
Math 6130 Notes. Fall 2002.

10. Non-singular Varieties. In §9 we produced a canonical normalization
map Φ : X → Y given a variety Y and a finite field extension C(Y ) ⊂ K.
If we forget about Y and only consider the field K, then we can ask for a
projective variety X with C(X) = K with better properties than normality.
Non-singularity is such a property, which implies that X is, in paricular, a
complex analytic manifold.

Definition: The Zariski cotangent space of a variety X at a point p ∈ X is
the vector space:

mp/m
2
p

(recall that mp ⊂ OX,p is the maximal ideal in the stalk at p).

Basic Remarks: (a) Cotangent spaces are finite-dimensional, since mp/m
2
p

is generated (as a vector space) by any set of generators of mp (as an ideal).

(b) Cotangent spaces pull back under regular maps. Given Φ : X → Y
with Φ(p) = q, then Φ∗ : mq → mp induces dΦ : mq/m

2
q → mp/m

2
p.

(c) Cotangent spaces can be expressed in terms of coordinate rings of
affine varieties. If p ∈ U ⊂ X is any affine neighborhood and I(p) ⊂ C[U ] is
the (maximal) ideal of p, then the natural map:

I(p)/I(p)2 → mp/m
2
p

is an isomorphism of vector spaces. Injectivity is obvious from the injectivity
of I(p) ↪→ mp ⊂ C[U ]I(p). For surjectivity, notice that if f

s
∈ mp, then

f

s
− f · s(p)−1

1
=
f(1− s · s(p)−1)

s
∈ m2

p

(d) If X ⊆ Cn and I(X) = 〈f1, ..., fm〉, then:

mp/m
2
p
∼= I(p)/I(p)2 ∼=

n⊕
i=1

C[xi − pi]/
m∑
j=1

C

(
n∑
i=1

∂fj
∂xi

(p)[xi − pi]
)

since the xi−pi generate I(p), and the linear combinations of the xi−pi that
belong to I(p)2 are precisely the first-order terms in the Taylor expansions
of polynomials f ∈ I(X). But if f ∈ I(X), then the first-order term in its
Taylor expansion is a linear combination of the first-order terms in the Taylor
expansions of the generators of I(X).
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Example: If X ⊂ Cn is an irreducible hypersurface with I(X) = 〈f〉, then:

mp/m
2
p
∼= Cn−1 or Cn

and the latter only occurs on the closed subset where the gradient vanishes:

f(p) = 0,∇f(p) = (0, ..., 0)⇔ p ∈ V (〈f, ∂f
∂x1

, ...,
∂f

∂xn
〉)

Notice that the gradient cannot vanish identically on V (f), since f is an
irreducible polynomial of positive degree. So there is an open, dense subset
U ⊂ V (f) where the dimension of the cotangent space is n− 1.

Proposition 10.1: For any variety X, the function e : X → Z:

e(p) = dim
(
mp/m

2
p

)
is upper-semi-continuous (see §7) and the minimum value e(p) = dim(X) is
taken on a dense open subset U ⊂ X.

Proof: We may assume that X ⊂ Cn is affine, with I(X) = 〈f1, ..., fm〉,
since upper-semi-continuity can be checked on the open sets of an open cover,
and then it follows from linear algebra and Basic Remark (d) above that e(p)
is the dimension of the kernel of the “Jacobian matrix:”

J(x1, ..., xn) =



∂f1

∂x1

∂f1

∂x2
· · · ∂f1

∂xn

∂f2

∂x1

∂f2

∂x2
· · · ∂f2

∂xn
...

...
...

...
∂fm
∂x1

∂fm
∂x2

· · · ∂fm
∂xn


which is upper-semicontinuous, since:

Xn−a+1 := {p ∈ X |e(p) ≥ n− a+ 1} = X ∩ V ({JIK(x1, ..., xn)})

where JIK ranges over all determinants of a×aminors of the Jacobain matrix.
Upper-semi-continuity implies that the minimum value of e(p) is attained on
an open subset of X. We only need to see that this value is equal to dim(X).
For this we use:

Field Theory IV. Every finite, separable extension of fields K ⊂ L has a
primitive element, i.e. there is an α ∈ L such that L = K[α].
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If d = dim(X), take the subring C[y1, ..., yd] ⊂ C[X] given by Noether
Normalization and consider the finite field extension C(y1, ..., yd) ⊂ C(X). If
α ∈ C(X) is primitive, then C(y1, ..., yd)[y]/g(y)

