Math 6130 Notes. Fall 2002.

2. Another Hilbert Theorem. When we think about projective geometry, we need to regard the polynomial ring as a graded object:

$$
\mathbf{C}\left[x_{0}, x_{1}, \ldots, x_{n}\right]=\bigoplus_{d=0}^{\infty} \mathbf{C}\left[x_{0}, x_{1}, \ldots, x_{n}\right]_{d}
$$

decomposing an arbitrary polynomial into a (finite) sum of homogeneous polynomials (i.e. sums of monomials of the same degree), so we get: $\operatorname{dim}\left(\mathbf{C}\left[x_{0}, x_{1}, \ldots, x_{n}\right]_{d}\right)=\binom{n+d}{n}=\#\left\{\right.$ monomials of degree d in $\left.x_{0}, \ldots, x_{n}\right\}$

An ideal $I \subset \mathbf{C}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ is homogeneous if it, too decomposes:

$$
I=\bigoplus_{d=0}^{\infty} I_{d}=\bigoplus_{d=0}^{\infty} I \cap \mathbf{C}\left[x_{0}, x_{1}, \ldots, x_{n}\right]_{d}
$$

and then by the Hilbert Basis Theorem, such an ideal satisfies:

$$
I=\left\langle F_{1}, \ldots, F_{m}\right\rangle=\left\{\sum_{i=1}^{m} g_{i} F_{i} \mid g_{1}, \ldots, g_{m} \in \mathbf{C}\left[x_{0}, x_{1}, \ldots, x_{n}\right]\right\}
$$

for homogeneous polynomials F_{1}, \ldots, F_{m} (usually not all of the same degree).
More generally, a module M over $\mathbf{C}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ is graded if:

$$
M=\bigoplus_{d \in \mathbf{Z}} M_{d}
$$

as a sum of complex vector spaces, such that the multiplication maps send: $\mathbf{C}\left[x_{0}, x_{1}, \ldots, x_{n}\right]_{d} \times M_{e} \rightarrow M_{d+e}$. A homomorphism $\phi: M \rightarrow N$ of graded $\mathbf{C}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$-modules is a graded homomorphism if each $\phi\left(M_{d}\right) \subseteq N_{d}$.
Examples: (a) A graded module M can be twisted to yield another graded module:

$$
M(e):=\bigoplus_{d \in \mathbf{Z}} M_{d+e}
$$

so that, for instance, if we regard $S=\mathbf{C}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ as a graded module over itself, then we obtain the modules:

$$
S(e)=\bigoplus_{d=-e}^{\infty} \mathbf{C}\left[x_{0}, x_{1}, \ldots, x_{n}\right]_{d+e}
$$

(b) A homogeneous $F \in \mathbf{C}\left[x_{0}, x_{1}, \ldots, x_{n}\right]_{e}$ yields graded homomorphisms:

$$
M(-e) \rightarrow M ; \quad m \mapsto F m
$$

In particular, the graded homomorphism:

$$
S(-e) \rightarrow S ; \quad g \mapsto F g
$$

is an isomorphism onto the ideal $\langle F\rangle \subset S$. The generators of a homogeneous ideal $I=\left\langle F_{1}, \ldots, F_{m}\right\rangle$ determine a graded homomorphism of graded modules:

$$
\bigoplus_{i=1}^{m} S\left(-e_{i}\right) \rightarrow S ; \quad\left(g_{1}, \ldots, g_{m}\right) \mapsto \sum_{i=1}^{m} F_{i} g_{i}
$$

whose image is I, and whose kernel is the "graded module of relations."
(c) The kernel, cokernel and image of a graded homomorphism are graded.

