
Math 6130 Notes. Fall 2002.

8. Dimension. We wish to define the dimension of a variety Y , and we want
our definition to agree with the usual (complex) dimension of Y when Y is a
complex manifold. In this case, the strange properties of the Zariski topology
work in our favor, giving a simple topological definition of the “Noetherian”
codimension of an irreducible closed subset Z ⊂ Y , and the Noetherian
dimension of Y is then the codimension of a point. In this section, we will
explore some applications of dimension, and prove the important:

Dimension Theorem 8.1: If Y is a quasi-projective variety, then:

(a) The Noetherian dimension of Y and

(b) The transcendence degree of the field C(Y ) over C

are the same. And if Y ⊆ CPn is projective, then they are also the same as:

(c) The degree of the Hilbert polynomial of C[Y ].

Definition: The Noetherian codimension of an irreducible closed set Z ⊂ Y
is the maximal length c of all (proper) chains of irreducible closed sets:

Z = Z0 ⊂ Z1 ⊂ Z2 ⊂ ... ⊂ Zc = Y

We will write codY (Z) for the codimension of Z in Y .

Remarks: (a) If U ⊂ Y is an open subset and U ∩ Z 6= ∅, then:

codY (Z) = codU(U ∩ Z)

since taking closures is a bijection between irreducible closed subsets of U
and irreducible closed subsets of Y that intersect U . As a consequence of
this, we can always compute codimension on an affine open subset of Y .

(b) If Y is affine and Z ⊂ Y has codimension 1, then there is a regular
function f ∈ C[Y ] so that Z is one of the irreducible components:

Z1 ∪ ... ∪ Zn = V (f) ⊂ Y

Indeed, let f be any (nonzero) function in I(Z). Then Z ⊆ V (f), and
because Z is irreducible, it must be contained in one of the Zi. But because
it has codimension 1, it must be equal to one of the Zi.
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We’d like to have the converse to (b), telling us that every component
of every hypersurface V (f) ⊂ Y has codimension 1. For this we will need
another reminder from field theory and some commutative algebra;

Field Theory II: If K ⊂ L is a finite extension of fields and α ∈ L, then

NmL/K(α) = det(mα) ∈ K and TrL/K(α) = tr(mα) ∈ K

are the determinant and trace of the linear transformation mα : L→ L given
by multiplication by α. They are (up to a sign) the constant and next-to-
highest coefficients of the characteristic polynomial det(λI −mα), which is a
polynomial of degree [L : K], the dimension of L as a K-vector space, and is
always a power of the minimal polynomial of α in K[λ]. Note in particular
that NmL/K(αβ) = NmL/K(α)NmL/K(β), and NmL/K(α) = α[L:K] if α ∈ K.

If K ⊂ L are the fields of fractions of Noetherian domains A ⊂ B, such
that A is a UFD and B is finitely generated as an A-module, then it follows
from Gauss’ lemma that the minimal polynomial of each α ∈ B is in A[λ].
In particular, NmL/K(α) and TrL/K(α) are in A whenever α ∈ B.

Krull’s Principal Ideal Theorem:

If trdC(C(Y )) = d for an affine variety Y , and if f ∈ C[Y ] is nonzero,
then trdC(C(Zi)) = d− 1 for each of the irreducible components Zi ⊆ V (f).

Proof: In the simple case Y = Cd, then each Zi = V (fi) for a prime
polynomial fi in the factorization of f ∈ C[x1, ..., xd], and then C(Zi) is
the field of fractions of C[x1, ..., xd]/fi, and the theorem is just the second
property of trd from §1. We prove the theorem by reducing it to this case.

First, recall that C(U) = C(Y ) for an open subsets U ⊂ Y , so given Zi, we
can replace Y with a basic open set Y −V (g) that intersects Zi but does not
intersect any of the other Zj . Thus we may assume that Z = Zi = V (f). The

advantage is that now the prime ideal I(Z) =
√
〈f〉 by the Nullstellensatz.

