Math 6130 Notes. Fall 2002.

10. Non-singular Varieties. In $\S 9$ we produced a canonical normalization $\operatorname{map} \Phi: X \rightarrow Y$ given a variety Y and a finite field extension $\mathbf{C}(Y) \subset K$. If we forget about Y and only consider the field K, then we can ask for a projective variety X with $\mathbf{C}(X)=K$ with better properties than normality. Non-singularity is such a property, which implies that X is, in paricular, a complex analytic manifold.

Definition: The Zariski cotangent space of a variety X at a point $p \in X$ is the vector space:

$$
m_{p} / m_{p}^{2}
$$

(recall that $m_{p} \subset \mathcal{O}_{X, p}$ is the maximal ideal in the stalk at p).
Basic Remarks: (a) Cotangent spaces are finite-dimensional, since m_{p} / m_{p}^{2} is generated (as a vector space) by any set of generators of m_{p} (as an ideal).
(b) Cotangent spaces pull back under regular maps. Given $\Phi: X \rightarrow Y$ with $\Phi(p)=q$, then $\Phi^{*}: m_{q} \rightarrow m_{p}$ induces $d \Phi: m_{q} / m_{q}^{2} \rightarrow m_{p} / m_{p}^{2}$.
(c) Cotangent spaces can be expressed in terms of coordinate rings of affine varieties. If $p \in U \subset X$ is any affine neighborhood and $I(p) \subset \mathbf{C}[U]$ is the (maximal) ideal of p, then the natural map:

$$
I(p) / I(p)^{2} \rightarrow m_{p} / m_{p}^{2}
$$

is an isomorphism of vector spaces. Injectivity is obvious from the injectivity of $I(p) \hookrightarrow m_{p} \subset \mathbf{C}[U]_{I(p)}$. For surjectivity, notice that if $\frac{f}{s} \in m_{p}$, then

$$
\frac{f}{s}-\frac{f \cdot s(p)^{-1}}{1}=\frac{f\left(1-s \cdot s(p)^{-1}\right)}{s} \in m_{p}^{2}
$$

(d) If $X \subseteq \mathbf{C}^{n}$ and $I(X)=\left\langle f_{1}, \ldots, f_{m}\right\rangle$, then:

$$
m_{p} / m_{p}^{2} \cong I(p) / I(p)^{2} \cong \bigoplus_{i=1}^{n} \mathbf{C}\left[x_{i}-p_{i}\right] / \sum_{j=1}^{m} \mathbf{C}\left(\sum_{i=1}^{n} \frac{\partial f_{j}}{\partial x_{i}}(p)\left[x_{i}-p_{i}\right]\right)
$$

since the $x_{i}-p_{i}$ generate $I(p)$, and the linear combinations of the $x_{i}-p_{i}$ that belong to $I(p)^{2}$ are precisely the first-order terms in the Taylor expansions of polynomials $f \in I(X)$. But if $f \in I(X)$, then the first-order term in its Taylor expansion is a linear combination of the first-order terms in the Taylor expansions of the generators of $I(X)$.

Example: If $X \subset \mathbf{C}^{n}$ is an irreducible hypersurface with $I(X)=\langle f\rangle$, then:

$$
m_{p} / m_{p}^{2} \cong \mathbf{C}^{n-1} \quad \text { or } \quad \mathbf{C}^{n}
$$

and the latter only occurs on the closed subset where the gradient vanishes:

$$
f(p)=0, \nabla f(p)=(0, \ldots, 0) \Leftrightarrow p \in V\left(\left\langle f, \frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}\right\rangle\right)
$$

Notice that the gradient cannot vanish identically on $V(f)$, since f is an irreducible polynomial of positive degree. So there is an open, dense subset $U \subset V(f)$ where the dimension of the cotangent space is $n-1$.

Proposition 10.1: For any variety X, the function $e: X \rightarrow \mathbf{Z}$:

$$
e(p)=\operatorname{dim}\left(m_{p} / m_{p}^{2}\right)
$$

is upper-semi-continuous (see $\S 7$) and the minimum value $e(p)=\operatorname{dim}(X)$ is taken on a dense open subset $U \subset X$.

Proof: We may assume that $X \subset \mathbf{C}^{n}$ is affine, with $I(X)=\left\langle f_{1}, \ldots, f_{m}\right\rangle$, since upper-semi-continuity can be checked on the open sets of an open cover, and then it follows from linear algebra and Basic Remark (d) above that $e(p)$ is the dimension of the kernel of the "Jacobian matrix:"

$$
J\left(x_{1}, \ldots, x_{n}\right)=\left[\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{2}}{\partial x_{n}} \\
\vdots & \vdots & \vdots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}} & \frac{\partial f_{m}}{\partial x_{2}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}}
\end{array}\right]
$$

which is upper-semicontinuous, since:

$$
X_{n-a+1}:=\{p \in X \mid e(p) \geq n-a+1\}=X \cap V\left(\left\{J_{I K}\left(x_{1}, \ldots, x_{n}\right)\right\}\right)
$$

where $J_{I K}$ ranges over all determinants of $a \times a$ minors of the Jacobain matrix. Upper-semi-continuity implies that the minimum value of $e(p)$ is attained on an open subset of X. We only need to see that this value is equal to $\operatorname{dim}(X)$. For this we use:

Field Theory IV. Every finite, separable extension of fields $K \subset L$ has a primitive element, i.e. there is an $\alpha \in L$ such that $L=K[\alpha]$.

