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2. Another Hilbert Theorem. When we think about projective geometry,
we need to regard the polynomial ring as a graded object:

C[x0, x1, ..., xn] =
∞⊕
d=0

C[x0, x1, ..., xn]d

decomposing an arbitrary polynomial into a (finite) sum of homogeneous
polynomials (i.e. sums of monomials of the same degree), so we get:

dim(C[x0, x1, ..., xn]d) =

(
n+ d

n

)
= #{monomials of degree d in x0, ..., xn}

An ideal I ⊂ C[x0, x1, ..., xn] is homogeneous if it, too decomposes:

I =
∞⊕
d=0

Id =
∞⊕
d=0

I ∩C[x0, x1, ..., xn]d

and then by the Hilbert Basis Theorem, such an ideal satisfies:

I = 〈F1, ..., Fm〉 = {
m∑
i=1

giFi | g1, ..., gm ∈ C[x0, x1, ..., xn]}

for homogeneous polynomials F1, ..., Fm (usually not all of the same degree).

More generally, a module M over C[x0, x1, ..., xn] is graded if:

M =
⊕
d∈Z

Md

as a sum of complex vector spaces, such that the multiplication maps send:
C[x0, x1, ..., xn]d ×Me → Md+e. A homomorphism φ : M → N of graded
C[x0, x1, ..., xn]-modules is a graded homomorphism if each φ(Md) ⊆ Nd.

Examples: (a) A graded module M can be twisted to yield another graded
module:

M(e) :=
⊕
d∈Z

Md+e

so that, for instance, if we regard S = C[x0, x1, ..., xn] as a graded module
over itself, then we obtain the modules:

S(e) =
∞⊕

d=−e
C[x0, x1, ..., xn]d+e
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(b) A homogeneous F ∈ C[x0, x1, ..., xn]e yields graded homomorphisms:

M(−e)→M ; m 7→ Fm

In particular, the graded homomorphism:

S(−e)→ S; g 7→ Fg

is an isomorphism onto the ideal 〈F 〉 ⊂ S. The generators of a homogeneous
ideal I = 〈F1, ..., Fm〉 determine a graded homomorphism of graded modules:

m⊕
i=1

S(−ei)→ S; (g1, ..., gm) 7→
m∑
i=1

Figi

whose image is I, and whose kernel is the “graded module of relations.”

(c) The kernel, cokernel and image of a graded homomorphism are graded.

Definition: If the dimensions dim(Md) are all finite, then:

hM(d) := dim(Md)

is the Hilbert function of the graded module M .

Hilbert’s Polynomial Growth Theorem: If M is a finitely generated
graded C[x0, x1, ..., xn]-module, then the dimensions dim(Md) are all finite,
and there is a d0 (depending upon M) and a polynomial HM(d) such that:

hM(d) = HM(d) for all d ≥ d0

Proof: There is a natural basis for the free abelian group of polynomial
functions P : Z→ Z. Namely,{

1,

(
d

1

)
,

(
d

2

)
,

(
d

3

)
, ...

}

with the pleasant property, noticed by Pascal, that if:

P (d) = a0 + a1

(
d

1

)
+ ...+ am

(
d

m

)

then

P (d+ 1)− P (d) = a1 + a2

(
d

1

)
+ ...+ am

(
d

m− 1

)
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We prove the theorem by induction on the number of variables in the
polynomial ring C[x0, x1, ..., xn], noting that the Hilbert function of a finite
dimensional vector space V over C is 0 in large degrees, so HV (d) = 0.

Suppose n ≥ 0 and consider the exact sequence:

(∗) : 0→ K →M
xn→M(1)→ N(1)→ 0

where the map in the middle is the map from Example (b) applied to the
module M(1) (and the polynomial xn) and K and N(1) are the (graded!)
kernel and cokernel, respectively. Multiplication by xn acts trivially on K
and N(1), so they are (finitely generated) graded modules over the ring
C[x0, x1, ..., xn]/〈xn〉 ∼= C[x0, ..., xn−1], and we are ready to apply induction.

Namely, the Hilbert functions are additive on exact sequences, so:

hM(d+ 1)− hM(d) = hK(d)− hN(1)(d)

and thus by induction hM(d) is either always infinite or always finite. But
for sufficiently small d (i.e. smaller than the degrees of all the generators)
hM(d) = 0. So hM(d) is always finite. Next, if d0 is chosen so hK(d) = HK(d)
and hN(1)(d) = HN(1)(d) are polynomial functions for d ≥ d0, then their
difference is a polynomial, so:

hM(d+ 1)− hM(d) = a1 + a2

(
d

1

)
+ ...+ am

(
d

m− 1

)

for some integers a1, ..., am and all d ≥ d0. Setting a0 = hM(d0)−∑ ai
(
d0

i

)
then gives:

hM(d) = HM(d) = a0 + a1

(
d

1

)
+ ...+ am

(
d

m

)
for all d ≥ d0, as desired.