Next let Φ : Y → Cd be the finite dominant map from affine Noether
Normalization (§7) with Φ∗ : C[y1, ..., yd] ⊂ C[Y ]. The image Φ(Z) ⊆ Cn is
closed (and irreducible) by Proposition 7.5, and the map Φ|Z : Z → Φ(Z)
is also finite and dominant, so the field extension C(Φ(Z)) ⊂ C(Z) is finite,
and trdC(C(Z)) = trdC(C(Φ(Z))). So it suffices to prove, using the simple
case above, that Φ(Z) ⊂ Cd is hypersurface.
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Let K = C(y1, ..., yd), L = C(Y ), and let g = NmL/K(f) ∈ C[y1, ..., yd].
If λm + gm−1λ

m−1 + ...+ g0 is the characteristic polynomial of f ∈ C[Y ] then
all coefficients are in C[y1, ..., yd] and g = ±g0, so:

g = ∓f(f
m−1

+ gm−1f
m−2

+ ...+ g1) ∈ I(Z) ⊂ C[Y ]

so g ∈ I(Z)∩C[y1, ..., yd] and then
√
〈g〉 ⊆ I(Z)∩C[y1, ..., yd] ⊂ C[y1, ..., yd]

since I(Z) ∩C[y1, ..., yd] is prime. We know Φ(Z) = V (I(Z) ∩C[y1, ..., yd])
(see the proof of Proposition 7.5(b)) so we are done if we can show that√
〈g〉 = I(Z)∩C[y1, ..., yd] because then Φ(Z) = V (g) ⊂ Cd is a hypersurface.

But if h ∈ I(Z) ∩C[y1, ..., yd] =
√
〈f〉 ∩C[y1, ..., yd], then some hM = k · f

for k ∈ C[Y ], so hM [L:K] = NmL/Kh
M = (NmL/Kk)g, and then h ∈

√
〈g〉.

Thus I(Z) ∩C[y1, ..., yd] ⊆
√
〈g〉 so we really are done.

Proposition 8.2: (a) Every irreducible component Z ⊂ V (f) ⊂ Y of every
hypersurface in Y has codimension 1.

(b) A chain Z = Z0 ⊂ Z1 ⊂ ... ⊂ Zc = Y of closed irreducible subsets is
maximal if and only if each Zi ⊂ Zi+1 has Noetherian codimension 1.

(c) The codimension of a point p ∈ Y is equal to trdC(C(Y )) and is, in
particular, independent of the choice of the point p.

(d) If Z ⊂ Y ⊂ X are closed and irreducible, then

codX(Y ) = a and codY (Z) = b⇒ codX(Z) = a+ b

Proof: (a) By Krull’s theorem, trdC(C(Z)) = trdC(C(Y )) − 1. If
codY (Z) > 1, there would be a chain Z ⊂ Z′ ⊂ Y with codY (Z ′) = 1.

By Remark (b), Z ′ ⊂ V (f
′
) for some f

′
, so trdC(C(Z ′)) = trdC(C(Y )) − 1

(again by Krull), and then trdC(C(Z)) < trdC(C(Y ))− 1, a contradiction.

(b) If Z = Z0 ⊂ Z1 ⊂ ... ⊂ Zc = Y is any maximal chain, then each
Zi ⊂ Zi+1 has codimension 1, otherwise we could construct a longer chain!
Conversely, if each Zi ⊂ Zi+1 has codimension 1, then by Remark (b) and
Krull’s theorem, trdC(C(Zi)) = trdC(C(Zi+1))−1, so trdC(Z) = trdC(Y )−c
for any such chain, and so each one is maximal, of length trdC(Y )−trdC(X).

(c) This is immediate from the last sentence in the proof of (b).
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(d) Fill Z ⊂ Y with a maximal chain of length a and Y ⊂ X with a
maximal chain of length b. It follows from (b) that the concatentation of the
two chains is maximal, of length a+ b. Alternatively, this is also immediate
from the last sentence of the proof of (b).

