
Math 6130 Notes. Fall 2002.

7. Basic Maps. Recall from §3 that a regular map of affine varieties is
“the same” as a homomorphism of coordinate rings (going the other way).
Here, we look at how algebraic properties of the homomorphisms relate to
the geometry of three basic types of regular maps of varieties.

Definition: A regular map Φ : X → Y of quasi-projective varieties is a
closed embedding if Φ is an isomorphism from X to a closed subset Z ⊂ Y .

Examples: (a) A quasi-projective variety Y is affine (resp. projective), by
definition, if there is a closed embedding Φ : Y → Cn (resp. Φ : Y → CPn).

(b) Let Φ : X → Y be any regular map. The graph of Φ is the regular
map γΦ := (idX ,Φ) : X → X×Y , whose image is ΓΦ := {(x,Φ(x)) | x ∈ X}.
This is a closed subset of X × Y , by Proposition 6.5(b), since it is equal to
the inverse image of the diagonal under the regular map:

(Φ ◦ πX , πY ) : X × Y → Y × Y

Moreover, the compositions: X
γΦ→ ΓΦ

πX→ X and ΓΦ
πX→ X

γΦ→ ΓΦ are
clearly the identity maps, so γΦ is an isomorphism from X to ΓΦ. That is,
the graph γΦ is a closed embedding, and so every regular map Φ factors:

Φ = πY ◦ γΦ : X → X × Y → Y

as a closed embedding (the graph) followed by a projection.

Proposition 7.1: A regular map of affine varieties Φ : X → Y is a closed
embedding if and only if Φ∗ : C[Y ]→ C[X] is surjective.

Proof: If Φ is an isomorphism from X to a closed subvariety Z ⊂ Y ,
then C[Z] = C[Y ]/I(Z), where I(Z) is the (prime) ideal of regular functions
on Y that vanish on Z, so

Φ∗ : C[Y ]→ C[Y ]/I(Z)
∼→ C[X]

is surjective. On the other hand, if Φ : X → Y is any regular map of affine
varieties, and if Φ∗ : C[Y ]→ C[X] is surjective, let I = ker(Φ∗) and consider
Z = V (I) ⊂ Y . If y 6∈ Z, let g ∈ I be a regular function such that g(y) 6= 0.
Then y cannot be in the image of Φ, because if it were, say Φ(x) = y, then
Φ∗(g)(x) = g(y) 6= 0, and so g 6∈ ker(Φ∗). Thus Φ factors through a map
Φ : X → Z ⊂ Y , and the induced Φ∗ : C[Z]→ C[X] is an isomorphism, so Φ
is an isomorphism from X to Z. That is, Φ : X → Y is a closed embedding.
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So surjective homomorphisms of coordinate rings Φ∗ : C[Y ] → C[X]
correspond to closed embeddings of affine varieties. It makes sense next to
ask about the injective homomorphisms of coordinate rings.

Definition: A regular map Φ : X → Y of affine varieties is dominant if the
map on coordinate rings Φ∗ : C[Y ]→ C[X] is injective.

Examples: (a) (Projections) Recall that C[X × Y ] ∼= C[X] ⊗C C[Y ] for
affine varieties (Exercise 6.2). It follows that the two projections:

πX : X × Y → X and πY : X × Y → Y

are dominant, with corresponding injective maps:

π∗X : C[X]→ C[X × Y ]; g 7→ g ⊗ 1 and π∗Y : C[Y ]→ C[X × Y ]; h 7→ 1⊗ h

(b) (Open embeddings) Recall that a basic open set U = X − V (g) ⊂ X
in a affine variety X is again an affine variety (Proposition 3.6) and that its
affine coordinate ring is (Exercise 3.3(a)):

C[X]g :=

{
f

gm
| f ∈ C[X], m ≥ 0

}
⊂ C(X)

The inclusion mapping Φ : U → X therefore gives the homomorphism:

Φ∗ : C[X]→ C[U ] = C[X ]g; f 7→ f

1

which is evidently injective. So the open embedding of U is a dominant map.