Definition: HM(d) is the Hilbert polynomial of the graded module M .

Observation: Hilbert polynomials, like Hilbert functions, are additive on
exact sequences of graded modules.

Examples: (a) The Hilbert polynomial of S = C[x0, x1, ..., xn] itself is:

HS(d) =

(
d+ n

n

)
=

1

n!
dn + lower order

and we can take d0 as small as −n since 0 =
(

0
n

)
=
(

1
n

)
= ... =

(
n−1
n

)
.
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(b) The Hilbert polynomial of the quotient:

0→ 〈F 〉 → S → S/〈F 〉 → 0

by a principal homogeneous ideal generated by F of degree e is:

HS/〈F 〉(d) =

(
d+ n

n

)
−
(
d− e+ n

n

)
=

e

(n− 1)!
dn−1 + lower order

valid for d0 ≥ −n+ e.

Before we leave graded rings, I want to consider their homogeneous ideals:

Definition: The unique maximal homogeneous ideal:

〈x0, ..., xn〉 ⊂ C[x0, x1, ..., xn]

is called the irrelevant maximal ideal. It contains every homogeneous ideal.

The Projective Hilbert Nullstellensatz: The homogeneous prime ideals
P ⊂ C[x0, x1, ..., xn] that are maximal with the property of being properly
contained in the irrelevant maximal ideal are all of the form:

〈y1, ..., yn〉 ⊂ 〈x0, ..., xn〉 ⊂ C[x0, x1, ..., xn]

where the yi =
∑n
j=0 aijxj are independent linear forms.

Proof: Such ideals are evidently prime and maximal (in this sense).
To see that they are the only ones, consider the ordinary Nullstellensatz.
More precisely, if P ⊂ 〈x0, ..., xn〉 is any homogeneous prime ideal properly
contained in the irrelevant maximal ideal, then V (P ) contains the origin
and at least one other point p ∈ Cn+1. Otherwise, by Corollary 1.4, we’d
have a contradiction with P = I(V (P )) = 〈x0, ..., xn〉. Once a homogeneous
ideal I satisfies p ∈ V (I) ⊂ Cn+1, then V (I) must contain the entire line
Cp = {λp | λ ∈ C}, and then I must be contained in the ideal I(Cp), which
is already of the form 〈y1, ..., yn〉 where the yi are any n independent linear
forms whose common solution set is the line Cp. So P = 〈y1, ..., yn〉.
Note: The maximal ideals are thus precisely the homogeneous prime ideals
in C[x0, x1, ..., xn] such that V (I) ⊂ Cn+1 is a single line through the origin.
Recall that the ordinary maximal ideals in C[x1, ..., xn] are precisely the
ordinary prime ideals such that V (I) ⊂ Cn is a single point.
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Definition: Complex projective space CPn is the set of lines through the
origin in Cn+1. That is, it is the set of equivalence classes:{

Cn+1 − 0
}
/ ∼ where p ∼ λp for λ ∈ C∗

and if 0 6= p = (p0, ..., pn), then the equivalence class containing p is denoted:

(p0 : p1 : ... : pn) ∈ CPn

Remarks: (a) CPn is a union Cn ∪CPn−1 of:

Cn = {(p1, ..., pn)} = {(1 : p1 : ... : pn)} and

CPn−1 = {(0 : p1 : ... : pn)}
since the first coordinate is either non-zero or zero, and if it is non-zero, then
it can be set to 1 (in the equivalence class) and the other coordinates are
then fixed. Geometrically, this means that we should think of CPn as being
“ordinary” Cn with CPn−1 giving us the extra “points at infinity” which we
identify with the slopes of the lines through the origin in Cn. We can, of
course, continue this process to get a “stratification:”

CPn = Cn ∪Cn−1 ∪ ... ∪C1 ∪C0

by successive points at infinity.

(b) As in the proof of the Nullstellensatz above, it makes sense to say
that (p0 : ... : pn) ∈ V (I) or (p0 : ... : pn) 6∈ V (I) for a homogeneous ideal I,
since this property does not depend upon the representative of (p0 : ... : pn).

Corollary 2.1: Given homogeneous F1, ..., Fm ∈ C[x0, x1, ..., xn], then either
there is a point (p0 : ... : pn) ∈ CPn so that Fi(p0 : ... : pn) = 0 for all i or
else there is an N so that:

xNj =
n∑
i=1

GijFi can be solved with homogeneous Gij ∈ C[x0, x1, ..., xn]

(and finding the Gij is hard, of course)

Proof: If there is no such point, then 〈F1, ..., Fm〉 does not belong to any
of the homogeneous maximal prime ideals, by the Projective Nullstellensatz,
so it follows that V (〈F1, ..., Fm〉) = {0} ∈ Cn+1. That is, by Corollary 1.4:√

〈F1, ..., Fn〉 = 〈x0, ..., xn〉

so that xNii ∈ 〈F1, ..., Fm〉, and then we let N be the maximum of the Ni.
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Finally, consider the following two processes:

Homogenizing: Instead of x1, ..., xn, let n variables be labelled x1

x0
, ..., xn

x0
.