Definition: The dimension of Y is the Noetherian codimension of a point.

Note: By Remark (a), the Proposition holds for quasi-projective varieties.
Thus we have proved (a) = (b) in the Dimension Theorem, and then we can
(and frequently do) use dim(Y ) = trdC(C(Y )) to compute dimension. It
now follows immediately from Proposition 8.2(d) that, as expected:

codY (Z) = dim(Y )− dim(Z)

Examples: (a) The dimension of Cn (and therefore of CPn) is n.

(b) If dim(X) = m and dim(Y ) = n, then dim(X × Y ) = m + n.

To see this, we may assume that X and Y are affine, and then use the
result C[X×Y ] = C[X]⊗C C[Y ] of Exercise 6.1. By Noether normalization,
C[x1, ..., xm] ⊂ C[X] and C[y1, ..., yn] ⊂ C[Y ] are finitely generated modules,
so C[X] ⊗ C[Y ] is a finitely generated module over C[x1, ..., xm, y1, ..., yn]
(generated by the tensors of the two sets of generators). Hence C(X × Y ) is
a finite field extension of C(x1, ..., xm, y1, ..., yn) and so dim(X×Y ) = m+n.

(c) If X ⊂ CPn is a projective variety then dim(C(X)) = dim(X) + 1
where C(X) ⊂ Cn+1 is the affine cone over X (from Exercise 6.2). This
follows from Exercise 6.2 and Example (b) above.

(d) If Φ : X → Y is dominant, then dim(X)− dim(Y ) = trdC(Y )(C(X))
for the inclusion Φ∗ : C(Y ) ↪→ C(X). In particular, dim(X) ≥ dim(Y ).

Proposition 8.3: If X ⊂ Cn and Y ⊂ Cn are closed subvarieties with
codCn(X) = a and codCn(Y ) = b, then codCn(Z) ≤ a+b for every component
Z ⊂ X ∩ Y (if X ∩ Y is empty, this is vacuously true!)

Proof: Consider first the simple case X = V (〈f1, ..., fa〉), i.e. the case
where X has the “right number of equations.” Then we get a chain:

Z = Za ⊂ Zr−1 ⊂ ... ⊂ Z1 ⊂ Z0 = Y

where each Zi is an irreducible component of Zi−1 ∩ V (f i). Now either
Zi = Zi−1, or else Zi ⊂ Zi−1 has codimension 1 by Krull’s theorem, so by
Proposition 8.2(b) codY (Z) ≤ a, and by Proposition 8.2(d) codCn(Z) ≤ a+b.
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Now for the general case. Let ∆ ⊂ C2n be the diagonal. Then ∆ ∼= Cn

(by either of the two projections) and under either projection:

π : (X × Y ) ∩∆→ X ∩ Y

is a bijection. It follows that the components of (X × Y ) ∩ ∆ are carried
isomorphically to the components of X ∩ Y . So it suffices to prove that
dim(Z) ≥ n− (a+ b) for every component Z ⊂ (X × Y ) ∩∆.

But ∆ ⊂ C2n has the right number of equations! If C[x1, ..., xn, y1, ..., yn]
is the coordinate ring of C2n, then ∆ = V (〈x1 − y1, ..., xn − yn〉). So the
simple case above applies to components Z of X×Y ∩∆, which then satisfy:

codC2n(Z) ≤ codC2n(X × Y ) + codC2n(∆) = (a+ b) + n

and so each such Z has the desired dim(Z) ≥ 2n− ((a+b)+n) = n− (a+ b).

Remark: It is natural to ask whether Proposition 8.3 holds when Cn is
replaced by another variety. It does hold when Cn is replaced by CPn, or any
quasi-projective variety that is covered by open subsets that are isomorphic
to open subsets of Cn. But it doesn’t hold in general, even for affine varieties!
For example, consider the affine variety W = V (x0x3 − x1x2) ⊂ C4. The
planes V (x0) ∩ V (x1) and V (x2) ∩ V (x3) ⊂ W both have codimension 1 in
W but their intersection is the origin, which has codimension 3.