∼→ C(X); y 7→ α for some
g ∈ C(y1, ..., yd)[yd+1], and we may assume the coefficients of g(y) are poly-
nomials in y1, ..., yd (clearing denominators) and g(y1, ..., yd, y) is irreducible.
Thus if V (g) ⊂ Cd+1, then C(X) ∼= C(V (g)) so by Proposition 7.5 there is
a birational map:

Φ : X −−> V (g) ⊂ Cd+1

and by Proposition 8.5, Φ : Φ−1(U) → U is an isomorphism for some open
subset U ⊂ V (g).

But this means that for all points p ∈ Φ−1(U), the dimension of the
cotangent space at p ∈ X is the same as the dimension of the cotangent
space at q = Φ(p) ∈ V (g). We’ve already seen from the Example above
that dim(mq/m

2
q) = d on an open subset of V (g), so this dimension is also

attained on an open subset of X, completing the proof of the Proposition.

Definition: (a) p ∈ X is a singular point of X if dim(mp/m
2
p) > dim(X).

Otherwise p ∈ X is a non-singular point of X.

(b) The variety X is non-singular if every p ∈ X is a non-singular point.

In the affine case, a point p ∈ X ⊂ Cn with I(X) = 〈f1, ..., fm〉 is non-
singular if and only if the Jacobian matrix has rank n − d rank at p. But
in this case there is a subset: {fj1, ..., fjn−d} ⊂ {f1, ..., fm} such that the
first-order terms in the Taylor series span the same space:

n−d∑
k=1

C

(
n∑
i=1

∂fjk
∂xi

(p)[(xi − pi)]
)

=
m∑
j=1

C

(
n∑
i=1

∂fj
∂xi

(p)[xi − pi]
)

But now recall the implicit function theorem from analysis, which says
that in this case there are analytic local coordinates (convergent power series):
z1 = z1(x1, ..., xn), ...., zd = zd(x1, ..., xn) at p meaning that for some analytic
neighborhood p ∈ U , the map:

(z1, ..., zd) : U → Cd

is an isomorphism with a neighborhood of the origin in Cd. In other words,
a variety has analytic local coordinates at every non-singular point, and a
non-singular variety is thus a complex analytic manifold. The best we can
do with regular functions and our Zariski topology is the following:
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Proposition 10.2: If p ∈ X is an arbitrary point and g1, ..., gd ∈ mp, then:

〈g1, ..., gd〉 = mp ⇔ g1, ..., gd span mp/m
2
p

(this is the converse to Basic Remark (a) above!)

Proof: Consider the map of finitely generated OX,p-modules:

φ :
d⊕
i=1

OX,p → mp; (f1, ..., fd) 7→
d∑
i=1

figi

Then φ is surjective if and only if 〈g1, ..., gd〉 = mp, and φ induces a
surjective map of vector spaces

φ : Cd =
d⊕
i=1

OX,p/mp → mp/m
2
p; (a1, ..., ad) 7→

d∑
i=1

aigi ∈ mp/m
2
p

if and only if the g1, ..., gd span mp/m
2
p. The Proposition now follows from:

Nakayama’s Lemma II: If M and N are finitely generated modules over
a local Noetherian ring A, and:

φ : M → N

is an A-module homomorphism, then φ is surjective if and only if:

φ : M/mM → N/mN

is a surjective map of vector spaces over the “residue” field A/mA.

Proof: We want to show that Q = 0, for the cokernel Q = N/φ(M).
The surjectivity of φ implies Q = mQ (since Q/mQ is the cokernel of φ) so
we can apply Nakayama I (§6) to Q to conclude that there is an element:

a = 1 + b ∈ A with b ∈ m such that aQ = 0

But since A is a local ring, such an a ∈ A is a unit, so Q = 0, as desired!

Definition: If p ∈ X is a non-singular point, then any g1, ..., gd ∈ mp that lift
a basis of the cotangent space mp/m

2
p are called a local system of parameters.
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Note: By the Proposition, a local system of parameters generates mp, but
the gi are almost never the germs of a set of local coordinates of X. That is,
if p ∈ U is an affine neighborhood on which each of the g1, ..., gd are defined,
then the regular map:

Φ : U → Cd; Φ(p) = (g1(p), ..., gd(p))

is almost never an isomorphism with an open subset of Cd. Instead, for small
enough neighborhoods of p, the map is étale, which means, roughly, that it
is (an open subset of) a topological covering space of an open subset of Cd.

