
Math 6130 Notes. Fall 2002.

5. Basic Examples. Before we go further with the theory, it is time to
introduce some of the basic examples of affine and projective varieties.

d-uple Embeddings: These are the regular maps:

vd : CPn → CP(n+d
n )−1

obtained by selecting all the monomials of degree d

FI = xi0
0 · · ·xin

n ∈ C[x0, x1, ..., xn]d

as I = (i0, ..., in) ranges over multi-indices with i0 + ... + in = d, sending

(a0 : ... : an) 7→ (· · · : FI(a0 : ... : an) : · · ·)

for some ordering (usually “lexicographic”) of the multi-indices I.

Example: The rational normal curves of Exercises 2 are the images:

vd : CP1 → CPd; (s : t) 7→ (sd : sd−1t : ... : td)

of the d-uple embeddings of CP1.

Proposition 5.1: vd is always an isomorphism onto the Veronese variety:

Vn,d := V (〈xIxJ − xKxL | I + J = K + L〉) ⊂ CP(n+d
n )−1

Proof: It is an easy check to see that the image of vd is contained in Vn,d.
Let J = (j0, ..., jn) be any multi-index with j0 + ... + jn = d− 1 and consider
the multi-indices Ji := (j0, ..., ji + 1, ..., jn). The projection:

Ψ : Vn,d −−> CPn; (· · · : aI : · · ·) 7→ (aJ0 : ... : aJn)

is independent of the choice of J , since another J ′ and corresponding J ′i
would satisfy aJ ′i

aJj
= aJi

aJ ′j
for all i, j and any (... : aI : ...) ∈ Vn,d . Thus:

(aJ0 : ... : aJn) = (aJ ′0
: ... : aJ ′n)

whenever both are defined. But Ψ is then a regular map inverting vd.
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Example (The Veronese Surface): This is the case n = d = 2.

Let x, y, z be the variables for CP2, and order the monomials:

x2, xy, xz, y2, yz, z2

so the d-uple embedding is v2 : CP2 → CP5, with variables x0, ..., x5 and
the equations of the Veronese surface V2,2 ⊂ CP5 are:

x0x3 − x2
1, x0x4 − x1x2, x0x5 − x2

2, x1x4 − x2x3, x1x5 − x2x4, x3x5 − x2
4

and all are needed to generate I(V2,2), since they are linearly independent!

The Veronese variety also has an important role in the theory:

Corollary 5.2: Every basic open subset XF := X − V (F ) of a projective
variety X ⊂ CPn is isomorphic to an affine variety.

Proof: The isomorphism vd : CPn → Vn,d of Proposition 5.1 induces
isomorphisms vd : Y → Yn,d from any (quasi)-projective variety Y ⊂ CPn

to its image Yn,d ⊂ Vn,d (Exercise 4.5). In particular, the image of X is a
projective variety Xn,d, and if we decompose any homogeneous polynomial
F =

∑
aIFI lifting F ∈ C[x0, x1, ..., xn]/I(X) as a sum of monomials of

degree d, then the image of XF is the basic open subset Xn,d − V (
∑

aIxI),
which is isomorphic to an affine variety by Exercise 4.4 (c).

Corollary 5.3: Every quasi-projective variety is covered by affine varieties.

Proof: Let Y ⊂ Y ⊂ CPn be a quasi-projective variety in its closure,
and let Z = Y − Y be the “boundary” of Y . Then Z is an algebraic set,
which is therefore an intersection Z = V (F 1)∩ ...∩ V (Fm) of hypersurfaces.
Then Y = Y F 1

∪ ...∪Y F m
is a union of the basic open sets which were shown

to be affine varieties in Corollary 5.2.

Segre Embeddings: These are the varieties:

Sm,n ⊂ CP(m+1)(n+1)−1

where the coordinates of CP(m+1)(n+1)−1 are labelled xij, indexed by pairs
i ∈ {0, ...,m} and j ∈ {0, ..., n} and the equations of Sm,n are:

Sm,n = V (〈xijxkl = xilxkj for all i, j, k, l〉)
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Proposition 5.4: There is a natural bijection from Sm,n to the Cartesian
product CPm ×CPn so that the (Cartesian) projections of sets:

πm : Sm,n → CPm and πn : Sm,n → CPn

are regular maps, and if Y is any quasi-projective variety with regular maps:

p : Y → CPm and q : Y → CPn

then the (unique!) resulting map (p, q) : Y → Sm,n is also regular.

Proof: The bijection is: (· · · : aij : · · ·) 7→ ((a0j : ... : amj), (ai0 : ... : ain))
if aij 6= 0. This is independent of the choice of i, j (using aijakl = ailakj).
The arrow is reversed by sending:

((a0 : ... : am), (b0 : ... : bn)) 7→ (· · · : aibj : · · ·)

Now given Y ⊂ CPl and regular maps p : Y → CPm and q : Y → CPn,
then by Proposition 4.4, we can write p and q (in any neighborhood) as:

p = (F0 : ... : Fm) and q = (G0 : ... : Gn)

and then (p, q) = (· · · : FiGj : · · ·) in that neighborhood, so it is regular.