We will think more about this question in §9.

Corollary 8.4: If two projective varieties X, Y ⊂ CPn ought to intersect,
in the sense that codCPn(X) + codCPn(Y ) ≤ n, then they do intersect.

Proof: Consider the affine cones C(X), C(Y ) ⊂ Cn+1. Example (c)
gives codCPn(X) = codCn+1(C(X)) and codCPn(Y ) = codCn+1(C(Y )), so if
codCPn(X) + codCPn(Y ) ≤ n then codCn+1(C(X)) + codCn+1(C(Y )) ≤ n.

The origin 0 ∈ C(X) ∩ C(Y ) is always in the intersection of two cones,
and if there is any other point in the intersection, then each component of
C(X) ∩ C(Y ) is the affine cone over a component of X ∩ Y ⊂ CPn. Thus
we need to show that C(X) ∩ C(Y ) contains a point other than 0. But by
Proposition 8.3, each component Z ⊂ C(X) ∩ C(Y ) has codCn+1(Z) ≤ n, so
dim(Z) ≥ 1 and Z contains points other than 0.

Next, we use dimension to help us analyze dominant regular maps.
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Proposition 8.5: A dominant map Φ : X → Y of quasi-projective varieties
is birational if and only if there is an open subset U ⊂ Y such that the
restriction Φ : Φ−1(U)→ U is an isomorphism.

Proof: Recall that birational means dominant and Φ∗ : C(Y ) = C(X).
If there is such a U , this is clearly the case. Given a birational Φ, to find the
U we can assume that Y is affine, replacing Y with any affine open subset.

First, we will find U0 ⊂ Y and V0 ⊂ Φ−1(U0) such that Φ : V0 → U0

is an isomorphism. For this, we can assume that X is affine. Then the
inclusion Φ∗ : C[Y ] ↪→ C[X] may not be itself an equality, but if we write

C[X] = C[x1, ..., xn]/P , then each xi = f i
gi
∈ C(Y ) and if g =

∏
gi ∈ C[Y ],

then C[Y ]f = C[X]f . So take U0 = Y −V (f) and V0 = Φ−1(U0) = X−V (f).

For the general case, start with the open sets U0 ⊂ Y and V0 ⊂ X.
Each irreducible component Zi ⊂ Φ−1(U0) − V0 has dim(Zi) < dim(V0) so
dim(Φ(Z)) ≤ dim(Z) < dim(U0). In particular, ∪Φ(Zi) ⊂ U0 is not equal
to U0, so we may take U = U0−∪Φ(Zi) and then Φ−1(U) = V0−∪Φ−1(Φ(Zi))
and then Φ : Φ−1(U)→ U is an isomorphism, as desired.

Example: Consider the regular map:

Φ : S1,1 − {(0 : 0 : 0 : 1)} → CP2; (a : b : c : d) 7→ (a : b : c)

where S1,1 = V (x0x3 − x1x2) ⊂ CP3. Then the image of Φ is the set:

{(1 : b : c)} ∪ {(0 : 1 : 0)} ∪ {(0 : 0 : 1)} ⊂ CP2

and the first set is open (it will be our U) and isomorphic to C2 and:

Φ−1(U) = Φ−1{(1 : b : c)} = {(1 : b : c : bc)} ⊂ S1,1

is C1 ×C1 ⊂ CP1 ×CP1 of Example (a) after Corollary 6.3. In particular,
in this case Φ : Φ−1(U)→ U is an isomorphism from C1×C1 ⊂ CP1×CP1

to C2 ⊂ CP2 although CP1×CP1 and CP2 are not themselves isomorphic.