Example: Take p = (0, 0) ∈ V (y2−x(x−1)(x−λ)), the affine elliptic curve.
Then the Zariski cotangent space is:

mp/m
2
p
∼= C[x]⊕C[y]/C(−λ[x]) ∼= C

so p is a non-singular point, and y ∈ mp is a local parameter, but x is not
(indeed x = uy2 where u = (x− 1)−1(x− λ)−1 ∈ mp). Under the map:

Φ : V (y2 − x(x− 1)(x− λ))→ C; (x, y) 7→ y

there is a neighborhood of p (in the Zariski topology) that is a 3 : 1 cover of
C1 minus two points. Since the only open subsets of the elliptic curve in the
Zariski topology are the complements of finite sets, the map stays 3 : 1 over
most of any neighborhood of p, no matter how “small” it is!

Here is an extremely important property of nonsingular points:

UFD Theorem 10.3: The stalk OX,p of a quasi-projective variety X at any
non-singular point p ∈ X is always a UFD.

This will require our longest excursion yet into commutative algebra.
Before we do this, recall that a UFD is integrally closed (§9), so:

Corollary 10.4: A non-singular variety is a normal variety.

But not vice versa, in general! (unless dim(X) = 1....more on that later)

Example: The point p = (0, 0, 0) ∈ V (y2 − xz) ⊂ C3 is singular, since the
gradient of y2 − xz vanishes at the origin. On the other hand,

C[x, y, z]/〈y2 − xz〉

is integrally closed.
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Completions: Let A be a local Noetherian domain with maximal ideal m.
The completion of (A,m) is the inverse limit ring:

Â := lim
←
A/md

consisting of all inverse systems:

{(..., b2, b1, b0) | bd ∈ A/md+1 and bd+1 = bd ∈ A/md+1}

To get a feel for this, think of A as a topological space with nested subsets:

... ⊂ m3 ⊂ m2 ⊂ m ⊂ A

and their translates a+md as a basis of open sets for the “m-adic topology.”
The analogy with the ordinary topology on Rn is not perfect, since here
“close” is a transitive notion (i.e. a−a′ ∈ md and a′−a′′ ∈ md ⇒ a−a′′ ∈ md)
which is certainly not the case in Rn, and explains why we can consider
inverse systems rather than Cauchy sequences of elements of A. The first
result we need says that no nonzero element of A is arbitrarily close to zero.

Krull’s Theorem: In this setting (local Noetherian domain (A,m))

∞⋂
d=0

md = 0

Proof: Suppose a1, ..., an ∈ A generate m. Then an element a ∈ ∩md is
a homogeneous polynomial Fd(a1, ..., an) of degree d in the ai, for every d.

Let I ⊂ A[x1, ..., xn] be the smallest ideal containing all Fd(x1, ..., xn),
thought of as homogeneous polynomials in the variables x1, ..., xn. Since
A[x1, ..., xn] is Noetherian (Proposition 1.1!) we know that I only requires
finitely many generators, say I = 〈F1(x1, ..., xn), ...., Fl(x1, ..., xn)〉 so:

Fl+1(x1, ..., xn) =
l∑
i=1

Fl+1−i(x1, ..., xn)Gi(x1, ..., xn)

and then evaluating at x1 = a1, ..., xn = an gives:

a =
l∑
i=1

aGi(a1, ..., an) or a(1−
l∑
i=1

bi) = 0 for bi = Gi(a1, ..., an)

But A is a local ring and each bi ∈ m, so 1−∑l
i=1 bi is a unit, and a = 0.
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Notice that when A = OX,p, Krull’s theorem says that the only germ of a
regular function which is “zero to all orders” at p ∈ X is the zero germ, which
is, of course, also the case with analytic (but not differentiable!) functions.

Corollary 1: The m-adic topology on A is Hausdorff.

Proof: Suppose a 6= a′ ∈ A. Then by Krull’s theorem, a − a′ 6∈ md for
some d > 0. But then (a + md) ∩ (a′ + md) = ∅ (transitivity of closeness).
Thus A is Hausdorff!