The Segre embedding also has a role in the theory, allowing us to construct
products of arbitrary quasi-projective varieties (see §6).

Example: (The Smooth Quadric Surface) Consider m = n = 1. Then
there is only one non-redundant equation for S1,1, namely:

S1,1 = V (x00x11 − x01x10) ⊂ CP3

which (in C4) furnished our non-UFD example of a coordinate ring in §3.
The two projections are (ordering the variables x00, x01, x10, x11):

π1 : S1,1 → CP1; (a : b : c : d) 7→ (a : c) (or (b : d)) and

π2 : S1,1 → CP1; (a : b : c : d) 7→ (a : b) (or (c : d))

By Proposition 5.4, this quadric hypersurface is CP1 ×CP1 (as a set).
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Affine Group Varieties: These are affine varieties that are also groups.
To say precisely what it means for group multiplication to be a regular map,
we will need products (in the next section), so for now we will be content to
describe some of these varieties:

GL(n,C) ⊂ Cn2
(with coordinates xij) is the basic open set:

GL(n,C) = Cn2 − det(xij)

consisting of the invertible matrices. This is isomorphic to an affine variety
by Proposition 3.6. The inverse map is evidently regular:

i : GL(n,C) → GL(n,C); i(aij) = det(aij)
−1(Aij)

since the ijth minor Aij of the matrix (aij) is a polynomial in the aij.

SL(n,C) ⊂ Cn2
is the irreducible closed subset V (det(xij)− 1) ⊂ Cn2

.

PGL(n + 1,C) = CP(n+1)2−1 − det(xij) ⊂ CP(n+1)2−1 is the group of
invertible matrices modulo scalars. It is an affine variety by Corollary 5.2.
We have already seen this group in Exercise 4.3, where it was shown to be
isomorphic to the group of automorphisms of CPn.

O(n,C) ⊂ GL(n,C) is the orthogonal group with equations (within Cn2
):

(xij)(xij)
T = In

(more generally, (xij)S(xij)
T = S for a non-degenerate symmetric matrix S).

Example: O(2,C) is isomorphic to two copies of C∗. The equations are:

x2
11 + x2

12 = 1, x11x21 + x12x22 = 0, x2
21 + x2

22 = 1

for O(2,C) ⊂ C4. Thus:

O(2,C) =
{(

a11

a12

a12

−a11

)
and

(
a11

−a12

a12

a11

)
| a2

11 + a2
12 = 1

}
so both components are isomorphic to the affine variety V (x2 +y2−1) ⊂ C2.
But x2 + y2 − 1 = (x + iy)(x− iy)− 1, so both are isomorphic to the affine
hyperbola over C∗ ⊂ C (after change of coordinates to x + iy, x− iy on C2).
Note that O(2,R) are the two unit circles in the C∗’s.

Sp(2n,C) is the symplectic group, defined as for the orthogonal group,
with a non-degenerate skew-symmetric matrix S (necessarily of even rank).
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The Elliptic Curve (A Projective Group Variety): Take:

E = V (x2
2x0 − x1(x1 − x0)(x1 − λx0)) ⊂ CP2

as in §4, with λ 6= 0, 1. Then E is an Abelian group:

• The additive identity is 0 = (0 : 1 : 0) ∈ E (the unique point of E−U0).

• The additive inverse is −(a0 : a1 : a2) := (a0 : a1 : −a2).

i.e. − : U0 → U0 is the reflection of U0 = V (y2−x(x−1)(x−λ)) ⊂ C2 about
the x-axis. Note that aside from 0, the fixed points of this involution of E are
the three intersection points with the x-axis: (1 : 0 : 0), (1 : 1 : 0), (1 : λ : 0).

• The addition is:
a + b + c = 0

whenever a, b, c ∈ E are on the same projective line L ⊂ CP2.

Remark: A line is an embedding

Φ : CP1 → CP2; (s : t) 7→ (a0s + b0t : a1s + b2t : a2s + a3t)

If we pull back the equation of E, we get a homogeneous polynomial P (s, t) of
degree 3, which has three linear factors (it isn’t zero because E is irreducible)
and a, b, c are by definition the images of the 3 roots (which may coincide).

Example: Consider the line:

(s : t) 7→ (s : t : t)

Then P (s, t) = st2− t(t− s)(t−λs) has roots (1 : 0), (ω1 : 1) and (ω2 : 1)
where ω1, ω2 are the roots of λs2 − (2 + λ)s + 1, and:

(1 : 0 : 0) + (ω1 : 1 : 1) = (ω2 : 1 : −1)

We will revisit the elliptic curve, and later prove some:

Non-Obvious Claims: (1) Addition defined in this way is a regular map.