(c) (Blow Up) The regular map Φ : C2 → C2 given by:

Φ(x, y) = (x, xy)

is dominant, since Φ∗ : C[s, t] → C[x, y] is given by Φ∗(s) = x,Φ∗(t) = xy,
and there are no polynomial relations between x and xy. Notice that Φ
induces an isomorphism of open sets:

Φ : C2 − V (x)
∼→ C2 − V (s)

but that Φ “blows down” the y-axis V (x) to the origin (0, 0) ∈ C2. We will
see in §8 that the image of Φ is not isomorphic to a quasi-projective variety.
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Proposition 7.2: Φ : X → Y is dominant if and only if Φ(X) ⊂ Y is dense.

Proof: Suppose Φ is dominant, and U = Y − V (g) is a basic open set.
Since Φ∗ is injective and g 6= 0 (always for basic open sets) then Φ∗(g) 6= 0,
which is to say that for some x ∈ X, Φ∗(g)(x) = g(Φ(x)) 6= 0. But this
means that Φ(x) ∈ U , and so U ∩ Φ(X) 6= ∅. Since this is true of all basic
open sets, it follows that Φ(X) is dense.

On the other hand, if Φ(X) is dense then Φ(X) intersects each basic
open set U = Y − V (g), and so for each g 6= 0, we can find an x ∈ X so
that Φ(x) = y and g(y) 6= 0, which implies that Φ∗(g)(x) = g(y) 6= 0, so
Φ∗(g) 6= 0. Thus Φ is dominant.

Following the previous proposition, it makes sense to define in general:

Definition: A regular map Φ : X → Y of quasi-projective varieties X, Y is
dominant if Φ(X) is dense in Y .

Observation: If X is a projective variety, then the factorization of Φ:

Φ = πY ◦ γΦ : X → X × Y → Y

as a composition of a closed embedding followed by a projection shows that
Φ is a closed map, i.e. it takes closed sets to closed sets, since both the closed
embedding γΦ and the projection map πY (by Proposition 6.7(b)) are closed.
Since the only subset of Y that is both dense and closed is Y , we see that:

Corollary 7.3: A dominant map of projective varieties is always surjective.

It is time to begin to pay more attention to the fields of rational functions
of a quasi-projective variety. Recall that when Y ⊂ Cn is affine, then:

C(Y ) = (the field of fractions of C[Y ])

and when X is projective, then C(X) ⊂ (the field of fractions of C[X]) is
the set of fractions that are a ratio of regular functions of the same degree.

If Y ⊂ X is a quasi-projective variety (open in the projective variety X),
we defined OY (U) to be the elements of C(X) that are regular on U . Since
any rational function on X is regular on some open set U ⊂ X, and then
also on the (non-empty!) intersection V = U ∩ Y ⊂ Y , it follows that:

C(X) =
⋃
U⊂X
OX(U) =

⋃
V⊂Y
OY (V )

and this will be our definition of C(Y ), so that in particular C(X) = C(Y ).
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Proposition 7.4: A dominant map Φ : X → Y of quasi-projective varieties
induces a well-defined (injective!) pull-back of fields of rational functions:

Φ∗ : C(Y ) ↪→ C(X)

Proof: Recall that by definition, Φ satisfies: Φ∗ : OY (U)→ OX(Φ−1(U))
for all open subsets U ⊂ Y . If φ ∈ C(Y ) is nonzero, then the domain of φ is
some such open set U , and because Φ is dominant, the inverse image Φ−1(U)
is non-empty. Thus Φ∗(φ) is a nonzero(!) rational function on X, and the
pull-back is defined on all rational functions (and injective).

Remarks: (a) When Φ is not dominant, the pull-back is similarly defined,
but only for rational functions φ ∈ C(Y ) whose domains intersect Φ(X).

(b) When X and Y are affine, then Φ∗ : C(Y ) ↪→ C(X) is the extension
of the injection Φ∗ : C[Y ] ↪→ C[X] to an injection of the fields of fractions.