Corollary 2: The natural ring homomorphism:

ι : A→ Â; a 7→ (a, a, a, ...)

is injective since an element of the kernel would be in every md.

And now we can say Â is the completion of A:

Corollary 2: Â topologically completes A ⊂ Â.

Proof: Given a Cauchy sequence a1, a2, a3, ... ∈ A, consider:

(..., b2, b1, b0) with bd = an ∈ A/md+1 for all sufficiently large n

The point is that Cauchy means that for any d, eventually:

an+1 − an ∈ md+1

so this definition of the inverse limit is well-defined. If two Cauchy sequences
{ai} and {a′i} have the same limit, i.e. if for any d, eventually:

an − a′n ∈ md+1

then they give the same inverse limit, and conversely, given an inverse limit:
(..., b2, b1, b0), we can lift arbitrarily to:

a0, a1, a2, ... ∈ A such that ad = bd ∈ A/md+1

and this evidently Cauchy. So Â completes A ⊂ Â.

Example: If A is a (not local) Noetherian ring and m is maximal then:

A/md → AS/m
d
S; a→

(
a

1

)
is an isomorphism (for S = A−m) since any f ∈ S is a unit in A/md.
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Thus elements of ÂS can be written (..., b2, b1, b0) where bd ∈ A/md+1

(a) For m = 〈p〉 ⊂ Z, the ring ẐS is the ring of p-adic integers:

{(..., b2, b1, b0) | bd ∈ Z/pd+1Z and bd+1 = bd}

But we can identify each bd with an integer from 0 to pd − 1:

bd = c0 + c1p+ c2p
2 + ...+ cd−1p

d−1; ci ∈ {0, ..., p− 1}

and this gives the more familiar description of the p-adic integers:

Zp = {
∞∑
d=0

cdp
d}

(b) Similarly, if p = (p1, ..., pn) ∈ Cn and S = I(p), then:

̂C[x1, ..., xn]S ∼= C[[x− p1, ..., x− pn]]

is the ring of (formal) Taylor series at the point p.

Remarks: Ideals and modules are completed in the same way, and:

• If (A,m) is a Noetherian local ring, then so is (Â, m̂) .

• the natural map Â⊗AM → M̂ is an isomorphism when M is a finitely
generated A-module and A is Noetherian.

• ̂̂M = M̂ (i.e. completions are complete)

• If M ′ →M →M ′′ is an exact sequence of finitely generated A-modules,
then the sequence of completions M̂ ′ → M̂ → M̂ ′′ is also an exact sequence
of finitely generated Â-modules.

These remarks are not meant to be obvious. They are, however, standard
results in commutative algebra. See, for example Atiyah-Macdonald’s book
Introduction to Commutative Algebra Chapter 10 for proofs. Even though the
results are important, I don’t want to duplicate too much standard material.

Let’s return to p ∈ X a non-singular point of a quasi-projective variety.

Strategy for the Proof of UFD Theorem 10.3: Let A = OX,p.
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Step 1: Prove that if g1, ..., gn ∈ OX,p is a local system of parameters,
then the natural “evaluation” ring homomorphism:

ev : C[[x1, ..., xn]]→ ÔX,p; xi 7→ gi

is an isomorphism (vastly generalizing Example (b) above!).

Step 2: Prove that the power series rings C[[x1, ..., xn]] are UFD’s.

Step 3: Prove that if Â is a UFD, then A ⊂ Â is a UFD.

Step 1: A power series:

∞∑
d=0

Fd(x) ∈ C[[x1, ..., xn]]

maps under the evaluation homorphism to the inverse limit:

(..., F2(g) + F1(g) + F0(g), F1(g) + F0(g), F0(g)) ∈ ÔX,p

(where the Fd(x) are homogeneous polynomials of degree d).

Since the g1, ..., gn generate mp, an arbitrary element f ∈ md
p looks like:

f =
∑

i1+...+in=d+1

hIg
i1
1 · · · ginn ; hI ∈ OX,p

and then if Fd(x1, ..., xn) =
∑
hI(p)x

i1
1 · · · xinn it follows that Fd(g)−f ∈ md+1

p .
In other words, the map:

C[x1, ..., xn]→ md
p/m

d+1
p ; Fd(x)→ Fd(g)

is surjective. But then it follows that ev it surjective since if, inductively,
Fd−1(g) + ...+ F0(g) = bd−1 and bd = bd−1 ∈ OX,p/md

p, choose Fd(x) so that:

F d(g) = bd − Fd−1(g)− ...− F0(g) ∈ md
p/m

d+1
p

and then Fd(g) + ...+ F0(g) = bd ∈ OX,p/md+1
p , as desired.