(2) Addition is associative (it is obviously commutative).

We will evetually also see this, and also that, as topological groups,

E ∼= S1 × S1

which explains why there are 4 points of order 2.
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The Grassmannian: For m < n, consider the rational map:

Φ : CPmn−1 −−> CP( n
m)−1

given by “determinants.” That is, if the coordinates of CPmn−1 are:

{xij | i ∈ {1, ...,m} and j ∈ {1, ..., n}}

which we regard as the entries of an m× n matrix, then Φ is given by:

Φ = (· · · : det(xij)j∈J : · · ·)

indexed by multi-indices J = (j1 < j2 < ... < jm), again arranged in some
order (usually lexicographic) and xJ are the corresponding coordinates on

CP( n
m)−1. By Proposition 4.5, we see that Φ is defined exactly on the locus:

CPmn−1 −
⋂
J

V (det(xij)j∈J)

which is to say that Φ is defined on the locus of injective m× n matrices.

The image of Φ in CP( n
m)−1 is the Grassmann variety G(m, n). Some

linear algebra shows that Φ(aij) = Φ(bij) if and only if αA = B for some
α ∈ GL(m,C). Thus the points of G(m, n) are in a bijection with the
subspaces of Cn of dimension m. (In other words, the Grassmann variety is
the higher-rank analogue of CPn−1 = { lines in Cn}).

For each J = (j1 < j2 < ... < jm), consider the locally closed subset:

VJ := {(... : aij : ..)|(aij)j∈J = Im (the identity matrix)} ⊂ CPmn−1

This is isomorphic, on the one hand, to Cm(n−m) (the remaining coordinates)

and on the other hand, to its image Φ(VJ) ⊂ CP( n
m)−1, which is closed as a

subset of CP( n
m)−1−V (xJ). It follows, therefore, that G(m,n) is a projective

variety (i.e. it is closed in CP( n
m)−1) since it is covered by “basic open sets”

G(m,n) − V (xJ) that are closed in CP( n
m)−1 − V (xJ) (a set is closed if its

intersection with each element of an open cover is closed!). And like CPn−1,
the basic open sets are each isomorphic to Cm(n−m).
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Example: m = 2, n = 4. When J = (1, 2), we get:

C4 ∼= VJ = {(1 : 0 : 1 : 0 : a13 : a23 : a14 : a24)} ⊂ CP7

and (for the lexicographic ordering ((1, 2), (1, 3), (1, 4), (2, 3)...) on the J ’s:

Φ(VJ) = {(1 : a23 : a24 : −a13 : −a14 : a13a24 − a14a23)} ⊂ CP5

and it follows that:

G(2, 4) = V (x(1,2)x(3,4) − x(1,3)x(2,4) + x(1,4)x(2,3)) ⊂ CP5

is the non-degenerate quadric hypersurface in CP5.

In general, the ideal I(G(m,n)) is generated by the “Plücker” quadrics.
To see them, define linear forms yI for each m-tuple I = (i1, ..., im) of integers
1 ≤ ik ≤ m by:

yI :=

{
0 if some ij = ik for j 6= k, otherwise

sgn(σ)xJ for σ(I) = J , a multi-index

where sgn(σ) is the sign (±1) of the unique permutation σ of {1, ...,m} taking
I to J . For each pair of m-tuples I, K and each s = 1, ...,m, define:

QIKs := yIyK −
m∑

t=1

y(i1,...,is−1,kt,is+1,...,im)y(k1,...,kt−1,is,kt+1,...,km)

and then it turns out that I(G(m, n)) = 〈QIKs〉. Notice that already in the
m = 2, n = 4 case this produces a lot of quadrics, but they are all the same
(up to a sign)!

Examples: (a) (Projective space) When m = 1, there are no non-trivial
Plücker quadrics, and indeed this is a good reality check, as:

G(1, n) = CPn−1

does in fact agree with our convention that CPn−1 is the set of lines in Cn.

(b) (The “dual” projective space) When m = n − 1, there are also no
non-trivial Plücker quadrics, so once again G(n− 1, n) = CPn−1, though in
this case the map to the Grassmannian:

CPn2−n−1 −
⋂

V ((xij)j∈J) → G(n− 1, n) = CPn−1

is more complicated.
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It is not surprising that this should be so, since a hyperplane in Cn is
a line in the dual vector space (Cn)v, so this CPn−1 is the projective space
of lines in (Cn)v, and an isomorphism from this Grassmannian to the other
depends upon a choice of isomorphism Cn ∼= (Cn)v.