If $d=\operatorname{dim}(X)$, take the subring $\mathbf{C}\left[y_{1}, \ldots, y_{d}\right] \subset \mathbf{C}[X]$ given by Noether Normalization and consider the finite field extension $\mathbf{C}\left(y_{1}, \ldots, y_{d}\right) \subset \mathbf{C}(X)$. If $\alpha \in \mathbf{C}(X)$ is primitive, then $\mathbf{C}\left(y_{1}, \ldots, y_{d}\right)[y] / g(y) \xrightarrow{\sim} \mathbf{C}(X) ; y \mapsto \alpha$ for some $g \in \mathbf{C}\left(y_{1}, \ldots, y_{d}\right)\left[y_{d+1}\right]$, and we may assume the coefficients of $g(y)$ are polynomials in y_{1}, \ldots, y_{d} (clearing denominators) and $g\left(y_{1}, \ldots, y_{d}, y\right)$ is irreducible. Thus if $V(g) \subset \mathbf{C}^{d+1}$, then $\mathbf{C}(X) \cong \mathbf{C}(V(g))$ so by Proposition 7.5 there is a birational map:

$$
\Phi: X \rightarrow V(g) \subset \mathbf{C}^{d+1}
$$

and by Proposition 8.5, $\Phi: \Phi^{-1}(U) \rightarrow U$ is an isomorphism for some open subset $U \subset V(g)$.

But this means that for all points $p \in \Phi^{-1}(U)$, the dimension of the cotangent space at $p \in X$ is the same as the dimension of the cotangent space at $q=\Phi(p) \in V(g)$. We've already seen from the Example above that $\operatorname{dim}\left(m_{q} / m_{q}^{2}\right)=d$ on an open subset of $V(g)$, so this dimension is also attained on an open subset of X, completing the proof of the Proposition.
Definition: (a) $p \in X$ is a singular point of X if $\operatorname{dim}\left(m_{p} / m_{p}^{2}\right)>\operatorname{dim}(X)$. Otherwise $p \in X$ is a non-singular point of X.
(b) The variety X is non-singular if every $p \in X$ is a non-singular point.

In the affine case, a point $p \in X \subset \mathbf{C}^{n}$ with $I(X)=\left\langle f_{1}, \ldots, f_{m}\right\rangle$ is nonsingular if and only if the Jacobian matrix has rank $n-d$ rank at p. But in this case there is a subset: $\left\{f_{j_{1}}, \ldots, f_{j_{n-d}}\right\} \subset\left\{f_{1}, \ldots, f_{m}\right\}$ such that the first-order terms in the Taylor series span the same space:

$$
\sum_{k=1}^{n-d} \mathbf{C}\left(\sum_{i=1}^{n} \frac{\partial f_{j_{k}}}{\partial x_{i}}(p)\left[\left(x_{i}-p_{i}\right)\right]\right)=\sum_{j=1}^{m} \mathbf{C}\left(\sum_{i=1}^{n} \frac{\partial f_{j}}{\partial x_{i}}(p)\left[x_{i}-p_{i}\right]\right)
$$

But now recall the implicit function theorem from analysis, which says that in this case there are analytic local coordinates (convergent power series): $z_{1}=z_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots ., z_{d}=z_{d}\left(x_{1}, \ldots, x_{n}\right)$ at p meaning that for some analytic neighborhood $p \in U$, the map:

$$
\left(z_{1}, \ldots, z_{d}\right): U \rightarrow \mathbf{C}^{d}
$$

is an isomorphism with a neighborhood of the origin in \mathbf{C}^{d}. In other words, a variety has analytic local coordinates at every non-singular point, and a non-singular variety is thus a complex analytic manifold. The best we can do with regular functions and our Zariski topology is the following:

Proposition 10.2: If $p \in X$ is an arbitrary point and $g_{1}, \ldots, g_{d} \in m_{p}$, then:

$$
\left\langle g_{1}, \ldots, g_{d}\right\rangle=m_{p} \Leftrightarrow \bar{g}_{1}, \ldots, \bar{g}_{d} \text { span } m_{p} / m_{p}^{2}
$$

(this is the converse to Basic Remark (a) above!)
Proof: Consider the map of finitely generated $\mathcal{O}_{X, p}$-modules:

$$
\phi: \bigoplus_{i=1}^{d} \mathcal{O}_{X, p} \rightarrow m_{p} ;\left(f_{1}, \ldots, f_{d}\right) \mapsto \sum_{i=1}^{d} f_{i} g_{i}
$$