Definition: If the dimensions $\operatorname{dim}\left(M_{d}\right)$ are all finite, then:

$$
h_{M}(d):=\operatorname{dim}\left(M_{d}\right)
$$

is the Hilbert function of the graded module M.
Hilbert's Polynomial Growth Theorem: If M is a finitely generated graded $\mathbf{C}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$-module, then the dimensions $\operatorname{dim}\left(M_{d}\right)$ are all finite, and there is a d_{0} (depending upon M) and a polynomial $H_{M}(d)$ such that:

$$
h_{M}(d)=H_{M}(d) \text { for all } d \geq d_{0}
$$

Proof: There is a natural basis for the free abelian group of polynomial functions $P: \mathbf{Z} \rightarrow \mathbf{Z}$. Namely,

$$
\left\{1,\binom{d}{1},\binom{d}{2},\binom{d}{3}, \ldots\right\}
$$

with the pleasant property, noticed by Pascal, that if:

$$
P(d)=a_{0}+a_{1}\binom{d}{1}+\ldots+a_{m}\binom{d}{m}
$$

then

$$
P(d+1)-P(d)=a_{1}+a_{2}\binom{d}{1}+\ldots+a_{m}\binom{d}{m-1}
$$

We prove the theorem by induction on the number of variables in the polynomial ring $\mathbf{C}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$, noting that the Hilbert function of a finite dimensional vector space V over \mathbf{C} is 0 in large degrees, so $H_{V}(d)=0$.

Suppose $n \geq 0$ and consider the exact sequence:

$$
(*): 0 \rightarrow K \rightarrow M \xrightarrow{x_{n}} M(1) \rightarrow N(1) \rightarrow 0
$$

where the map in the middle is the map from Example (b) applied to the module $M(1)$ (and the polynomial x_{n}) and K and $N(1)$ are the (graded!) kernel and cokernel, respectively. Multiplication by x_{n} acts trivially on K and $N(1)$, so they are (finitely generated) graded modules over the ring $\mathbf{C}\left[x_{0}, x_{1}, \ldots, x_{n}\right] /\left\langle x_{n}\right\rangle \cong \mathbf{C}\left[x_{0}, \ldots, x_{n-1}\right]$, and we are ready to apply induction.

Namely, the Hilbert functions are additive on exact sequences, so:

$$
h_{M}(d+1)-h_{M}(d)=h_{K}(d)-h_{N(1)}(d)
$$

and thus by induction $h_{M}(d)$ is either always infinite or always finite. But for sufficiently small d (i.e. smaller than the degrees of all the generators) $h_{M}(d)=0$. So $h_{M}(d)$ is always finite. Next, if d_{0} is chosen so $h_{K}(d)=H_{K}(d)$ and $h_{N(1)}(d)=H_{N(1)}(d)$ are polynomial functions for $d \geq d_{0}$, then their difference is a polynomial, so:

$$
h_{M}(d+1)-h_{M}(d)=a_{1}+a_{2}\binom{d}{1}+\ldots+a_{m}\binom{d}{m-1}
$$

for some integers a_{1}, \ldots, a_{m} and all $d \geq d_{0}$. Setting $a_{0}=h_{M}\left(d_{0}\right)-\sum a_{i}\binom{d_{0}}{i}$ then gives:

$$
h_{M}(d)=H_{M}(d)=a_{0}+a_{1}\binom{d}{1}+\ldots+a_{m}\binom{d}{m}
$$

for all $d \geq d_{0}$, as desired.
Definition: $H_{M}(d)$ is the Hilbert polynomial of the graded module M.
Observation: Hilbert polynomials, like Hilbert functions, are additive on exact sequences of graded modules.
Examples: (a) The Hilbert polynomial of $S=\mathbf{C}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ itself is:

$$
H_{S}(d)=\binom{d+n}{n}=\frac{1}{n!} d^{n}+\text { lower order }
$$

and we can take d_{0} as small as $-n$ since $0=\binom{0}{n}=\binom{1}{n}=\ldots=\binom{n-1}{n}$.
(b) The Hilbert polynomial of the quotient:

$$
0 \rightarrow\langle F\rangle \rightarrow S \rightarrow S /\langle F\rangle \rightarrow 0
$$

by a principal homogeneous ideal generated by F of degree e is:

$$
H_{S /\langle F\rangle}(d)=\binom{d+n}{n}-\binom{d-e+n}{n}=\frac{e}{(n-1)!} d^{n-1}+\text { lower order }
$$

valid for $d_{0} \geq-n+e$.
Before we leave graded rings, I want to consider their homogeneous ideals:
Definition: The unique maximal homogeneous ideal:

$$
\left\langle x_{0}, \ldots, x_{n}\right\rangle \subset \mathbf{C}\left[x_{0}, x_{1}, \ldots, x_{n}\right]
$$

is called the irrelevant maximal ideal. It contains every homogeneous ideal.
The Projective Hilbert Nullstellensatz: The homogeneous prime ideals $P \subset \mathbf{C}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ that are maximal with the property of being properly contained in the irrelevant maximal ideal are all of the form:

$$
\left\langle y_{1}, \ldots, y_{n}\right\rangle \subset\left\langle x_{0}, \ldots, x_{n}\right\rangle \subset \mathbf{C}\left[x_{0}, x_{1}, \ldots, x_{n}\right]
$$

where the $y_{i}=\sum_{j=0}^{n} a_{i j} x_{j}$ are independent linear forms.
Proof: Such ideals are evidently prime and maximal (in this sense). To see that they are the only ones, consider the ordinary Nullstellensatz. More precisely, if $P \subset\left\langle x_{0}, \ldots, x_{n}\right\rangle$ is any homogeneous prime ideal properly contained in the irrelevant maximal ideal, then $V(P)$ contains the origin and at least one other point $p \in \mathbf{C}^{n+1}$. Otherwise, by Corollary 1.4, we'd have a contradiction with $P=I(V(P))=\left\langle x_{0}, \ldots, x_{n}\right\rangle$. Once a homogeneous ideal I satisfies $p \in V(I) \subset \mathbf{C}^{n+1}$, then $V(I)$ must contain the entire line $\mathbf{C} p=\{\lambda p \mid \lambda \in \mathbf{C}\}$, and then I must be contained in the ideal $I(\mathbf{C} p)$, which is already of the form $\left\langle y_{1}, \ldots, y_{n}\right\rangle$ where the y_{i} are any n independent linear forms whose common solution set is the line $\mathbf{C} p$. So $P=\left\langle y_{1}, \ldots, y_{n}\right\rangle$.

Note: The maximal ideals are thus precisely the homogeneous prime ideals in $\mathbf{C}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ such that $V(I) \subset \mathbf{C}^{n+1}$ is a single line through the origin. Recall that the ordinary maximal ideals in $\mathbf{C}\left[x_{1}, \ldots, x_{n}\right]$ are precisely the ordinary prime ideals such that $V(I) \subset \mathbf{C}^{n}$ is a single point.

Definition: Complex projective space $\mathbf{C P}^{n}$ is the set of lines through the origin in \mathbf{C}^{n+1}. That is, it is the set of equivalence classes:

$$
\left\{\mathbf{C}^{n+1}-0\right\} / \sim \text { where } p \sim \lambda p \text { for } \lambda \in \mathbf{C}^{*}
$$

and if $0 \neq p=\left(p_{0}, \ldots, p_{n}\right)$, then the equivalence class containing p is denoted:

$$
\left(p_{0}: p_{1}: \ldots: p_{n}\right) \in \mathbf{C P}^{n}
$$

Remarks: (a) $\mathbf{C P}^{n}$ is a union $\mathbf{C}^{n} \cup \mathbf{C P}^{n-1}$ of:

$$
\begin{aligned}
& \mathbf{C}^{n}=\left\{\left(p_{1}, \ldots, p_{n}\right)\right\}=\left\{\left(1: p_{1}: \ldots: p_{n}\right)\right\} \text { and } \\
& \mathbf{C P}^{n-1}=\left\{\left(0: p_{1}: \ldots: p_{n}\right)\right\}
\end{aligned}
$$

since the first coordinate is either non-zero or zero, and if it is non-zero, then it can be set to 1 (in the equivalence class) and the other coordinates are then fixed. Geometrically, this means that we should think of $\mathbf{C P}^{n}$ as being "ordinary" \mathbf{C}^{n} with $\mathbf{C P}{ }^{n-1}$ giving us the extra "points at infinity" which we identify with the slopes of the lines through the origin in \mathbf{C}^{n}. We can, of course, continue this process to get a "stratification:"