For injectivity we need Fd(g1, ..., gn) ∈ md+1 ⇔ Fd(x1, ..., xn) = 0.
But if Fd(g) ∈ md+1, then Fd(g) =

∑
|I|=d+1 hIgi1 · · · gin = Φd+1(g) for

some Φd+1(x) ∈ OX,p[x1, ..., xn]d+1 and then (as in the proof of Noether
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normalization in §1) there are constants c1, ...., cn−1 (after possibly reorder-
ing the xi) and a nonzero(!) additional constant c ∈ C so that, setting
y1 = x1 + c1xn, ..., yn−1 = xn−1 + cn−1xn gives:

Fd(x1, ..., xn) = axdn +G1(y)xd−1
n + ...+Gd(y),

for Gi(y) ∈ C[y1, ..., yn−1]i and then for some Γi(y) ∈ OX,p[y1, ..., yn−1]i:

Φd+1(x1, ..., xn) = Γ0(y)xd+1
n + Γ1(y)xdn + ...+ Γd+1(y)

so evaluating at g1, ..., gn and subtracting gives (c − Γ0gn)gdn ∈ 〈f1, ..., fn−1〉
where fi = gi + cign. But notice that c − Γ0gn is a unit in OX,p, so in fact
gdn ∈ 〈f1, ..., fn−1〉. I claim that this is impossible when we assume that the
g1, ..., gn (and hence also f1, ..., fn−1, gn) is a local system of parameters.

Here’s the argument. If gdn ∈ 〈f1, ..., fn−1〉 and 〈f1, ..., fn−1, gn〉 = mp,
then there is an affine neighborhood U of p ∈ X such that:

• f1, ..., fn−1, gn ∈ C[U ],

• 〈f1, ..., fn−1, gn〉 = I(p) ⊂ C[U ], and

• gdn ∈ 〈f1, ..., fn−1〉 ⊂ C[U ]

(each successive item above may require shrinking the neighborhood!)

Then C[U ]/〈f1, ..., fn−1〉 is a vector space over C = C[U ]/〈f1, ..., fn−1, gn〉
of dimension d (or less) so it contains only finitely many maximal ideals.
But this implies that the irreducible components of V (〈f1, ..., fn−1〉) ⊂ U are
points, which is impossible if dim(U) = n, since by Krull’s principal ideal
theorem every component of V (〈f1, ..., fn−1〉) has dimension 1 or more!

Example: Step 1 says in particular that regular functions at p have (unique)
Taylor series expansions. For example, letX = V (y2−(x3−1)) and p = (1, 0).
Then:

y ∈ mp is a local parameter

and the Taylor series expansion of x in terms of y is ev−1(x) for:

ev : C[[t]]→ ÔX,p
Since on X we have the (non-algebraic) relation x = 3

√
y2 + 1, the ordinary

Taylor series expansion of this function will do:

3
√
t2 + 1 = 1 + 0t+

1

3
t2 + ...

satisfies x− 1 ∈ m2
p, x− 1− 1

3
y2 ∈ m3

p, ...
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Aside on UFDness: In a Noetherian domain A, let u ∈ A denote a unit.
Then any nonzero a ∈ A is a finite product:

a = ufm1
1 fm2

2 · · · fmnn

of a unit and irreducible elements fi ∈ A, where f ∈ A is irreducible if its
only factors are u and uf . A UFD is defined by requiring that such products
be unique, in the sense that the fi are determined up to permutation and
multiplication by units. There are several useful criteria for UFDness:

The Standard Criterion: A is a UFD if and only if each irreducible f ∈ A
generates a prime ideal (i.e. f |gh⇒ f |g or f |h). This is the familiar criterion
used in elementary number theory to prove that the integers are a UFD.

Minimal Prime Criterion: A is a UFD if and only if every minimal prime
ideal is a principal ideal.