We can reverse Proposition 7.4, in the spirit of Proposition 3.5, but only
if we allow for dominant rational maps.

Proposition 7.5: For quasi-projective varieties X and Y , each inclusion of
fields ι : C(Y ) ↪→ C(X) gives rise to a rational map:

Φ : X −−> Y

such that the regular map Φ|U : U → Y (from the domain of Φ) is dominant
and the two inclusions of fields agree, i.e. Φ∗ = ι.

Proof: If X ⊂ X ⊂ CPm and Y ⊂ Y ⊂ CPn, construct the rational
map Φ out of the rational functions ι( yi

yj
) ∈ C(X) as in Proposition 4.4.

Definition: A rational map Φ : X −−> Y is birational if it is dominant
(thought of as a regular map from its domain) and Φ∗ is a field isomorphism.

Examples: Examples (b) and (c) (the open embedding and blow-up) of
dominant maps are also birational. Note that neither is an isomorphism!

We will have more to say about birational maps in §9. For now, I want
to concentrate on another very important class of regular maps:

Definition: A regular map Φ : X → Y of affine varieties is finite if the
pull-back Φ∗ : C[Y ]→ C[X] makes C[X] a finitely generated C[Y ]-module.
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Examples: (a) A closed embedding Φ : X → Y is finite, since in that case Φ∗

is surjective (Proposition 7.1), so C[X] is generated by 1 as a C[Y ]-module.

(b) The open embedding Y − V (g) =: U ↪→ Y of a basic open set in
an affine variety is not finite because, as a module, C[U ] = C[X]g is freely
generated by 1, g−1, g−2, g−3, ...

(c) A projection πX : X × Y → X is only finite if Y is a point.

(d) Let X = V (y2 − x) ⊂ C2 be the parabola (on its side) and let
Φ : X → C1 be the projection to the x-axis, which is two-to-one except at
the origin. Then the homomorphism of coordinate rings is the inclusion:

Φ∗ : C[x] ↪→ C[X] = C[x, y]/〈y2 − x〉

so Φ is dominant. It is finite since C[X] is generated by 1, y as a C[x]-module.

(e) (Affine Noether Normalization) If X is any affine variety, then the
Noether Normalization Lemma of §1 showed that there is a polynomial ring
C[y1, ..., yd] ⊂ C[X] so that C[X] is a finitely generated C[y1, ..., yd]-module.
So the associated regular map Φ : X → Cd is both dominant and finite.

Observation: If Φ : X → Y is finite and dominant, then the inclusion of
fields Φ∗ : C(Y ) ↪→ C(X) makes C(X) into a finite field extension of C(Y ).
The generators of C[Y ] as a C[X]-module span C(Y ) as a C(X)-vector space.

Proposition 7.5: A finite map Φ : X → Y of affine varieties always has the
following geometric properties:

(a) the “fibers” Φ−1(y) are finite sets for all y ∈ Y .

(b) Φ is a closed map (i.e. takes closed sets to closed sets)

Remark: Each of these requires a new lemma from commutative algebra,
so we will preceed each part of the proof with the relevant algebra result.

Chinese Remainder Lemma: If A is a commutative ring with 1 and if
m1, ...,mr ⊂ A are distinct maximal ideals, then the natural map:

A/m1 ∩ ... ∩mr → ×ri=1A/mi

is an isomorphism. In particular, if A is a C-algebra of dimension r as a
vector space over C, then A has at most r distinct maximal ideals.
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Proof: We proceed by induction on r. If r = 1, the result is a tautology.
Suppose the Lemma holds for r distinct maximal ideals. Since there are
exactly r maximal ideals in the product of fields: ×ri=1A/mi it follows that
m1, ...,mr must be the only maximal ideals containing m1 ∩ .. ∩mr. Thus if
mr+1 is a new maximal ideal, then mr+1 + (m1 ∩ ... ∩mr) = A, and by the
usual Chinese Remainder Theorem, we get the desired isomorphism:

A/m1 ∩ ... ∩mr ∩mr+1
∼→ ×ri=1A/mi × A/mr+1.

