalization of a quasi-projective variety Y in any
finite extension C(Y ) ⊂ K is again a quasi-projective variety.

Proof: Normalize the closure Y ⊂ Y ⊂ CPn for any embedding in
CPn by Proposition 9.6 to get Φ : X → Y , and let X = Φ−1(Y ) ⊂ X.
Then the restricted finite map Φ|X : X → Y is the normalization of Y by a
quasi-projective variety X.

Zariski’s Main Theorem: If Y is a normal variety and Φ : X → Y is any
birational map with finite fibers, then there is an open subset U ⊂ Y such
that Φ is an isomorphism from X to U . In particular, Φ is injective(!)

Remark: This is completely false when Y is not normal. We’ve already seen
one example of this, with the birational map:

Φ : C1 → V (y2 − x3) ⊂ C2; t 7→ (t2, t3)

which is a birational homeomorphism but not an isomorphism.

For another example, consider the map:

Φ : C1 → V (y2 − x2(x+ 1)) ⊂ C2; t 7→ (t2 − 1, t(t2 − 1))

This is birational but Φ−1(0, 0) = {±1} consists of two points. This sort of
behavior cannot occur when the target is normal!

Proof of the Main Theorem: This is another great application of
Grothendieck’s Theorem (§7). By that theorem, Φ extends to a finite map
Φ′ : X ′ → Y and X ⊂ X ′ is open. But a finite birational map to a normal
variety is an isomorphism(!), as can be checked on an affine open cover.
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