Then ϕ is surjective if and only if $\left\langle g_{1}, \ldots, g_{d}\right\rangle=m_{p}$, and ϕ induces a surjective map of vector spaces

$$
\bar{\phi}: \mathbf{C}^{d}=\bigoplus_{i=1}^{d} \mathcal{O}_{X, p} / m_{p} \rightarrow m_{p} / m_{p}^{2} ; \quad\left(a_{1}, \ldots, a_{d}\right) \mapsto \sum_{i=1}^{d} a_{i} \bar{g}_{i} \in m_{p} / m_{p}^{2}
$$

if and only if the $\bar{g}_{1}, \ldots, \bar{g}_{d}$ span m_{p} / m_{p}^{2}. The Proposition now follows from:
Nakayama's Lemma II: If M and N are finitely generated modules over a local Noetherian ring A, and:

$$
\phi: M \rightarrow N
$$

is an A-module homomorphism, then ϕ is surjective if and only if:

$$
\bar{\phi}: M / m M \rightarrow N / m N
$$

is a surjective map of vector spaces over the "residue" field $A / m A$.
Proof: We want to show that $Q=0$, for the cokernel $Q=N / \phi(M)$. The surjectivity of $\bar{\phi}$ implies $Q=m Q$ (since $Q / m Q$ is the cokernel of $\bar{\phi}$) so we can apply Nakayama I ($\S 6)$ to Q to conclude that there is an element:

$$
a=1+b \in A \text { with } b \in m \text { such that } a Q=0
$$

But since A is a local ring, such an $a \in A$ is a unit, so $Q=0$, as desired!
Definition: If $p \in X$ is a non-singular point, then any $g_{1}, \ldots, g_{d} \in m_{p}$ that lift a basis of the cotangent space m_{p} / m_{p}^{2} are called a local system of parameters.

Note: By the Proposition, a local system of parameters generates m_{p}, but the g_{i} are almost never the germs of a set of local coordinates of X. That is, if $p \in U$ is an affine neighborhood on which each of the g_{1}, \ldots, g_{d} are defined, then the regular map:

$$
\Phi: U \rightarrow \mathbf{C}^{d} ; \Phi(p)=\left(g_{1}(p), \ldots, g_{d}(p)\right)
$$

is almost never an isomorphism with an open subset of \mathbf{C}^{d}. Instead, for small enough neighborhoods of p, the map is étale, which means, roughly, that it is (an open subset of) a topological covering space of an open subset of \mathbf{C}^{d}.
Example: Take $p=(0,0) \in V\left(y^{2}-x(x-1)(x-\lambda)\right)$, the affine elliptic curve. Then the Zariski cotangent space is:

$$
m_{p} / m_{p}^{2} \cong \mathbf{C}[x] \oplus \mathbf{C}[y] / \mathbf{C}(-\lambda[x]) \cong \mathbf{C}
$$

so p is a non-singular point, and $y \in m_{p}$ is a local parameter, but x is not (indeed $x=u y^{2}$ where $u=(x-1)^{-1}(x-\lambda)^{-1} \in m_{p}$). Under the map:

$$
\Phi: V\left(y^{2}-x(x-1)(x-\lambda)\right) \rightarrow \mathbf{C} ;(x, y) \mapsto y
$$

there is a neighborhood of p (in the Zariski topology) that is a $3: 1$ cover of \mathbf{C}^{1} minus two points. Since the only open subsets of the elliptic curve in the Zariski topology are the complements of finite sets, the map stays $3: 1$ over most of any neighborhood of p, no matter how "small" it is!

Here is an extremely important property of nonsingular points:
UFD Theorem 10.3: The stalk $\mathcal{O}_{X, p}$ of a quasi-projective variety X at any non-singular point $p \in X$ is always a UFD.

This will require our longest excursion yet into commutative algebra. Before we do this, recall that a UFD is integrally closed (§9), so:

Corollary 10.4: A non-singular variety is a normal variety.
But not vice versa, in general! (unless $\operatorname{dim}(X)=1$....more on that later)
Example: The point $p=(0,0,0) \in V\left(y^{2}-x z\right) \subset \mathbf{C}^{3}$ is singular, since the gradient of $y^{2}-x z$ vanishes at the origin. On the other hand,

$$
\mathbf{C}[x, y, z] /\left\langle y^{2}-x z\right\rangle
$$

is integrally closed.

Completions: Let A be a local Noetherian domain with maximal ideal m. The completion of (A, m) is the inverse limit ring:

$$
\widehat{A}:=\lim _{\leftarrow} A / m^{d}
$$

consisting of all inverse systems:

$$
\left\{\left(\ldots, b_{2}, b_{1}, b_{0}\right) \mid b_{d} \in A / m^{d+1} \text { and } \bar{b}_{d+1}=b_{d} \in A / m^{d+1}\right\}
$$

To get a feel for this, think of A as a topological space with nested subsets:

$$
\ldots \subset m^{3} \subset m^{2} \subset m \subset A
$$

and their translates $a+m^{d}$ as a basis of open sets for the " m-adic topology." The analogy with the ordinary topology on \mathbf{R}^{n} is not perfect, since here "close" is a transitive notion (i.e. $a-a^{\prime} \in m^{d}$ and $a^{\prime}-a^{\prime \prime} \in m^{d} \Rightarrow a-a^{\prime \prime} \in m^{d}$) which is certainly not the case in \mathbf{R}^{n}, and explains why we can consider inverse systems rather than Cauchy sequences of elements of A. The first result we need says that no nonzero element of A is arbitrarily close to zero.
Krull's Theorem: In this setting (local Noetherian domain (A, m))

$$
\bigcap_{d=0}^{\infty} m^{d}=0
$$

Proof: Suppose $a_{1}, \ldots, a_{n} \in A$ generate m. Then an element $a \in \cap m^{d}$ is a homogeneous polynomial $F_{d}\left(a_{1}, \ldots, a_{n}\right)$ of degree d in the a_{i}, for every d.