Remark: There may be fewer maximal ideals than the rank of A in the
lemma! For example, A = C[x]/〈xr〉 has rank r as a vector space over C,
but only one maximal ideal, namely 〈x〉. This is no contradiction to the
lemma, of course, which is a tautology in this case.

Proof of (a): If Φ : X → Y is any regular map and Z ⊂ Y is a closed
set, then we always have Φ−1(Z) = V (〈Φ∗I(Z)〉). That is because a point
a ∈ X satisfies Φ(a) ∈ Z if and only if for each regular function g ∈ I(Z) the
pull-back Φ∗g vanishes at a. Thus we need to show that if Φ is a finite map,
then V (〈Φ∗mb〉) is a finite set whenever mb is the maximal ideal of functions
vanishing at a point b ∈ Y . To see this, consider the following diagram:

C[Y ]
Φ∗→ C[X]

↓ ↓
C = C[Y ]/mb

Φ
∗

→ A = C[X]/〈Φ∗mb〉
Now either A = 0, in which case 〈Φ∗mb〉 = C[X], and there are no points

in Φ−1(b), or else A 6= 0, in which case A is a C-algebra and the generators
f 1, ..., fr of C[X] as a C[Y ]-module also span A as a C-vector space. Since
points of Φ−1(b) correspond to the maximal ideals of A by the Nullstellensatz,
it follows from the Chinese Remainder Lemma that Φ−1(b) in fact consists
of at most r points.

Example: Consider again the example of the sideways parabola. Then
Φ−1(b) = V (〈x−b〉) = V (〈y2−b〉) ⊂ X, and C[X] = C[x, y]/〈y2−x〉 ∼= C[y].
Thus there are two possibilities:

A ∼= C[y]/〈y2 − b〉 has


2 maximal ideals if b 6= 0 and

1 maximal ideal if b = 0

corresponding to the 2 square roots of b when b 6= 0 and the 1 when b = 0.
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Localization: A subset S ⊂ A of a commutative ring with 1 is multiplicative
if 1 ∈ S, 0 6∈ S and S is closed under multiplication. If A is a domain, the
localization of A at a multiplicative subset S ⊂ A is the domain:

A ⊂ AS :=

{
f

s
| f ∈ A, s ∈ S

}
⊂ K

sitting between A and its field of fractions K (which is AS for S = A−{0}).
Examples: (a) The set S = A−P is multiplicative when P is a prime ideal.
In this case, we always write AP instead of AS (by convention).

(b) The set S = {1, f, f2, f 3, ...} ⊂ A is multiplicative if fn 6= 0 for all n,
and in this case, we always write Af instead of AS (also by convention).

Note: We’ve already used this notation to write C[U ] = C[X]g when U =
X − V (g) is a basic open subset of an affine variety X.

A Fundamental Correspondence: The prime ideals Q ⊂ AS are in a
bijection with the prime ideals P ⊆ A− S (i.e. P ⊂ A and P ∩ S = ∅) via:

Q 7→ Q ∩ A and P 7→ PS =

{
b

s
| b ∈ P, s ∈ S

}
= PAS

and P ⊆ P ′ ⇔ PS ⊆ P ′S under this bijection.

In particular, the domain AP is always a local ring, meaning that it has a
unique maximal ideal, i.e. the ideal m ⊂ AP such that m ∩ A = P = A− S
includes all the other prime ideals of the form Q ∩ A, so each Q ⊆ m.

The correspondence is valid for arbitrary ideals J ⊂ AS and I ⊂ A− S:

J 7→ J ∩ A and I 7→ IS = IAS

but it is not a bijection, because although J 7→ J∩A 7→ (J∩A)S = J always,
it can happen (when I isn’t prime) that I 7→ IS 7→ IS ∩ A and I 6= IS ∩ A.
In other words, there can be more ideals in A−S than in AS. This, and the
fact that the correspondence preserves inclusions allows us to conclude that:

If A is Noetherian, than each localization AS is also Noetherian.