$$
\mathbf{C} \mathbf{P}^{n}=\mathbf{C}^{n} \cup \mathbf{C}^{n-1} \cup \ldots \cup \mathbf{C}^{1} \cup \mathbf{C}^{0}
$$

by successive points at infinity.
(b) As in the proof of the Nullstellensatz above, it makes sense to say that $\left(p_{0}: \ldots: p_{n}\right) \in V(I)$ or $\left(p_{0}: \ldots: p_{n}\right) \notin V(I)$ for a homogeneous ideal I, since this property does not depend upon the representative of $\left(p_{0}: \ldots: p_{n}\right)$.
Corollary 2.1: Given homogeneous $F_{1}, \ldots, F_{m} \in \mathbf{C}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$, then either there is a point $\left(p_{0}: \ldots: p_{n}\right) \in \mathbf{C} \mathbf{P}^{n}$ so that $F_{i}\left(p_{0}: \ldots: p_{n}\right)=0$ for all i or else there is an N so that:

$$
x_{j}^{N}=\sum_{i=1}^{n} G_{i j} F_{i} \text { can be solved with homogeneous } G_{i j} \in \mathbf{C}\left[x_{0}, x_{1}, \ldots, x_{n}\right]
$$

(and finding the $G_{i j}$ is hard, of course)
Proof: If there is no such point, then $\left\langle F_{1}, \ldots, F_{m}\right\rangle$ does not belong to any of the homogeneous maximal prime ideals, by the Projective Nullstellensatz, so it follows that $V\left(\left\langle F_{1}, \ldots, F_{m}\right\rangle\right)=\{0\} \in \mathbf{C}^{n+1}$. That is, by Corollary 1.4:

$$
\sqrt{\left\langle F_{1}, \ldots, F_{n}\right\rangle}=\left\langle x_{0}, \ldots, x_{n}\right\rangle
$$

so that $x_{i}^{N_{i}} \in\left\langle F_{1}, \ldots, F_{m}\right\rangle$, and then we let N be the maximum of the N_{i}.

Finally, consider the following two processes:
Homogenizing: Instead of x_{1}, \ldots, x_{n}, let n variables be labelled $\frac{x_{1}}{x_{0}}, \ldots, \frac{x_{n}}{x_{0}}$. Then a (non-homogeneous) $f \in \mathbf{C}\left[\frac{x_{1}}{x_{0}}, \ldots, \frac{x_{n}}{x_{0}}\right]$ of degree d homogenizes to $h(f):=x_{0}^{d} f \in \mathbf{C}\left[x_{0}, x_{1}, \ldots, x_{n}\right]_{d}$. More generally, an ideal $I \subset \mathbf{C}\left[\frac{x_{1}}{x_{0}}, \ldots, \frac{x_{n}}{x_{0}}\right]$ homogenizes to:

$$
h(I):=\langle h(f) \mid f \in I\rangle \subset \mathbf{C}\left[x_{0}, x_{1}, \ldots, x_{n}\right]
$$

and we know that finitely many of the $h\left(f_{i}\right)$ will suffice to generate $h(I)$.
The geometric significance of this process is as follows. If

$$
V(I) \subset \mathbf{C}^{n}
$$

is the algebraic set associated to I, then homogenizing produces:

$$
V(h(I)) \subset \mathbf{C P}^{n}
$$

with the property that $V(h(I)) \cap \mathbf{C}^{n}=V(I)$. In other words, homogenizing the ideal tells us how to add points at infinity to an algebraic set in \mathbf{C}^{n} in order to get an algebraic set in $\mathbf{C P}{ }^{n}$.
Dehomogenizing: A homogeneous $I \subset \mathbf{C}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ dehomogenizes to:

$$
d_{0}(I):=\left\{\left.F\left(1, \frac{x_{1}}{x_{0}}, \ldots, \frac{x_{n}}{x_{0}}\right) \right\rvert\, F \in I\right\} \subset \mathbf{C}\left[\frac{x_{1}}{x_{0}}, \ldots, \frac{x_{n}}{x_{0}}\right]
$$

(with respect to x_{0}) which is already an ideal. Geometric Interpretation: the intersection of the algebraic set $V(I) \subset \mathbf{C} \mathbf{P}^{n}$ with \mathbf{C}^{n} is $V\left(d_{0}(I)\right) \subset \mathbf{C}^{n}$.