So birational maps are “almost” isomorphisms. For arbitrary dominant
maps Φ : X → Y , the idea is that if r = dim(X)−dim(Y ) = trdC(Y )(C(X)),
then the fibers of Φ ought to be a union of r-dimensional varieties. We’ll see
that this holds over an open set (analogous to the set U of Proposition 8.5),
and that in general, the fiber dimensions are at least r. More precisely:
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Definition: A real-valued function e : X → R from a topological space X
is upper-semicontinuous if for each α ∈ R, the subset:

Uα := {x ∈ X | e(x) < α} ⊂ X

is open (i.e. the value of e jumps up only on closed sets).

Theorem 8.6: If Φ : X → Y is dominant and r = trdC(Y )C(X), then:

(a) If p ∈ Y then the dimension of every component Z ⊆ Φ−1(p) of every
fiber satisfies dim(Z) ≥ r (⇔ codX(Z) ≤ dim(Y )).

(b) More generally, among the components Z ⊆ Φ−1(W ) of the preimage
of a closed irreducible subset W ⊆ Y , every component that dominates W ,
in the sense that Φ(Z) = W , must satisfy codX(Z) ≤ codY (W ).

(c) The image Φ(X) contains an open dense subset U ⊆ Φ(X) ⊆ Y with
the property that if W in (b) intersects U , then codX(Z) = codY (W ) in (b).
In particular, if p ∈ U in (a), then dim(Z) = r.

(d) The “maximum fiber dimension” function e : X → R defined by:

e(x) = max{dim(Z) | Z is a component of Φ−1(Φ(x)) and x ∈ Z}

is upper-semicontinuous.

Example: Consider the blow-up Φ : C3 → C3; Φ(a, b, c) = (a, ab, ac). The
image of Φ is (C3 − {(0, t, u)}) ∪ 0 and the fibers of Φ are:

Φ−1(0) = {(0, b, c)} (dimension 2)

Φ−1(s, t, u) = {(s, ts−1, us−1)} for all other points of the image.

Thus the dimension of each fiber is 0 or 2, and if (s, t, u) ∈ U = Φ(C3)−0,
then the dimension is 0 = r. The upper semi-continuous e(x) is then:

e(a, b, c) =

{
0 if a 6= 0
2 if a = 0

Note that Φ−1({(s, 0, 0)}) = {(a, 0, 0)} ∪ {(0, b, c)} has two components,
but only {(a, 0, 0)} dominates {(s, 0, 0)}, so only that component is covered
by the theorem. This is good since the line {(s, 0, 0)} intersects U and the
other component has codimension 1 instead of codC3({(s, 0, 0)}) = 2. Note
also that Φ is birational, and that U = C3 − {(0, t, u)} (but not C3 − 0)
works for Proposition 8.5.
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Proof of (b): If Y ′ ⊆ Y is open and affine and Y ′ ∩W 6= ∅, then each
Z ∩ Φ−1(Y ′) ⊂ Z is open and nonempty (but maybe not affine) because Z
dominates W . Given one Z, we can take an open affine X ′ ⊆ Φ−1(Y ′) ⊆ X
intersecting Z, and then it suffices to prove (a) for the induced dominant
map Φ′ : X ′ → Y ′ of affine varieties. In other words, it suffices to consider
the case where X and Y are affine.

Let s = codY (W ). Then by Remark (b) and induction (see Exercise 8.1)
there are f 1, ..., fs ∈ C[Y ] such that W ⊆ V (〈f 1, ..., fs〉) is a component.
Then Z ⊆ V (〈Φ∗(f 1), ...,Φ∗(f s)〉). I claim Z is a component of this set.
If Z ⊆ Z ′ ⊆ V (〈Φ∗(f 1), ...,Φ∗(f s)〉) and Z ′ is a component, then since we
assumed W = Φ(Z), we also have W = Φ(Z ′) ⊆ V ((f 1, ..., fs)) since Φ(Z ′)
is irreducible. Thus Z′ ⊆ Φ−1(W ) is a component dominating W , and since
it contains Z, it must be equal to Z. Finally, it is an easy application of
Krull to see that each component of V (〈Φ∗(f 1), ...,Φ∗(f s)〉) has codimension
≤ s, and we are done. Notice that (a) is the special case of (b) where W = p.