Remark: This correspondence is a counterpart to the fundamental bijection
between the ideals J/I ⊂ A/I and the ideals J ⊂ A that contain I.
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Cohen-Seidenberg Going-Up Lemma: IfB ⊂ A are Noetherian domains
and A is finitely generated as a B-module, then every prime ideal P ⊂ B is
equal to Q ∩B for some prime ideal Q ⊂ A.

Proof: Given P ⊂ B, let S = B − P and localize both A and B with
respect to the multiplicative set S ⊂ B ⊂ A, to get a diagram of inclusions:

A ⊂ AS
∪ ∪
B ⊂ BP

Since the unique maximal ideal m ⊂ BP satisfies m ∩ B = P by the
fundamental correspondence, once we find a prime ideal n ⊂ AS such that
n ∩BP = m, then (n ∩ A) ∩B = m ∩B = P , and then we take Q = n ∩ A.

But let n ⊂ AS be any maximal ideal. I claim that BP/(BP ∩n) is a field,
hence that BP ∩ n = m, as desired. To see this, notice that AS/n is a field
which is finitely generated as a BP/(BP ∩ n)-module (by the images of the
generators of A as a B-module). If β ∈ BP/(BP ∩ n) were nonzero with no
inverse, then the chain of submodules:

BP/(BP ∩ n) ⊂ β−1BP/(BP ∩ n) ⊂ β−2BP/(BP ∩ n) ⊂ ... ⊂ AS/n

would never be stationary, violating the Noetherian property of BP/(BP ∩n).
(We already saw this argument in the proof of the Nullstellensatz!)

Proof of 7.5 (b): Let Z = Φ(X). Then Φ : X → Z is a dominant map
of affine varieties by Proposition 7.2 (and it is also finite). If Φ is closed as a
map to Z, then it is closed as a map to Y , so we may assume Φ is dominant,
and hence that Φ∗ : C[Y ] ↪→ C[X] is an inclusion of rings. It also suffices to
prove that Φ takes irreducible closed sets to (irreducible) closed sets.

Given an irreducible closed set V (Q) ⊆ X, let P = Φ∗−1(Q) ⊂ C[Y ].
It is always true that Φ(V (Q)) ⊆ V (P ) since if a ∈ V (Q) and f ∈ P , then
f(Φ(a)) = Φ∗(f)(a) = 0. We claim that finiteness gives us Φ(V (Q)) = V (P ).

Suppose b ∈ V (P ) and let P ⊆ mb ⊂ C[Y ] be the corresponding maximal
ideal. We want to find a prime ideal Q ⊆ n ⊂ C[X] with Φ∗−1(n) = mb,
because then from the previous paragraph Φ(V (n)) ⊆ V (mb) = b. But the
Going-Up Lemma says that since C[X]/Q is a finitely generated C[Y ]/P -

module, there is a prime ideal n/Q ⊂ C[X]/Q such that Φ
∗−1

(n/Q) = mb/P ,
and then the prime ideal n ⊂ C[X] has the desired property.
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Warning: Unlike the case with closed embeddings and dominant maps,
there is no simple geometric criterion that is equivalent to finiteness. The
converse to Proposition 7.5, for example, is false, as seen with the following.

Example: Let U = X−{(1, 1)} where X = V (y2−x) ⊂ C2 is the parabola.
Then the projection π : U → C1 is still a closed map with finite fibers, but
C[U ] = C[X]y−1 is not finitely generated as a C[x]-module (or C[X]-module).

So instead of a simple geometric generalization of finiteness to maps of
varieties, we have to define finiteness in terms of an affine cover:

Definition: A regular map Φ : X → Y of quasi-projective varieties is finite
if there is an open cover Y = ∪Ui of Y by affine varieties such that each
Vi := Φ−1(Ui) is also affine, and such that the maps Φ|Vi : Vi → Ui are finite.

Remark: It is not true in general that the preimage of an open affine variety
is affine. For a simple example, consider the inclusion Φ : Cn − {0} ↪→ Cn.
You proved in Exercise 3.4 that Cn − {0} = Φ−1(Cn) is not affine.