Proof: A minimal prime ideal is a non-zero prime ideal that contains no
other (non-zero) prime ideals. Suppose A is a UFD and P ⊂ A is a minimal
prime ideal. Let 0 6= a ∈ P . If we factor a = ufm1

1 · · · fmnn , then (at least) one
of the fi ∈ P . But by the standard criterion 〈fi〉 is a prime ideal, so 〈fi〉 = P
by minimiality. Conversely, if every minimal prime is principal, let S ⊂ A be
the subset generated by 1 and the irreducible elements f ∈ A such that 〈f〉
is prime. As in the standard criterion, S is exactly the (multiplicative) set
of elements of A with unique factorization. If S = A− 0, then A is a UFD.
On the other hand if S 6= A then AS is not a field and then the non-zero
(minimal) prime ideals in AS correspond to (minimal) prime ideals P ⊂ A
with P ∩ S = ∅. Such a P = 〈f〉 is principal, by assumption, and then f is
irreducible, giving a contradiction since f 6∈ S.

Ratio Criterion: A is a UFD if and only if every “ratio” of principal ideals:

〈f〉 : 〈g〉 = {a ∈ A | ag ∈ 〈f〉} is again a principal ideal

Proof: If A is a UFD and f = ufk1
1 ...fknn and g = vf l11 ...f

ln
n are their

factorizations, 〈f〉 : 〈g〉 = 〈e〉 for e = f
max(k1−l1,0)
1 ...fmax(kn−ln,0)

n . Conversely,
suppose f ∈ A is irreducible and f |gh. If the ratio property holds, then
〈f〉 : 〈g〉 = 〈e〉 for some e ∈ A. Notice that f, h ∈ 〈f〉 : 〈g〉, so

f = ae, h = be and eg = cf

for some elements a, b, c ∈ A. Since f is irreducible, either a is a unit, in
which case f |h, or else e is a unit, and f |g so the standard criterion applies.
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Step 2: This is proved by induction using:

Weierstrass Preparation: If F ∈ C[[x1, ..., xn]] satisfies F (0, ...0, xn) 6= 0,
then there is a uniquely determined unit U ∈ C[[x1, ..., xn]] such that:

FU = xdn +R1x
d−1
n + ...+Rd ∈ C[[x1, ..., xn−1]][xn]

for some d ≥ 0 and (uniquely determined) power series Ri ∈ C[[x1, ..., xn−1]].

(For a proof, see Zariski-Samuel Commutative Algebra)

Proof of Step 2: Given an irreducible F ∈ C[[x1, ..., xn]] dividing GH,
then after (possibly reordering and) changing coordinates: yi = xi + cixn,
we can assume that F (0, ..., 0, xn) 6= 0, and this can be done simultane-
ously for G and H, too. Now use Weierstrass Preparation: FU,GV,HW ∈
C[[y1, ..., yn−1]][xn] for uniquely determined units U, V,W . The irreducibility
of F implies FU is irreducible, and by Gauss’ lemma and induction on n we
know that C[[y1, ..., yn−1]][xn] is a UFD, so

F |GH ⇒ FU |(GV )(HW ) (in C[[x1, ..., xn]])

⇒ FU |(GV )(HW )(in C[[y1, ..., yn−1]][xn])

⇒ FU |GV or FU |HW (in either ring)⇒ F |G orF |H
Step 3: If Â is a UFD, then A ⊂ Â is a UFD.

Proof: We’ll use the ratio criterion for UFDness. Given f, g ∈ A, then:

0→ 〈f〉 : 〈g〉 → A
·g→ A/〈f〉

is an exact sequence of A-modules, by definition of 〈f〉 : 〈g〉. If we take
completions, then the sequence remains exact, and becomes:

0→ ̂〈f〉 : 〈g〉 → Â
·g→ Â/〈f〉

Since Â is a UFD, ̂〈f〉 : 〈g〉 = 〈f〉 : 〈g〉 = 〈ê〉 ⊂ Â for some ê ∈ Â. But in a
local ring (A,m) an ideal I is principal if and only if I/mI has rank 1 as a
vector space over A/m (by Nakayama’s lemma II!) And since:

̂〈f〉 :〈g〉/m̂ · ̂〈f〉 :〈g〉 = 〈f〉 :〈g〉/m · 〈f〉 :〈g〉 (is equal to its completion)

it follows that 〈f〉 :〈g〉 ⊂ A is principal, as desired.
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Exercises 10.