Proof of (c): As in (b), we may assume Y is affine. We can also assume
X is affine, with a little extra care. We may cover X = ∪ni=1Vi by affine open
subsets Vi. If we let Ui ⊂ Φ(Vi) be open subsets of Y satisfying (c) for each
Vi, then U := ∩ni=1Ui ⊂ Φ(X) will be an open subset of Y satisfying (c) for
X. So indeed we can prove this one Vi at a time, and assume X is affine.
Then I claim that there are f ∈ C[Y ] and g1, ..., gr ∈ C[X] such that:

(i) The map α∗ : C[Y ]f [y1, ..., yr]→ C[X ]f ; yi 7→ gi is injective, and

(ii) C[X]f is finitely generated as a C[Y ]f [y1, ..., yr]-module.

First, notice that (c) follows from (i) and (ii). If we let U = Y − V (f)
then Φ−1(U) = X − V (f) and then Φ factors when restricted to Φ−1(U):

X
Φ→ Y

∪ ∪
Φ−1(U)

α→ U ×Cr π→ U

where α is dominant and finite and π is the projection. Given W , then
Φ−1(W ∩ U) ⊂ Φ−1(U) is closed and maps onto (W ∩ U) × Cr with finite
fibers by Proposition 7.5, and each component Z ⊂ Φ−1(W∩U) maps (finitely
and dominantly) to its image in (W ∩ U) × Cr, so dim(Z) ≤ r + dim(W )
which translates to codX(Z) ≥ codY (W ), and (b) gave the other inequality.

8



To see (i) and (ii), consider the C(Y )-algebra C[X]S for S = C[Y ] − 0.
If C[X] = C[x1, ..., xn]/P , then C[X]S = C(Y )[x1, ..., xn]/Q for some prime
ideal Q, so since trdC(Y )(C(X)) = r, we can apply Noether Normalization
(over C(Y )) to find C(Y )[y1, ..., yr] ⊂ C[X]S so C[X]S is finitely generated
as a C(Y )[y1, ...yr]-module. We need now to replace C[X]S with some C[X]f .

To do this, we can assume that the inclusion C(Y )[y1, ..., yr] ↪→ C[X]S
takes each yi to gi ∈ C[X] (multiplying by the denominator if needed). This
gives C[Y ][y1, ..., yr] ↪→ C[X]. But C[X] may not be finitely generated as a
C[Y ][y1, ..., yr]-module (i.e. the map Φ itself doesn’t usually factor). On the
other hand, if h1, ..., hm ∈ C[X]S generate it as a C(Y )[y1, ..., yr]-module, we
can solve xi =

∑m
j=1 pij(y)hj for each of the xi above and hjhk =

∑
cijl(y)hl,

where each pij(y), cjkl(y) ∈ C(Y )[y1, ..., yr]. Let f ∈ C[Y ] be the product
of all denominators of the hj and of all coefficients of the pij(y) and cjkl(y).
Then each hj ∈ C[X]f and each pij(y), cjkl(y) ∈ C[Y ]f , and since C[X]f
is generated by the xi as an algebra over C[Y ]f , it follows that C[X]f is

generated by the hj as a C[Y ]f [y1, ..., yr]-module, as desired.

Proof of (d): Since e(x) takes integer values, we only need to check that
the sets Ua ⊂ X are open when a > 0 is an integer, or equivalently that the
sets Xa := {x ∈ X | e(x) ≥ a} are closed. By (a), Xa = X for a ≤ r.

Let U ⊂ Y be any (nonempty!) open subset of Φ(X) satisfying the
conditions of (c). If x ∈ Φ−1(U), then by (c), e(x) = r, so if a > r, it follows
that Xa ⊆ X − Φ−1(U) for that open set U .