A priori the definition of finiteness looks as though it depends upon the
choice of an affine cover of Y . This is not the case, but it requires some work
to prove independence of the cover, via the following:

Proposition 7.6: If Φ : X → Y is a finite dominant map of quasi-projective
varieties and if U ⊂ Y is any open, affine subset, then Φ−1(U) is also affine,
and the induced map Φ|Φ−1(U) : Φ−1(U)→ U is a finite map of affine varieties.

Proof: First, we will prove that Φ−1(U) is affine using the following:

Criterion for Affineness: If f is a regular function on a quasi-projective
variety W , let V (f) = {w ∈ W | f(w) = 0}, and let U = W − V (f) be
the quasi-projective generalization of a basic open set of an affine variety.
Now suppose there are regular functions f1, ..., fk on W such that the sets
Ui := W − V (fi) are affine varieties and suppose that

∑k
i=1 figi = 1 for some

other regular functions g1, ..., gk on W . Then W is itself an affine variety.

Proof of the Criterion: Let each C[Ui] = C[xi1, ..., ximi ]/Pi and let
A = OW (W ). We first need to know that A is of the form C[x1, ..., xm]/P ,
as it needs to be if W is affine and A = C[W ]. By definition of a regular
function,

C[U1] ∩ ... ∩C[Uk] = A ⊂ C(W )
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Notice that Ui ∩ Uj = Uj − V (f i) ⊂ Uj , so each Ui ∩ Uj is affine, and
C[Ui ∩ Uj ] = C[Uj ]f i . Thus if a ∈ C[Ui] is arbitrary, then af

nj
i ∈ C[Uj ] for

each Uj and some nj , and so if n = max{nj}, then afni ∈ A. That is:

C[Ui] = Afi for each Ui

In particular, each of the xil ∈ C[Ui] satisfies xilf
n
i ∈ A for some fixed n

chosen large enough (to work for all xil and all i at once). If a ∈ A, then
there are polynomials p1, ..., pk in the generators of each C[Ui] such that:

a = pi(xi1, ..., ximi) ∈ C[Ui]

and we can find an N such that the right side of each expression:

afNi = fNi pi(xi1, ..., ximi)

is a polynomial in the xilf
n
i (for the fixed n) and fi. Take:

(
k∑
i=1

figi)
(N−1)k+1 = 1 giving (

k∑
i=1

figi)
(N−1)k+1a = a

Each term on the left has some afNi in it, so we see that a (on the right) is
a polynomial in the fixed elements (xilf

n
i ), fi, gi ∈ A. That is, as desired:

A = C[x1, ..., xm]/P = C[yil, si, ti]/P ; yil 7→ xilf
n
i , si 7→ fi, ti 7→ gi

Next, let X ⊂ Cm be the affine variety associated to A, and consider:

Ψ : W → X; w 7→ (Ψ∗(x1)(w), ...,Ψ∗(xm)(w))

Then Ψ∗ : C[X]
∼→ OW (W ) is an isomorphism (both are isomorphic to A)

and if Vi = X − V (fi) are basic open affine sets of X corresponding to the
fi, then the Vi cover X because

∑
figi = 1, and each Ψ|Ui : Ui → Vi is

an isomorphism because both varieties are affine, and Ψ|∗Ui : C[Vi]
∼→ C[Ui]

(both are isomorphic to Afi). But now it follows that Ψ is an isomorphism,
with inverse given locally by the Ψ|−1

Ui
maps!

This finishes the proof of the Criterion for Affineness.
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Back to the Proposition: Let Y = ∪Ui be an affine cover over which Φ
is finite, i.e. each Φ|Φ−1(Ui) : Φ−1(Ui)→ Ui is a finite map of affine varieties.
If Ui − V (f) ⊂ Ui is a basic open set, then Φ is finite over Ui − V (f), since
each Φ−1(Ui − V (f)) = Φ−1(Ui) − V (f), and the generators for C[Φ−1(Ui)]
as a C[Ui]-module also generate C[Φ−1(Ui)]f as a C[Ui]f -module.