Let $I \subset A\left[x_{1}, \ldots, x_{n}\right]$ be the smallest ideal containing all $F_{d}\left(x_{1}, \ldots, x_{n}\right)$, thought of as homogeneous polynomials in the variables x_{1}, \ldots, x_{n}. Since $A\left[x_{1}, \ldots, x_{n}\right]$ is Noetherian (Proposition 1.1!) we know that I only requires finitely many generators, say $I=\left\langle F_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, F_{l}\left(x_{1}, \ldots, x_{n}\right)\right\rangle$ so:

$$
F_{l+1}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{l} F_{l+1-i}\left(x_{1}, \ldots, x_{n}\right) G_{i}\left(x_{1}, \ldots, x_{n}\right)
$$

and then evaluating at $x_{1}=a_{1}, \ldots, x_{n}=a_{n}$ gives:

$$
a=\sum_{i=1}^{l} a G_{i}\left(a_{1}, \ldots, a_{n}\right) \text { or } a\left(1-\sum_{i=1}^{l} b_{i}\right)=0 \text { for } b_{i}=G_{i}\left(a_{1}, \ldots, a_{n}\right)
$$

But A is a local ring and each $b_{i} \in m$, so $1-\sum_{i=1}^{l} b_{i}$ is a unit, and $a=0$.

Notice that when $A=\mathcal{O}_{X, p}$, Krull's theorem says that the only germ of a regular function which is "zero to all orders" at $p \in X$ is the zero germ, which is, of course, also the case with analytic (but not differentiable!) functions.

Corollary 1: The m-adic topology on A is Hausdorff.
Proof: Suppose $a \neq a^{\prime} \in A$. Then by Krull's theorem, $a-a^{\prime} \notin m^{d}$ for some $d>0$. But then $\left(a+m^{d}\right) \cap\left(a^{\prime}+m^{d}\right)=\emptyset$ (transitivity of closeness). Thus A is Hausdorff!

Corollary 2: The natural ring homomorphism:

$$
\iota: A \rightarrow \widehat{A} ; \quad a \mapsto(\bar{a}, \bar{a}, \bar{a}, \ldots)
$$

is injective since an element of the kernel would be in every m^{d}.
And now we can say \widehat{A} is the completion of A :
Corollary 2: \widehat{A} topologically completes $A \subset \widehat{A}$.
Proof: Given a Cauchy sequence $a_{1}, a_{2}, a_{3}, \ldots \in A$, consider:

$$
\left(\ldots, b_{2}, b_{1}, b_{0}\right) \text { with } b_{d}=\bar{a}_{n} \in A / m^{d+1} \text { for all sufficiently large } n
$$

The point is that Cauchy means that for any d, eventually:

$$
a_{n+1}-a_{n} \in m^{d+1}
$$

so this definition of the inverse limit is well-defined. If two Cauchy sequences $\left\{a_{i}\right\}$ and $\left\{a_{i}^{\prime}\right\}$ have the same limit, i.e. if for any d, eventually:

$$
a_{n}-a_{n}^{\prime} \in m^{d+1}
$$

then they give the same inverse limit, and conversely, given an inverse limit: $\left(\ldots, b_{2}, b_{1}, b_{0}\right)$, we can lift arbitrarily to:

$$
a_{0}, a_{1}, a_{2}, \ldots \in A \text { such that } \bar{a}_{d}=b_{d} \in A / m^{d+1}
$$

and this evidently Cauchy. So \widehat{A} completes $A \subset \widehat{A}$.
Example: If A is a (not local) Noetherian ring and m is maximal then:

$$
A / m^{d} \rightarrow A_{S} / m_{S}^{d} ; \quad \bar{a} \rightarrow \overline{\left(\frac{a}{1}\right)}
$$

is an isomorphism (for $S=A-m$) since any $f \in S$ is a unit in A / m^{d}.

Thus elements of \widehat{A}_{S} can be written $\left(\ldots, b_{2}, b_{1}, b_{0}\right)$ where $b_{d} \in A / m^{d+1}$
(a) For $m=\langle p\rangle \subset \mathbf{Z}$, the ring $\widehat{\mathbf{Z}}_{S}$ is the ring of p-adic integers:

$$
\left\{\left(\ldots, b_{2}, b_{1}, b_{0}\right) \mid b_{d} \in \mathbf{Z} / p^{d+1} \mathbf{Z} \text { and } \overline{b_{d+1}}=b_{d}\right\}
$$

But we can identify each b_{d} with an integer from 0 to $p^{d}-1$:

$$
b_{d}=c_{0}+c_{1} p+c_{2} p^{2}+\ldots+c_{d-1} p^{d-1} ; \quad c_{i} \in\{0, \ldots, p-1\}
$$

and this gives the more familiar description of the p-adic integers:

$$
\mathbf{Z}_{p}=\left\{\sum_{d=0}^{\infty} c_{d} p^{d}\right\}
$$

(b) Similarly, if $p=\left(p_{1}, \ldots, p_{n}\right) \in \mathbf{C}^{n}$ and $S=I(p)$, then:

$$
\mathbf{C}\left[x_{1}, \ldots, x_{n}\right]_{S} \cong \mathbf{C}\left[\left[x-p_{1}, \ldots, x-p_{n}\right]\right]
$$

is the ring of (formal) Taylor series at the point p.
Remarks: Ideals and modules are completed in the same way, and:

- If (A, m) is a Noetherian local ring, then so is $(\widehat{A}, \widehat{m})$.
- the natural map $\widehat{A} \otimes_{A} M \rightarrow \widehat{M}$ is an isomorphism when M is a finitely generated A-module and A is Noetherian.
- $\widehat{\widehat{M}}=\widehat{M}$ (i.e. completions are complete)
- If $M^{\prime} \rightarrow M \rightarrow M^{\prime \prime}$ is an exact sequence of finitely generated A-modules, then the sequence of completions $\widehat{M^{\prime}} \rightarrow \widehat{M} \rightarrow \widehat{M^{\prime \prime}}$ is also an exact sequence of finitely generated \widehat{A}-modules.