Then a (non-homogeneous) f ∈ C[x1

x0
, ..., xn

x0
] of degree d homogenizes to

h(f) := xd0f ∈ C[x0, x1, ..., xn]d. More generally, an ideal I ⊂ C[x1

x0
, ..., xn

x0
]

homogenizes to:

h(I) := 〈h(f) | f ∈ I〉 ⊂ C[x0, x1, ..., xn]

and we know that finitely many of the h(fi) will suffice to generate h(I).

The geometric significance of this process is as follows. If

V (I) ⊂ Cn

is the algebraic set associated to I, then homogenizing produces:

V (h(I)) ⊂ CPn

with the property that V (h(I)) ∩Cn = V (I). In other words, homogenizing
the ideal tells us how to add points at infinity to an algebraic set in Cn in
order to get an algebraic set in CPn.

Dehomogenizing: A homogeneous I ⊂ C[x0, x1, ..., xn] dehomogenizes to:

d0(I) :=
{
F
(

1,
x1

x0

, ...,
xn
x0

)
| F ∈ I

}
⊂ C

[
x1

x0

, ...,
xn
x0

]
(with respect to x0) which is already an ideal. Geometric Interpretation: the
intersection of the algebraic set V (I) ⊂ CPn with Cn is V (d0(I)) ⊂ Cn.

These operations are nearly inverses. For all ideals I ⊂ C[x1

x0
, ..., xn

x0
]:

d0(h(I)) = I

(Geometry: when we add points at infinity, we don’t add extra finite ones.)
For homogeneous prime ideals P ⊂ C[x0, x1, ..., xn] not containing x0:

h(d0(P )) = P

and in general, I ⊆ h(d0(I)). (Geometry: If we intersect such a V (P ) with
Cn and then add points at infinity, we get V (P ) back. Otherwise we may
lose some of the points at infinity by this process.)
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Example (The Twisted Cubic): Consider the set:

V :=

{(
t

s
,
(
t

s

)2

,
(
t

s

)3
)
| t
s
∈ C

}
⊂ C3

(the affine twisted cubic) and its “one point compactification:”

V := {(s3 : s2t : st2 : t3) | (s : t) ∈ CP1} = V ∪ {(1 : 0 : 0 : 0)} ⊂ CP3

(the “projective twisted cubic”). It is easy to see that (in variables x1

x0
, x2

x0
, x3

x0
):

I(V ) = I :=

〈
x2

x0

−
(
x1

x0

)2

,
x3

x0

−
(
x1

x0

)(
x2

x0

)〉

since, for example I is the kernel of the homomorphism:

C
[
x1

x0

,
x2

x0

,
x3

x0

]
→ C

[
t

s

]
;
x1

x0

7→ t

s
,
x2

x0

7→
(
t

s

)2

,
x3

x0

7→
(
t

s

)3

and V = V (I). When we homogenize this ideal, we do not get:

J = 〈x2x0 − x2
1, x3x0 − x1x2〉

because, for example,
(
x2

x0

)2
−
(
x1

x0

) (
x3

x0

)
∈ I but x2

2−x1x3 6∈ J since it is not

a linear combination of x2x0−x2
1 and x3x0−x1x2. So we do not homogenize

an ideal in general just by homogenizing its generators. On the other hand,

〈x2x0 − x2
1, x3x0 − x1x2, x

2
2 − x1x3〉

is prime, and is the kernel of the homomorphism:

C[x0, x1, x2, x3]→ C[s, t]; x0 7→ s3, x1 7→ s2t, x2 7→ st2, x3 7→ t3

so this is the homogenized ideal, and the ideal of the projective twisted cubic.
Moreover, from the homomorphism above:(

C[x0, x1, x2, x3]/I(V )
)
d
∼= C[s, t]3d

so the Hilbert polynomial of C[x0, x1, x2, x3]/I(V ) is:

HC[x0,x1,x2,x3]/I(V )(d) = HC[s,t](3d) = 3d+ 1
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Exercises 2.

First, a little review. A sequence of homomorphisms of abelian groups:

(∗∗) 0→ A0
φ1→ A1

φ2→ · · · φn→ An → 0

is a complex if each φi+1 ◦ φi = 0, and it is exact if, in addition, each

ker(φi+1) = im(φi)

so that, in particular, φ1 is injective, and φn is surjective.