Notice that we now have interpetations of non-degenerate quadrics in
CP2 (the conic, isomorphic to CP1, or the simplest Veronese variety), in CP3

(the Segre embedding CP1 ×CP1) and in CP5 (the Grassmann G(2, 4)).

The Grassmannian is the model for moduli spaces in algebraic geometry.
It parametrizes the subspaces of a vector space in the stong sense that families
of such subspaces over a base variety B are the “same thing” as regular maps
Φ : B → G(m,n). This universal property of the Grassmannian generalizes
in fascinating and subtle ways to other parametrization problems, such as
the problem of parametrizing all the projective subvarieties X ⊂ CPn of a
given projective space with a given Hilbert polynomial, or the problem of
parametrizing all the line bundles (or vector bundles) on a given complex
projective variety, or quite simply the problem of parametrizing all (smooth)
projective varieties themselves. This is one of the most beautiful and active
areas of research in algebraic geometry, whose modern study was pioneered
in the work of Grothendieck, Mumford and others.

Determinantal Varieties: For each 0 < r < m, n the algebraic sets:

Dr(m, n) := V (〈det(xij)i∈I,j∈J〉) ⊂ CPmn−1

(as I = (i1 < ... < ir+1) and J = (j1 < ... < jr+1) range over all multi-indices)
are the determinantal varieties, with equations given by the determinants of
all the r + 1 × r + 1 minors of (xij). We will see later that these are really
irreducible, but notice for now that, as a set:

Dr(m, n) = {m× n matrices of rank ≤ r} ⊂ CPmn−1

For example, we’ve already seen that the determinantal variety Dm−1(m,n)
(for m < n) is the locus where the rational map Φ : CPmn−1 −−> G(m, n)
to the Grassmann variety is undefined. Also, we know that the determinan-
tal variety D1(m,n) is the Segre embedding Sm−1,n−1 = CPm−1 × CPn−1

since the equations xijxkl − xikxjl for the Segre embedding are exactly the
determinants of the 2× 2 minors of the matrix (xij)!
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Special Determinantal Varieties: Determinantal varieties for symmetric
and skew-symmetric matrices are defined similarly. In the symmetric case,

Dr(n
2) = {n× n symmetric matrices of rank ≤ r} ⊂ CP(n+1

2 )−1

where CP(n+1
2 )−1 has coordinates xij for i ≤ j. In the skew-symmetric case,

Dr(n ∧ n) = {n× n skew-symmetric matrices of rank ≤ r} ⊂ CP(n
2 )−1

where CP(n
2 )−1 has coordinates xij for i < j.

Notice that D2m+1(n∧n) = D2m(n∧n) since every skew-symmetric matrix
has even rank. When n is even, the determinant of (xij) is a square(!) so
although Dn−2(n ∧ n) = V (det(xij)), we have I(Dn−2(n ∧ n)) = 〈Pf(xij)〉
where Pf(xij) is the Pfaffian square root of the det(xij), which is irreducible.

Examples: (a) Symmetric 3× 3 matrices can be given coordinates: x0 x1 x2

x1 x3 x4

x2 x4 x5


and then the determinants of the 2× 2 minors give:

D1(3
2) = V (x0x3−x2

1, x0x4−x1x2, x0x5−x2
2, x1x4−x2x3, x1x5−x2x4, x3x5−x2

4)

which are the same as the equations for the Veronese surface V2,2 ⊂ CP5!

More generally, we always have D1(n
2) = Vn−1,2 ⊂ CP(n+1

2 )−1.

(b) Skew-symmetric 4× 4 matrices can be given coordinates:
0 x(1,2) x(1,3) x(1,4)

−x(1,2) 0 x(2,3) x(2,4)

−x(1,3) −x(2,3) 0 x(3,4)

−x(1,4) −x(2,4) −x(3,4) 0


and then the determinant is (x(1,2)x(3,4) − x(1,3)x(2,4) + x(1,4)x(2,3))

2 so:

D2(4 ∧ 4) = V (x(1,2)x(3,4) − x(1,3)x(2,4) + x(1,4)x(2,3))

is the same equation as for the Grassmannian G(2, 4) ⊂ CP5. More generally,

we always have D2(n ∧ n) = G(2, n) ⊂ CP(n
2 )−1.
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Exercises 5.

1. If X ⊂ CPn, let X = Xn,d ⊂ CP(n
d )−1 be the re-embedding of X as its

image under the d-uple embedding vd. Prove that:

C[Xn,d] = C[X](d) =
∞⊕

k=0

C[X]kd

as graded rings, and conclude that the constant term and the degree of the
Hilbert polynomials of C[X] and of C[Xn,d] are the same, but that the leading
coefficient, for instance, is multiplied by dn.

Homogeneous coordinate rings and their Hilbert polynomials!
Representations
Rank 1 matrices, and rank 2 skew matrices
Secant lines
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