These remarks are not meant to be obvious. They are, however, standard results in commutative algebra. See, for example Atiyah-Macdonald's book Introduction to Commutative Algebra Chapter 10 for proofs. Even though the results are important, I don't want to duplicate too much standard material.

Let's return to $p \in X$ a non-singular point of a quasi-projective variety.
Strategy for the Proof of UFD Theorem 10.3: Let $A=\mathcal{O}_{X, p}$.

Step 1: Prove that if $g_{1}, \ldots, g_{n} \in \mathcal{O}_{X, p}$ is a local system of parameters, then the natural "evaluation" ring homomorphism:

$$
e v: \mathbf{C}\left[\left[x_{1}, \ldots, x_{n}\right]\right] \rightarrow \widehat{\mathcal{O}}_{X, p} ; \quad x_{i} \mapsto g_{i}
$$

is an isomorphism (vastly generalizing Example (b) above!).
Step 2: Prove that the power series rings $\mathbf{C}\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ are UFD's.
Step 3: Prove that if \widehat{A} is a UFD, then $A \subset \widehat{A}$ is a UFD.
Step 1: A power series:

$$
\sum_{d=0}^{\infty} F_{d}(x) \in \mathbf{C}\left[\left[x_{1}, \ldots, x_{n}\right]\right]
$$

maps under the evaluation homorphism to the inverse limit:

$$
\left(\ldots, \overline{F_{2}(g)+F_{1}(g)+F_{0}(g)}, \overline{F_{1}(g)+F_{0}(g)}, \overline{F_{0}(g)}\right) \in \widehat{\mathcal{O}}_{X, p}
$$

(where the $F_{d}(x)$ are homogeneous polynomials of degree d).
Since the g_{1}, \ldots, g_{n} generate m_{p}, an arbitrary element $f \in m_{p}^{d}$ looks like:

$$
f=\sum_{i_{1}+\ldots+i_{n}=d+1} h_{I} g_{1}^{i_{1}} \cdots g_{n}^{i_{n}} ; \quad h_{I} \in \mathcal{O}_{X, p}
$$

and then if $F_{d}\left(x_{1}, \ldots, x_{n}\right)=\sum h_{I}(p) x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}$ it follows that $F_{d}(g)-f \in m_{p}^{d+1}$. In other words, the map:

$$
\mathbf{C}\left[x_{1}, \ldots, x_{n}\right] \rightarrow m_{p}^{d} / m_{p}^{d+1} ; \quad F_{d}(x) \rightarrow \overline{F_{d}(g)}
$$

is surjective. But then it follows that $e v$ it surjective since if, inductively, $\overline{F_{d-1}(g)+\ldots+F_{0}(g)}=b_{d-1}$ and $\bar{b}_{d}=b_{d-1} \in \mathcal{O}_{X, p} / m_{p}^{d}$, choose $F_{d}(x)$ so that:

$$
\bar{F}_{d}(g)=b_{d}-\overline{F_{d-1}(g)-\ldots-F_{0}(g)} \in m_{p}^{d} / m_{p}^{d+1}
$$

and then $\overline{F_{d}(g)+\ldots+F_{0}(g)}=b_{d} \in \mathcal{O}_{X, p} / m_{p}^{d+1}$, as desired.
For injectivity we need $F_{d}\left(g_{1}, \ldots, g_{n}\right) \in m^{d+1} \Leftrightarrow F_{d}\left(x_{1}, \ldots, x_{n}\right)=0$. But if $F_{d}(g) \in m^{d+1}$, then $F_{d}(g)=\sum_{|I|=d+1} h_{I} g_{i_{1}} \cdots g_{i_{n}}=\Phi_{d+1}(g)$ for some $\Phi_{d+1}(x) \in \mathcal{O}_{X, p}\left[x_{1}, \ldots, x_{n}\right]_{d+1}$ and then (as in the proof of Noether
normalization in §1) there are constants c_{1}, \ldots, c_{n-1} (after possibly reordering the x_{i}) and a nonzero(!) additional constant $c \in \mathbf{C}$ so that, setting $y_{1}=x_{1}+c_{1} x_{n}, \ldots, y_{n-1}=x_{n-1}+c_{n-1} x_{n}$ gives:

$$
F_{d}\left(x_{1}, \ldots, x_{n}\right)=a x_{n}^{d}+G_{1}(y) x_{n}^{d-1}+\ldots+G_{d}(y),
$$

for $G_{i}(y) \in \mathbf{C}\left[y_{1}, \ldots, y_{n-1}\right]_{i}$ and then for some $\Gamma_{i}(y) \in \mathcal{O}_{X, p}\left[y_{1}, \ldots, y_{n-1}\right]_{i}$:

$$
\Phi_{d+1}\left(x_{1}, \ldots, x_{n}\right)=\Gamma_{0}(y) x_{n}^{d+1}+\Gamma_{1}(y) x_{n}^{d}+\ldots+\Gamma_{d+1}(y)
$$

so evaluating at g_{1}, \ldots, g_{n} and subtracting gives $\left(c-\Gamma_{0} g_{n}\right) g_{n}^{d} \in\left\langle f_{1}, \ldots, f_{n-1}\right\rangle$ where $f_{i}=g_{i}+c_{i} g_{n}$. But notice that $c-\Gamma_{0} g_{n}$ is a unit in $\mathcal{O}_{X, p}$, so in fact $g_{n}^{d} \in\left\langle f_{1}, \ldots, f_{n-1}\right\rangle$. I claim that this is impossible when we assume that the g_{1}, \ldots, g_{n} (and hence also $\left.f_{1}, \ldots, f_{n-1}, g_{n}\right)$ is a local system of parameters.

Here's the argument. If $g_{n}^{d} \in\left\langle f_{1}, \ldots, f_{n-1}\right\rangle$ and $\left\langle f_{1}, \ldots, f_{n-1}, g_{n}\right\rangle=m_{p}$, then there is an affine neighborhood U of $p \in X$ such that:

- $f_{1}, \ldots, f_{n-1}, g_{n} \in \mathbf{C}[U]$,
- $\left\langle f_{1}, \ldots, f_{n-1}, g_{n}\right\rangle=I(p) \subset \mathbf{C}[U]$, and
- $g_{n}^{d} \in\left\langle f_{1}, \ldots, f_{n-1}\right\rangle \subset \mathbf{C}[U]$
(each successive item above may require shrinking the neighborhood!)
Then $\mathbf{C}[U] /\left\langle f_{1}, \ldots, f_{n-1}\right\rangle$ is a vector space over $\mathbf{C}=\mathbf{C}[U] /\left\langle f_{1}, \ldots, f_{n-1}, g_{n}\right\rangle$ of dimension d (or less) so it contains only finitely many maximal ideals. But this implies that the irreducible components of $V\left(\left\langle f_{1}, \ldots, f_{n-1}\right\rangle\right) \subset U$ are points, which is impossible if $\operatorname{dim}(U)=n$, since by Krull's principal ideal theorem every component of $V\left(\left\langle f_{1}, \ldots, f_{n-1}\right\rangle\right)$ has dimension 1 or more!
Example: Step 1 says in particular that regular functions at p have (unique) Taylor series expansions. For example, let $X=V\left(y^{2}-\left(x^{3}-1\right)\right)$ and $p=(1,0)$. Then:

$$
y \in m_{p} \text { is a local parameter }
$$

and the Taylor series expansion of x in terms of y is $e v^{-1}(x)$ for:

$$
e v: \mathbf{C}[[t]] \rightarrow \widehat{\mathcal{O}}_{X, p}
$$

Since on X we have the (non-algebraic) relation $x=\sqrt[3]{y^{2}+1}$, the ordinary Taylor series expansion of this function will do:

$$
\sqrt[3]{t^{2}+1}=1+0 t+\frac{1}{3} t^{2}+\ldots
$$

satisfies $x-1 \in m_{p}^{2}, x-1-\frac{1}{3} y^{2} \in m_{p}^{3}, \ldots$

Aside on UFDness: In a Noetherian domain A, let $u \in A$ denote a unit. Then any nonzero $a \in A$ is a finite product:

$$
a=u f_{1}^{m_{1}} f_{2}^{m_{2}} \cdots f_{n}^{m_{n}}
$$

of a unit and irreducible elements $f_{i} \in A$, where $f \in A$ is irreducible if its only factors are u and $u f$. A UFD is defined by requiring that such products be unique, in the sense that the f_{i} are determined up to permutation and multiplication by units. There are several useful criteria for UFDness:
The Standard Criterion: A is a UFD if and only if each irreducible $f \in A$ generates a prime ideal (i.e. $f|g h \Rightarrow f| g$ or $f \mid h$). This is the familiar criterion used in elementary number theory to prove that the integers are a UFD.
Minimal Prime Criterion: A is a UFD if and only if every minimal prime ideal is a principal ideal.

Proof: A minimal prime ideal is a non-zero prime ideal that contains no other (non-zero) prime ideals. Suppose A is a UFD and $P \subset A$ is a minimal prime ideal. Let $0 \neq a \in P$. If we factor $a=u f_{1}^{m_{1}} \cdots f_{n}^{m_{n}}$, then (at least) one of the $f_{i} \in P$. But by the standard criterion $\left\langle f_{i}\right\rangle$ is a prime ideal, so $\left\langle f_{i}\right\rangle=P$ by minimiality. Conversely, if every minimal prime is principal, let $S \subset A$ be the subset generated by 1 and the irreducible elements $f \in A$ such that $\langle f\rangle$ is prime. As in the standard criterion, S is exactly the (multiplicative) set of elements of A with unique factorization. If $S=A-0$, then A is a UFD. On the other hand if $S \neq A$ then A_{S} is not a field and then the non-zero (minimal) prime ideals in A_{S} correspond to (minimal) prime ideals $P \subset A$ with $P \cap S=\emptyset$. Such a $P=\langle f\rangle$ is principal, by assumption, and then f is irreducible, giving a contradiction since $f \notin S$.
Ratio Criterion: A is a UFD if and only if every "ratio" of principal ideals:

$$
\langle f\rangle:\langle g\rangle=\{a \in A \mid a g \in\langle f\rangle\} \text { is again a principal ideal }
$$