1. If p ∈ X and q ∈ Y are nonsingular points of quasi-projective varieties,
prove that the point (p, q) ∈ X × Y is nonsingular.

2. (a) Prove Euler’s relation. A polynomial F ∈ C[x0, ..., xn] is homogeneous
of degree d if and only if:

n∑
i=0

xi
∂F

∂xi
= dF

(b) If F ∈ C[x0, ..., xn] is an irreducible homogeneous polynomial, prove
that p ∈ V (F ) is a non-singular point if and only if:

∇F (p) 6= (0, ..., 0)

Conclude that the Fermat hypersurfaces V (xd0 + ...+xdn) are all non-singular.

(c) If F is a reducible homogeneous polynomial, show that there is always
a point p ∈ V (F ) such that:

∇F (p) = (0, ..., 0)

(d) Prove that, within the projective space CP(n+d
d )−1 of hypersurfaces

V (F ) ⊂ CPn of degree d, there is a non-empty open subset U ⊂ CP(n+d
d )−1

such that V (F ) ∈ U if and only if F is irreducible and V (F ) is non-singular.

(e) If F is an irreducible quadric hypersurface (i.e. d = 2), describe the

singular locus of V (F ). Find the complement CP(n+2
2 )−1 − U for U in (d).

3. Prove that an algebraic group is non-singular. More generally, prove that
a homogeneous space, that is, a variety X with a transitive action of an
algebraic group G:

σ : G×X → X

is non-singular. Conclude that the Grassmannian G(r, n) is non-singular.

4. For each of the degeneracy loci in the projective space of matrices:

Dr(m,n) = {M ∈ CPmn−1 | rk(M) ≤ r}

prove that the singular locus satisfies:

Sing(Dr(m,n)) = Dr−1(m,n)

and prove that at each singular point p ∈ Dr(m,n), dim(mp/m
2
p) = mn− 1.
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5. If X ⊂ CPn is an embedded projective variety and p ∈ X, define:

Θp(X) :=
⋂

homog F∈I(X)

V (
n∑
i=0

∂F

∂xi
(p)xi) ⊆ CPn

(a) Prove that Θp(X) ⊂ CPn is a projective subspace passing through p,
of dimension equal to dim(mp/m

2
p).

Θp(X) is called the projective tangent space at p. Projective varieties
X, Y ⊂ CPn intersect transversely at p ∈ X ∩ Y if p is a non-singular point
of both X and Y , and

dim(Θp(X) ∩Θp(Y )) = dim(X) + dim(Y )− n

(i.e. if the projective tangent spaces intersect transversely)

(b) If X and Y intersect transversely at p, show that the component:

p ∈ Z ⊂ X ∩ Y

of X ∩ Y containing p is non-singular at p.

6. Bertini’s Theorem. If X ⊂ CPn is a non-singular embedded projective
variety of dimension ≥ 2, consider the subset:

U ⊆ (CPn)∗ ∼= CPn (the projective space of hyperplanes in CPn)

defined by the property:

H ∈ U ⇔ H ∩X is irreducible and non-singular

Prove that U is a non-empty Zariski open subset of (CPn)∗.

Hints: Consider the (projective variety!) subset:

TX := {(p,H) | p ∈ X,Θp(X) ⊆ H} ⊂ CPn × (CPn)∗

The projection onto CPn is X with fibers isomorphic to CPn−dim(X)−1 so TX
is irreducible, of dimension n − 1. Therefore its projection to (CPn)∗ has
(closed) image of dimension ≤ n−1, and any U contained in the complement
of the image will give non-singular H ∩X. But what about irreducibility?

Prove the theorem with “hyperplane” replaced by “hypersurface of deg d.”
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7. If X ⊂ CPn is a variety (maybe singular) of dimension m, show that
there is a non-empty open subset:

U ⊂ (CPn∗)m

such that, if (H1, ...,Hm) ∈ U , then:

(H1 ∩ ... ∩Hm) ∩ Sing(X) = ∅

and
(H1 ∩ ... ∩Hm) ∩X

is transverse at the non-singular locus of X, and consists of d points, where:

HX(t) =
d

m!
tm + ...

is the Hilbert polynomial of X ⊂ CPn.
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