1. Check the homological assertions of this section. Namely, check that:

(a) The image, kernel and cokernel of a graded homomorphism of graded
C[x0, x1, ..., xn]-modules φ : M → N are all graded modules.

(b) If (∗∗) above is an exact sequence of finite dimensional vector spaces
Vi over C (with linear maps φi), then the dimensions of the Vi satisfy:∑

i

(−1)idim(Vi) = 0

(c) If (∗∗) above is an exact sequence of graded C[x0, x1, ..., xn]-modules
M i and graded homomorphisms φi : M i → M i+1 (I raised the subscript in
this case so it won’t be confused with the degree) then∑

i

(−1)ihM i(d) = 0 and
∑
i

(−1)iHM i(d) = 0

(assuming that the Hilbert functions and Hilbert polynomials exist).

(d) If F ∈ C[x0, x1, ..., xn]e and M is a finitely generated graded module
over C[x0, x1, ..., xn], let N = M/FM . If the Hilbert polynomial of M is:

HM(d) =
a

k!
dk + {lower order terms}

show that deg(HN(d)) ≥ k− 1 and that if Fm 6= 0 for all m 6= 0 in M , then:

HN(d) =
ea

(k − 1)!
dk−1 + {lower order terms}

so HN(d) has degree exactly k − 1 in this case.
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2. Find generators for the homogeneous ideals I(V ) and Hilbert polynomials
of C[x0, x1, ..., xn]/I(V ) for each of the following algebraic subsets V ⊂ CPn.

(a) {p1, ..., pm} ⊂ CPn, a set of (distinct) points.

(b) the pair of skew lines {(a : b : 0 : 0)} ∪ {(0 : 0 : c : d)} ⊂ CP3.

(c) the pair of intersecting lines {(a : b : 0 : 0)} ∪ {(0 : b : c : 0)} ⊂ CP3.

(d) the rational normal curve in CPn, i.e.

{(sn : sn−1t : sn−2t2 : ... : tn) | (s : t) ∈ CP1}

(this is the natural generalization of the projective twisted cubic)

3. Suppose F1, ..., Fm ∈ C[x0, x1, ..., xn] are homogeneous of degrees e1, ..., em.

(a) If I = 〈F1, ..., Fm〉 and m ≤ n, show that:

deg(HC[x0,x1,...,xn]/I(d)) ≥ n−m

and if each Fi+1 is not a zero divisor in C[x0, x1, ..., xn]/〈F1, ..., Fi〉 then:

deg(HC[x0,x1,...,xn]/I(d)) =

∏m
i=1 ei

(n−m)!
dn−m + {lower order terms}

Ideals with generators with this property are complete intersection ideals.

(b) For the homogeneous ideals I(V ) in Exercise 2.2, show that:

(i) I(V ) is a complete intersection when V is the pair intersecting lines,
but I(V ) is not a complete intersection when the lines are skew.

(ii) Prove that if n ≥ 3, then the ideal of the rational normal curve in
CPn is not a complete intersection ideal.

(c) Show that V (F1) ∩ ... ∩ V (Fm) 6= ∅ for any choice of homogeneous
polynomials F1, ..., Fm in (a). (Hint: Use (a) and the Proj Nullstellensatz)

(d) If F1, ..., Fn generate a complete intersection ideal in C[x0, x1, ..., xn],
so that in particular, C[x0, x1, ..., xn]/〈F1, ..., Fn〉 =

∏n
i=1 ei, then show that

V (〈F1, ..., Fn〉) ⊂ CPn is a finite set, consisting of at most
∏n
i=1 ei points.
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4. Prove the assertions in the text about homogenizing and dehomogenizing:

(a) Prove that for ideals I ⊂ C[x1

x0
, ...xn

x0
]

d0(h(I)) = I

(b) Prove that for homogeneous prime ideals x0 6∈ P ⊂ C[x0, x1, ..., xn],

h(d0(P )) = P

5. (a) For homogeneous ideals I ⊂ C[x0, x1, ..., xn], prove that

√
I = {f ∈ C[x0, x1, ..., xn] | fN ∈ I for some N > 0}

is also a homogeneous ideal.

(b) If V ⊆ Cn+1 is a union of lines through the origin, prove that:

I(V ) = {f ∈ C[x0, x1, ..., xn] | f(a0, a1, ..., an) = 0 ∀(a0, a1, ..., an) ∈ V }

is a homogeneous ideal.

(c) For V ⊆ CPn, let I(V ) be the homogeneous ideal in (b) for the union
of lines in Cn+1 parametrized by V . Prove the “projective” Corollary 1.4:

For homogeneous ideals I ⊂ C[x0, x1, ..., xn], either V (I) = ∅ ∈ CPn or:

I(V (I)) =
√
I

(In particular, I(V (P )) = P when P ⊂ 〈x0, ..., xn〉 is a homogeneous prime.)
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