This means that an arbitrary affine U ⊂ Y is covered by basic open sets
(of the Ui) over which Φ is finite. But these in turn are covered by basic
open sets of U (and of themselves!) over which Φ is finite. That is, there
is a cover U = ∪ki=1(U − V (fi)) over which Φ is finite, and

∑k
i=1 figi = 1 by

the Nullstellensatz. But now the cover Φ−1(U) = ∪ki=1(Φ−1(U − V (fi)) by
generalized basic open sets Φ−1(U)−V (fi) satisfies the criterion for affineness!

Moreover, if ai1, ..., aimi generate each C[Φ−1(U)]fi as a C[U ]fi-module,
then there is an n so that each ailf

n
i ∈ C[Φ−1(U)], and I claim that all the

ailf
n
i together generate C[Φ−1(U)] as a C[U ]-module. Indeed, the fi and gi

in the expression
∑
figi = 1 are all in C[U ], so as before we can take a large

enough N , and consider (
∑
figi)

Na = a to see that the claim is true.

Example: (Projective Noether Normalization) If X ⊂ CPn is a projective
variety, then the yi in the inclusion C[y1, ..., yd] ⊂ C[X] making C[X] a finite
C[y1, ..., yd]-module all have degree 1, giving a rational map:

Φ : X −−> CPd−1; a 7→ (y1(a); ...; yd(a))

which I claim is actually a regular map. If a ∈ X, then there is some
coordinate xi ∈ C[X] such that xi(a) 6= 0. But then some power xki is a linear
combination of lower powers of the xi with coefficients in C[y] = C[y1, ..., yd]
(otherwise C[y] ⊂ xiC[y] ⊂ x2

iC[y] ⊂ ... ⊂ C[X] would never be stationary)
and then it follows that some yj(a) 6= 0 and Φ is regular.

Φ is also a finite map. If we cover CPn by affines Uj = CPn − V (yj),
then each Vj = X − V (yj) = Φ−1(Uj) is also affine by Exercise 4.4 and if
F 1, ..., Fm ∈ C[X] are (homogeneous) generators of C[X] as a C[y]-module,

then F 1

y
d1
j

, ..., Fm
ydmj
∈ C[Vj ] generate C[Vj ] as a C[Uj ]-module.

Remark: It follows immediately from the definition that a finite map of
quasi-projective varieties also has properties (a) and (b) of Proposition 7.5.
That is, it is a closed map with finite fibers. We’ve already seen that the con-
verse is not true, but a deep theorem of Grothendieck says that the converse
only fails to be true “in the obvious way.”
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Theorem (Grothendieck): If Φ : X → Y is a regular map of varieties
with finite fibers, then there is a finite map:

Φ′ : X ′ → Y

such that X ⊂ X ′ is an open subset, and Φ = Φ′|X : X → Y .

In other words, every map with finite fibers (closed or not) is a finite map
minus a closed subset of the domain. This theorem is very powerful, but its
proof is outside the scope of this course (it is something to look forward to!)
Here is one simple consequence:

Corollary 7.7: A map Φ : X → Y of projective varieties with finite fibers is
always a finite map. (We’ve already seen that such a map is always closed!)

Proof: By Grothendieck’s Theorem, Φ is the restriction of a finite map
from a variety containing X as an open subset. But projective varieties are
proper, so X only sits inside itself as an open set!

We will see another important application of the theorem in §9.
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Exercises 7.
6. Generalize the construction of Projective Noether Normalization to show:

If X ⊂ CPm and Y ⊂ CPn are projective varieties, then an injective
graded homomorphism of homogeneous coordinate rings φ : C[X] ↪→ C[Y ]
(i.e. satisfying φ(C[X]d) ⊂ C[Y ]d) gives rise to a rational map:

Φ : Y −−> X

and if C[Y ] is a finitely generated C[X]-module, then Φ is regular and finite.
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