Proof: If A is a UFD and $f=u f_{1}^{k_{1}} \ldots f_{n}^{k_{n}}$ and $g=v f_{1}^{l_{1}} \ldots f_{n}^{l_{n}}$ are their factorizations, $\langle f\rangle:\langle g\rangle=\langle e\rangle$ for $e=f_{1}^{\max \left(k_{1}-l_{1}, 0\right)} \ldots f_{n}^{\max \left(k_{n}-l_{n}, 0\right)}$. Conversely, suppose $f \in A$ is irreducible and $f \mid g h$. If the ratio property holds, then $\langle f\rangle:\langle g\rangle=\langle e\rangle$ for some $e \in A$. Notice that $f, h \in\langle f\rangle:\langle g\rangle$, so

$$
f=a e, h=b e \text { and } e g=c f
$$

for some elements $a, b, c \in A$. Since f is irreducible, either a is a unit, in which case $f \mid h$, or else e is a unit, and $f \mid g$ so the standard criterion applies.

Step 2: This is proved by induction using:
Weierstrass Preparation: If $F \in \mathbf{C}\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ satisfies $F\left(0, \ldots 0, x_{n}\right) \neq 0$, then there is a uniquely determined unit $U \in \mathbf{C}\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ such that:

$$
F U=x_{n}^{d}+R_{1} x_{n}^{d-1}+\ldots+R_{d} \in \mathbf{C}\left[\left[x_{1}, \ldots, x_{n-1}\right]\right]\left[x_{n}\right]
$$

for some $d \geq 0$ and (uniquely determined) power series $R_{i} \in \mathbf{C}\left[\left[x_{1}, \ldots, x_{n-1}\right]\right]$.
(For a proof, see Zariski-Samuel Commutative Algebra)
Proof of Step 2: Given an irreducible $F \in \mathbf{C}\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ dividing $G H$, then after (possibly reordering and) changing coordinates: $y_{i}=x_{i}+c_{i} x_{n}$, we can assume that $F\left(0, \ldots, 0, x_{n}\right) \neq 0$, and this can be done simultaneously for G and H, too. Now use Weierstrass Preparation: $F U, G V, H W \in$ $\mathbf{C}\left[\left[y_{1}, \ldots, y_{n-1}\right]\right]\left[x_{n}\right]$ for uniquely determined units U, V, W. The irreducibility of F implies $F U$ is irreducible, and by Gauss' lemma and induction on n we know that $\mathbf{C}\left[\left[y_{1}, \ldots, y_{n-1}\right]\right]\left[x_{n}\right]$ is a UFD, so

$$
\begin{gathered}
F|G H \Rightarrow F U|(G V)(H W)\left(\text { in } \mathbf{C}\left[\left[x_{1}, \ldots, x_{n}\right]\right]\right) \\
\Rightarrow F U \mid(G V)(H W)\left(\text { in } \mathbf{C}\left[\left[y_{1}, \ldots, y_{n-1}\right]\right]\left[x_{n}\right]\right) \\
\Rightarrow F U \mid G V \text { or } F U \mid H W \text { (in either ring }) \Rightarrow F \mid G \text { or } F \mid H
\end{gathered}
$$

Step 3: If \widehat{A} is a UFD, then $A \subset \widehat{A}$ is a UFD.
Proof: We'll use the ratio criterion for UFDness. Given $f, g \in A$, then:

$$
0 \rightarrow\langle f\rangle:\langle g\rangle \rightarrow A \xrightarrow{\cdot g} A /\langle f\rangle
$$

is an exact sequence of A-modules, by definition of $\langle f\rangle:\langle g\rangle$. If we take completions, then the sequence remains exact, and becomes:

$$
0 \rightarrow\langle f \widehat{:\langle g\rangle} \rightarrow \widehat{A} \xrightarrow{\cdot g} \widehat{A} /\langle f\rangle
$$

Since \widehat{A} is a UFD, $\langle f \widehat{::}\langle g\rangle=\langle f\rangle:\langle g\rangle=\langle\widehat{e}\rangle \subset \widehat{A}$ for some $\widehat{e} \in \widehat{A}$. But in a local ring (A, m) an ideal I is principal if and only if $I / m I$ has rank 1 as a vector space over A / m (by Nakayama's lemma II!) And since:
it follows that $\langle f\rangle:\langle g\rangle \subset A$ is principal, as desired.

Exercises 10.