These operations are nearly inverses. For all ideals $I \subset \mathbf{C}\left[\frac{x_{1}}{x_{0}}, \ldots, \frac{x_{n}}{x_{0}}\right]$:

$$
d_{0}(h(I))=I
$$

(Geometry: when we add points at infinity, we don't add extra finite ones.) For homogeneous prime ideals $P \subset \mathbf{C}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ not containing x_{0} :

$$
h\left(d_{0}(P)\right)=P
$$

and in general, $I \subseteq h\left(d_{0}(I)\right.$). (Geometry: If we intersect such a $V(P)$ with C^{n} and then add points at infinity, we get $V(P)$ back. Otherwise we may lose some of the points at infinity by this process.)

Example (The Twisted Cubic): Consider the set:

$$
V:=\left\{\left.\left(\frac{t}{s},\left(\frac{t}{s}\right)^{2},\left(\frac{t}{s}\right)^{3}\right) \right\rvert\, \frac{t}{s} \in \mathbf{C}\right\} \subset \mathbf{C}^{3}
$$

(the affine twisted cubic) and its "one point compactification:"

$$
\bar{V}:=\left\{\left(s^{3}: s^{2} t: s t^{2}: t^{3}\right) \mid(s: t) \in \mathbf{C P}^{1}\right\}=V \cup\{(1: 0: 0: 0)\} \subset \mathbf{C P}^{3}
$$

(the "projective twisted cubic"). It is easy to see that (in variables $\frac{x_{1}}{x_{0}}, \frac{x_{2}}{x_{0}}, \frac{x_{3}}{x_{0}}$):

$$
I(V)=I:=\left\langle\frac{x_{2}}{x_{0}}-\left(\frac{x_{1}}{x_{0}}\right)^{2}, \frac{x_{3}}{x_{0}}-\left(\frac{x_{1}}{x_{0}}\right)\left(\frac{x_{2}}{x_{0}}\right)\right\rangle
$$

since, for example I is the kernel of the homomorphism:

$$
\mathbf{C}\left[\frac{x_{1}}{x_{0}}, \frac{x_{2}}{x_{0}}, \frac{x_{3}}{x_{0}}\right] \rightarrow \mathbf{C}\left[\frac{t}{s}\right] ; \frac{x_{1}}{x_{0}} \mapsto \frac{t}{s}, \frac{x_{2}}{x_{0}} \mapsto\left(\frac{t}{s}\right)^{2}, \frac{x_{3}}{x_{0}} \mapsto\left(\frac{t}{s}\right)^{3}
$$

and $V=V(I)$. When we homogenize this ideal, we do not get:

$$
J=\left\langle x_{2} x_{0}-x_{1}^{2}, x_{3} x_{0}-x_{1} x_{2}\right\rangle
$$

because, for example, $\left(\frac{x_{2}}{x_{0}}\right)^{2}-\left(\frac{x_{1}}{x_{0}}\right)\left(\frac{x_{3}}{x_{0}}\right) \in I$ but $x_{2}^{2}-x_{1} x_{3} \notin J$ since it is not a linear combination of $x_{2} x_{0}-x_{1}^{2}$ and $x_{3} x_{0}-x_{1} x_{2}$. So we do not homogenize an ideal in general just by homogenizing its generators. On the other hand,

$$
\left\langle x_{2} x_{0}-x_{1}^{2}, x_{3} x_{0}-x_{1} x_{2}, x_{2}^{2}-x_{1} x_{3}\right\rangle
$$

is prime, and is the kernel of the homomorphism:

$$
\mathbf{C}\left[x_{0}, x_{1}, x_{2}, x_{3}\right] \rightarrow \mathbf{C}[s, t] ; x_{0} \mapsto s^{3}, x_{1} \mapsto s^{2} t, x_{2} \mapsto s t^{2}, x_{3} \mapsto t^{3}
$$

so this is the homogenized ideal, and the ideal of the projective twisted cubic. Moreover, from the homomorphism above:

$$
\left(\mathbf{C}\left[x_{0}, x_{1}, x_{2}, x_{3}\right] / I(\bar{V})\right)_{d} \cong \mathbf{C}[s, t]_{3 d}
$$

so the Hilbert polynomial of $\mathbf{C}\left[x_{0}, x_{1}, x_{2}, x_{3}\right] / I(\bar{V})$ is:

$$
H_{\mathbf{C}\left[x_{0}, x_{1}, x_{2}, x_{3}\right] / I(\bar{V})}(d)=H_{\mathbf{C}[s, t]}(3 d)=3 d+1
$$