Let Z1 ∪ ... ∪ Zn = X − Φ−1(U) be the components (all of which have
smaller dimension than X). By induction on the dimension of the domain,
when we consider the maps Φ|Zi : Zi → Φ(Zi) we may assume that each of
the sets (Zi)a := {x ∈ Zi | e(x) ≥ a} ⊆ Zi is closed. If x ∈ X and e(x) ≥ a,
there is a component of Φ−1(Φ(x)) of dimension at least a passing through
x and this component is contained in X − Φ−1(U), so it must lie entirely in
some Zi by irreducibility. Thus we can express Xa = ∪ni=1(Zi)a as a finite
union of closed sets, so it is closed.

Remark: This theorem points out a distinctive property of regular maps,
which is very far from being true for ordinary differentiable maps. In fact,
Morse theory depends upon its failure! For example, consider the norm map
Φ : Rn → R;~v 7→ ||~v||. Then Φ−1(α) ∼= Sn−1 has the expected dimension
when α > 0, but Φ−1(0) = 0 is a point!
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Finally, we turn to the Hilbert polynomial of a projective variety.

Proof of Theorem 8.1 (a),(b) ⇔ (c): Let Y ⊆ CPn be a projective
variety of dimension d. Then by Proposition 8.2(d), we can find a chain of
projective varieties:

p = Z0 ⊂ ... ⊂ Zd = Y ⊂ Zd+1 ⊂ ... ⊂ Zn = CPn

where p ∈ Y is any point, and each Zi ⊂ Zi+1 has codimension 1. For each of
these inclusions, we can find a homogeneous polynomial Fi (of some degree)
such that Zi is a component of V (F i) ⊂ Zi+1, reasoning as in Remark (b).
Then in particular, F i is not a zero divisor in C[Zi+1], so by Exercise 2.1(b),
the Hilbert polynomials satisfy the inequality:

deg(HC[Zi](d)) ≤ deg(HC[Zi+1]/〈F i〉(d)) = deg(HC[Zi+1])− 1

The Hilbert polynomial of CPn has degree n and the Hilbert polynomial
of a point has degree 0, so it follows that the Hilbert polynomial of each Zi
has degree i, which agrees with the dimension.

Looking Ahead: We will think of a projective variety X ⊆ CPn as a
projective model for its field of rational functions. We’ve seen so far that
any two projective models X, Y of the same field admit birational maps
Φ : X−−> Y and Ψ : Y −−> X (Proposition 7.5) and then that there are open
subsets U ⊂ Y and V ⊂ X such that Φ : Φ−1(U)→ U and Ψ : Ψ−1(V )→ V
are isomorphisms (Proposition 8.5). So in particular, any two models of the
same field can be thought of as two different compactifications of a common
open set. We’ve also seen that the transcendence degree of a field can be
read off from either the Zariski topology or the Hilbert polynomial of any
projective model.

So this begs several questions. Among all the projective models of a field,
is there a “best” one (or ones)? Are there other numerical invariants of a
field that can be read off from geometric invariants of projective models? And
what is the significance of the coefficients of the Hilbert polynomial? The
leading coefficient is simple to understand...it is the number of intersection
points of X with a “general” projective plane in CPn of complementary di-
mension, and totally dependent upon the model. But the constant coefficient
is much more mysterious and “intrinsic” to the field.
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Exercises 8.

1. Use Krull’s theorem to prove that the image Φ(C2) of the blow-up map
Φ : C2 → C2; Φ(a, b) = (a, ab), with topology and sheaf induced from C2, is
not isomorphic to any quasi-projective variety.

2. If Φ : X → Y is dominant and Φ∗ : C(Y ) ↪→ C(Y ) is a finite extension,
find an open subset U ⊂ Y such that Φ|Φ−1(U) : Φ−1(U)→ U is a finite map.
(Hint: Look at the proof of Theorem 8.6 (c).)

3. (a) If Φ : CPn → Y is a regular map to any quasi-projective variety,
prove that either Φ is a constant map or else dim(Φ(CPn)) = n.

(b) Prove that CPm×CPn is not isomorphic, and not even homeomorphic
(in the Zariski topology) to CPm+n when both m,n ≥ 1.
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