1. If $p \in X$ and $q \in Y$ are nonsingular points of quasi-projective varieties, prove that the point $(p, q) \in X \times Y$ is nonsingular.
2. (a) Prove Euler's relation. A polynomial $F \in \mathbf{C}\left[x_{0}, \ldots, x_{n}\right]$ is homogeneous of degree d if and only if:

$$
\sum_{i=0}^{n} x_{i} \frac{\partial F}{\partial x_{i}}=d F
$$

(b) If $F \in \mathbf{C}\left[x_{0}, \ldots, x_{n}\right]$ is an irreducible homogeneous polynomial, prove that $p \in V(F)$ is a non-singular point if and only if:

$$
\nabla F(p) \neq(0, \ldots, 0)
$$

Conclude that the Fermat hypersurfaces $V\left(x_{0}^{d}+\ldots+x_{n}^{d}\right)$ are all non-singular.
(c) If F is a reducible homogeneous polynomial, show that there is always a point $p \in V(F)$ such that:

$$
\nabla F(p)=(0, \ldots, 0)
$$

(d) Prove that, within the projective space $\mathbf{C P}\binom{n+d}{d}-1$ of hypersurfaces $V(F) \subset \mathbf{C P}^{n}$ of degree d, there is a non-empty open subset $U \subset \mathbf{C P}\left(\begin{array}{c}\binom{n+d}{d}-1\end{array}\right.$ such that $V(F) \in U$ if and only if F is irreducible and $V(F)$ is non-singular.
(e) If F is an irreducible quadric hypersurface (i.e. $d=2$), describe the singular locus of $V(F)$. Find the complement $\mathbf{C P}\left(\begin{array}{c}\binom{n+2}{2}-1 \\ -U\end{array}\right.$ for U in (d).
3. Prove that an algebraic group is non-singular. More generally, prove that a homogeneous space, that is, a variety X with a transitive action of an algebraic group G :

$$
\sigma: G \times X \rightarrow X
$$

is non-singular. Conclude that the Grassmannian $G(r, n)$ is non-singular.
4. For each of the degeneracy loci in the projective space of matrices:

$$
D_{r}(m, n)=\left\{M \in \mathbf{C P}^{m n-1} \mid \operatorname{rk}(M) \leq r\right\}
$$

prove that the singular locus satisfies:

$$
\operatorname{Sing}\left(D_{r}(m, n)\right)=D_{r-1}(m, n)
$$

and prove that at each singular point $p \in D_{r}(m, n), \operatorname{dim}\left(m_{p} / m_{p}^{2}\right)=m n-1$.
5. If $X \subset \mathbf{C P}^{n}$ is an embedded projective variety and $p \in X$, define:

$$
\Theta_{p}(X):=\bigcap_{\operatorname{homog}}^{F \in I(X)} \text { } V\left(\sum_{i=0}^{n} \frac{\partial F}{\partial x_{i}}(p) x_{i}\right) \subseteq \mathbf{C P}^{n}
$$

(a) Prove that $\Theta_{p}(X) \subset \mathbf{C P}^{n}$ is a projective subspace passing through p, of dimension equal to $\operatorname{dim}\left(m_{p} / m_{p}^{2}\right)$.
$\Theta_{p}(X)$ is called the projective tangent space at p. Projective varieties $X, Y \subset \mathbf{C P}^{n}$ intersect transversely at $p \in X \cap Y$ if p is a non-singular point of both X and Y, and

$$
\operatorname{dim}\left(\Theta_{p}(X) \cap \Theta_{p}(Y)\right)=\operatorname{dim}(X)+\operatorname{dim}(Y)-n
$$

(i.e. if the projective tangent spaces intersect transversely)
(b) If X and Y intersect transversely at p, show that the component:

$$
p \in Z \subset X \cap Y
$$

of $X \cap Y$ containing p is non-singular at p.
6. Bertini's Theorem. If $X \subset \mathbf{C P}^{n}$ is a non-singular embedded projective variety of dimension ≥ 2, consider the subset:

$$
\left.U \subseteq\left(\mathbf{C P}^{n}\right)^{*} \cong \mathbf{C} \mathbf{P}^{n} \text { (the projective space of hyperplanes in } \mathbf{C P}^{n}\right)
$$

defined by the property:

$$
H \in U \Leftrightarrow H \cap X \text { is irreducible and non-singular }
$$

Prove that U is a non-empty Zariski open subset of $\left(\mathbf{C P}^{n}\right)^{*}$.
Hints: Consider the (projective variety!) subset:

$$
T X:=\left\{(p, H) \mid p \in X, \Theta_{p}(X) \subseteq H\right\} \subset \mathbf{C P}^{n} \times\left(\mathbf{C P}^{n}\right)^{*}
$$

The projection onto $\mathbf{C} \mathbf{P}^{n}$ is X with fibers isomorphic to $\mathbf{C} \mathbf{P}^{n-\operatorname{dim}(X)-1}$ so $T X$ is irreducible, of dimension $n-1$. Therefore its projection to $\left(\mathbf{C P}^{n}\right)^{*}$ has (closed) image of dimension $\leq n-1$, and any U contained in the complement of the image will give non-singular $H \cap X$. But what about irreducibility? Prove the theorem with "hyperplane" replaced by "hypersurface of $\operatorname{deg} d$. ."
7. If $X \subset \mathbf{C P}{ }^{n}$ is a variety (maybe singular) of dimension m, show that there is a non-empty open subset:

$$
U \subset\left(\mathbf{C P}^{n *}\right)^{m}
$$

such that, if $\left(H_{1}, \ldots, H_{m}\right) \in U$, then:

$$
\left(H_{1} \cap \ldots \cap H_{m}\right) \cap \operatorname{Sing}(X)=\emptyset
$$

and

$$
\left(H_{1} \cap \ldots \cap H_{m}\right) \cap X
$$

is transverse at the non-singular locus of X, and consists of d points, where:

$$
H_{X}(t)=\frac{d}{m!} t^{m}+\ldots
$$

is the Hilbert polynomial of $X \subset \mathbf{C P}^{n}$.