Exercises 2.

First, a little review. A sequence of homomorphisms of abelian groups:

$$
(* *) 0 \rightarrow A_{0} \xrightarrow{\phi_{1}} A_{1} \xrightarrow{\phi_{2}} \cdots \xrightarrow{\phi_{n}} A_{n} \rightarrow 0
$$

is a complex if each $\phi_{i+1} \circ \phi_{i}=0$, and it is exact if, in addition, each

$$
\operatorname{ker}\left(\phi_{i+1}\right)=\operatorname{im}\left(\phi_{i}\right)
$$

so that, in particular, ϕ_{1} is injective, and ϕ_{n} is surjective.

1. Check the homological assertions of this section. Namely, check that:
(a) The image, kernel and cokernel of a graded homomorphism of graded $\mathbf{C}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$-modules $\phi: M \rightarrow N$ are all graded modules.
(b) If $(* *)$ above is an exact sequence of finite dimensional vector spaces V_{i} over \mathbf{C} (with linear maps ϕ_{i}), then the dimensions of the V_{i} satisfy:

$$
\sum_{i}(-1)^{i} \operatorname{dim}\left(V_{i}\right)=0
$$

(c) If ($* *$) above is an exact sequence of graded $\mathbf{C}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$-modules M^{i} and graded homomorphisms $\phi^{i}: M^{i} \rightarrow M^{i+1}$ (I raised the subscript in this case so it won't be confused with the degree) then

$$
\sum_{i}(-1)^{i} h_{M^{i}}(d)=0 \text { and } \sum_{i}(-1)^{i} H_{M^{i}}(d)=0
$$

(assuming that the Hilbert functions and Hilbert polynomials exist).
(d) If $F \in \mathbf{C}\left[x_{0}, x_{1}, \ldots, x_{n}\right]_{e}$ and M is a finitely generated graded module over $\mathbf{C}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$, let $N=M / F M$. If the Hilbert polynomial of M is:

$$
H_{M}(d)=\frac{a}{k!} d^{k}+\{\text { lower order terms }\}
$$

show that $\operatorname{deg}\left(H_{N}(d)\right) \geq k-1$ and that if $F m \neq 0$ for all $m \neq 0$ in M, then:

$$
H_{N}(d)=\frac{e a}{(k-1)!} d^{k-1}+\{\text { lower order terms }\}
$$

so $H_{N}(d)$ has degree exactly $k-1$ in this case.
2. Find generators for the homogeneous ideals $I(V)$ and Hilbert polynomials of $\mathbf{C}\left[x_{0}, x_{1}, \ldots, x_{n}\right] / I(V)$ for each of the following algebraic subsets $V \subset \mathbf{C P}^{n}$.
(a) $\left\{p_{1}, \ldots, p_{m}\right\} \subset \mathbf{C P}^{n}$, a set of (distinct) points.
(b) the pair of skew lines $\{(a: b: 0: 0)\} \cup\{(0: 0: c: d)\} \subset \mathbf{C} \mathbf{P}^{3}$.
(c) the pair of intersecting lines $\{(a: b: 0: 0)\} \cup\{(0: b: c: 0)\} \subset \mathbf{C P}^{3}$.
(d) the rational normal curve in $\mathbf{C P}^{n}$, i.e.

$$
\left\{\left(s^{n}: s^{n-1} t: s^{n-2} t^{2}: \ldots: t^{n}\right) \mid(s: t) \in \mathbf{C P}^{1}\right\}
$$

(this is the natural generalization of the projective twisted cubic)
3. Suppose $F_{1}, \ldots, F_{m} \in \mathbf{C}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ are homogeneous of degrees e_{1}, \ldots, e_{m}.
(a) If $I=\left\langle F_{1}, \ldots, F_{m}\right\rangle$ and $m \leq n$, show that:

$$
\operatorname{deg}\left(H_{\mathbf{C}\left[x_{0}, x_{1}, \ldots, x_{n}\right] / I}(d)\right) \geq n-m
$$

and if each F_{i+1} is not a zero divisor in $\mathbf{C}\left[x_{0}, x_{1}, \ldots, x_{n}\right] /\left\langle F_{1}, \ldots, F_{i}\right\rangle$ then:

$$
\operatorname{deg}\left(H_{\mathbf{C}\left[x_{0}, x_{1}, \ldots, x_{n}\right] / I}(d)\right)=\frac{\prod_{i=1}^{m} e_{i}}{(n-m)!} d^{n-m}+\{\text { lower order terms }\}
$$

Ideals with generators with this property are complete intersection ideals.
(b) For the homogeneous ideals $I(V)$ in Exercise 2.2, show that:
(i) $I(V)$ is a complete intersection when V is the pair intersecting lines, but $I(V)$ is not a complete intersection when the lines are skew.
(ii) Prove that if $n \geq 3$, then the ideal of the rational normal curve in $\mathbf{C P}{ }^{n}$ is not a complete intersection ideal.
(c) Show that $V\left(F_{1}\right) \cap \ldots \cap V\left(F_{m}\right) \neq \emptyset$ for any choice of homogeneous polynomials F_{1}, \ldots, F_{m} in (a). (Hint: Use (a) and the Proj Nullstellensatz)
(d) If F_{1}, \ldots, F_{n} generate a complete intersection ideal in $\mathbf{C}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$, so that in particular, $\mathbf{C}\left[x_{0}, x_{1}, \ldots, x_{n}\right] /\left\langle F_{1}, \ldots, F_{n}\right\rangle=\prod_{i=1}^{n} e_{i}$, then show that $V\left(\left\langle F_{1}, \ldots, F_{n}\right\rangle\right) \subset \mathbf{C P}^{n}$ is a finite set, consisting of at most $\prod_{i=1}^{n} e_{i}$ points.
4. Prove the assertions in the text about homogenizing and dehomogenizing:
(a) Prove that for ideals $I \subset \mathbf{C}\left[\frac{x_{1}}{x_{0}}, \ldots \frac{x_{n}}{x_{0}}\right]$

$$
d_{0}(h(I))=I
$$

(b) Prove that for homogeneous prime ideals $x_{0} \notin P \subset \mathbf{C}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$,

$$
h\left(d_{0}(P)\right)=P
$$

5. (a) For homogeneous ideals $I \subset \mathbf{C}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$, prove that

$$
\sqrt{I}=\left\{f \in \mathbf{C}\left[x_{0}, x_{1}, \ldots, x_{n}\right] \mid f^{N} \in I \text { for some } N>0\right\}
$$

is also a homogeneous ideal.
(b) If $V \subseteq \mathbf{C}^{n+1}$ is a union of lines through the origin, prove that:

$$
I(V)=\left\{f \in \mathbf{C}\left[x_{0}, x_{1}, \ldots, x_{n}\right] \mid f\left(a_{0}, a_{1}, \ldots, a_{n}\right)=0 \forall\left(a_{0}, a_{1}, \ldots, a_{n}\right) \in V\right\}
$$

is a homogeneous ideal.
(c) For $V \subseteq \mathbf{C P}^{n}$, let $I(V)$ be the homogeneous ideal in (b) for the union of lines in \mathbf{C}^{n+1} parametrized by V. Prove the "projective" Corollary 1.4:

For homogeneous ideals $I \subset \mathbf{C}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$, either $V(I)=\emptyset \in \mathbf{C P}^{n}$ or:

$$
I(V(I))=\sqrt{I}
$$

(In particular, $I(V(P))=P$ when $P \subset\left\langle x_{0}, \ldots, x_{n}\right\rangle$ is a homogeneous prime.)

