Math 6140 Notes. Spring 2003.

11. Codimension One Phenomena. A property of the points of a variety X "holds in codimension one" if the locus of points for which the property fails to hold is contained in a closed subset $Z \subset X$ whose components all have codimension 2 or more. We'll see several examples of this:

- A normal variety X is non-singular in codimension 1 (Proposition 11.2).
- If X is normal then a rational map $\Phi: X-->\mathbf{P}^{n}$ is regular in codimension 1 (on X) (Proposition 11.3).
- If Y is nonsingular and $\Phi: X \rightarrow Y$ is a surjective birational regular map and an isomorphism in codim 1 , then Φ is an isomorphism (Prop 11.4)

Blowing up a point is a simple example of a surjective birational regular map which is not an isomorphism. We'll consider this in some detail.
Definition: If X is any variety and $Z \subset X$ is a closed subvariety, then the stalk of \mathcal{O}_{X} along Z is the ring:

$$
\mathcal{O}_{X, Z}:=\bigcup_{\{U \mid U \cap Z \neq \emptyset\}} \mathcal{O}_{X}(U) \subseteq \mathbf{C}(X)
$$

Examples: (a) $\mathcal{O}_{X, X}=\mathbf{C}(X)$
(b) If $Z=x \in X$, then $\mathcal{O}_{X, Z}=\mathcal{O}_{X, x}$ the stalk from $\S 9$.

Properties: This stalk shares many of the properties from $\S 9$.
(i) If $V \subset X$ is open and $V \cap Z \neq \emptyset$, then $\mathcal{O}_{X, Z}=\mathcal{O}_{V, V \cap Z}$.
(ii) Each $\mathcal{O}_{X, Z}$ is a local ring with maximal ideal:

$$
m_{Z}:=\left\{\phi \in \mathcal{O}_{X, Z} \mid \phi(Z) \equiv 0 \text { (where defined) }\right\}
$$

(iii) For each $\Phi: X \rightarrow Y$, let $W=\overline{\Phi(Z)} \subseteq Y$. Then there is a pull-back:

$$
\Phi^{*}: \mathcal{O}_{Y, W} \rightarrow \mathcal{O}_{X, Z} \text { with } \Phi^{*} m_{W} \subseteq m_{Z}
$$

(iv) If X is affine, let $I(Z) \subset \mathbf{C}[X]$ be the prime ideal of Z. Then:

$$
\mathcal{O}_{X, Z}=\mathbf{C}[X]_{I(Z)} \subset \mathbf{C}(X)
$$

Thus by the correspondence between prime ideals $\mathbf{C}[X]_{I(Z)}$ and prime ideals in $\mathbf{C}[X]$ contained in $I(Z)(\S 7)$ there is an inclusion-reversing bijection: $\left\{\right.$ prime ideals $\left.\mathcal{P} \subset \mathcal{O}_{X, Z}\right\} \leftrightarrow\{$ closed subvarieties W such that $Z \subseteq W \subseteq X\}$ and in particular $0 \leftrightarrow X$ and $m_{Z} \leftrightarrow Z$.

So if $\operatorname{cod}_{X}(Z)=1$, then $m_{Z} \subset \mathcal{O}_{X, Z}$ is the unique (non-zero) prime ideal!
As an example of rings with one non-zero prime ideal, consider:
Definition: If K is a field, a function $\nu: K^{*} \rightarrow \mathbf{Z}$ is a discrete valuation if:
(i) $\nu(a b)=\nu(a)+\nu(b)$ and
(ii) $\nu(a+b) \geq \min (\nu(a), \nu(b))$
for all $a, b \in K^{*}$. If ν is not the trivial (zero) valuation, then:

$$
A_{\nu}:=\left\{a \in K^{*} \mid \nu(a) \geq 0\right\} \cup\{0\}
$$

is the discrete valuation ring (or DVR) associated to the valuation ν.
Examples: (a) Fix a prime p. For $a \in \mathbf{Z}-\{0\}$, define

$$
\nu(a)=\text { the largest power of } p \text { dividing } a
$$

and $\nu\left(\frac{a}{b}\right)=\nu(a)-\nu(b)$ for $\frac{a}{b} \in \mathbf{Q}^{*}$. This is a discrete valuation and $A_{\nu}=\mathbf{Z}_{\langle p\rangle}$
(b) Fix a complex number $c \in \mathbf{C}$, and for non-zero $\phi \in \mathbf{C}(x)$ set:
$\nu(\phi)=$ the order of zero or pole (counted negatively) of ϕ at x
This is a discrete valuation and $A_{\nu}=\mathbf{C}[x]_{\langle x-c\rangle}$
(c) Again, for non-zero rational functions $\phi=\frac{f}{g} \in \mathbf{C}(x)$, let:

$$
\nu(\phi)=\operatorname{deg}(g)-\operatorname{deg}(f)
$$

This is a discrete valuation and $A_{\nu}=\mathbf{C}\left[x^{-1}\right]_{\left\langle x^{-1}\right\rangle}$.
Observations: (a) If a valuation isn't surjective, its image is $d \mathbf{Z}$ for some $d>0$, so we may as well divide through by d to get a surjective valuation.
(b) In a DVR A_{ν} (with surjective valuation ν), the (non-zero!) ideal:

$$
m:=\left\{a \in A_{\nu} \mid \nu(a)>0\right\} \subset A_{\nu}
$$

is principal, generated by any element $\pi \in A_{\nu}$ satisfying $\nu(\pi)=1$. Such an element is called a uniformizing parameter. Note that $m=\langle\pi\rangle$ is the unique (non-zero) prime ideal since every ideal in A_{ν} is one of:

$$
m^{n}=\left\langle\pi^{n}\right\rangle=\{a \in A \mid \nu(a) \geq n\}
$$

for a uniquely determined n. Thus, in particular a DVR is always Noetherian and is a UFD (the factorization is $b=u \pi^{n}$ for unit u and unique n).

Proposition 11.1: Suppose A is a (local) Noetherian domain with a unique non-zero prime ideal $m \subset A$. Then:
(a) For any $f \in m$, the ring A_{f} is the field of fractions $K=K(A)$.
(b) If $I \subset A$ is any (non-zero) proper ideal, then $\sqrt{I}=m$.
(c) For each proper ideal $I \subset A$, there is a unique $n>0$ such that:

$$
m^{n} \subseteq I \text { but } m^{n-1} \nsubseteq I
$$

(d) If A is also integrally closed, then A is a DVR.

Proof: (a) A_{f} is a domain, and its prime ideals correspond to the prime ideals in A that do not contain f. Only the zero ideal has this property, so A_{f} has no non-zero primes, hence the zero ideal is maximal and $A_{f}=K$.
(b) Suppose $f \in m$ is arbitrary, and $b \in A$. Then $b^{-1}=\frac{a}{f^{n}} \in K$ by (a), so $a b=f^{n}$ for some n. In other words, $f \in \sqrt{\langle b\rangle}$ for all $f \in m$ and $b \in A$. So $m \subseteq \sqrt{I}$ for all ideals I and then $m=\sqrt{I}$ unless $\sqrt{I}=I=A$.
(c) It suffices to show that $m^{n} \subseteq I$ for some n. But this follows from (b). That is, if $\left\langle a_{1}, \ldots, a_{k}\right\rangle=m=\sqrt{I}\left(A\right.$ is Noetherian!), then there are n_{1}, \ldots, n_{k} such that each $a_{i}^{n_{i}} \in I$, and then we may let $n=1+\sum\left(n_{i}-1\right)$ to ensure that $m^{n} \subseteq I$.
(d) Assume A is integrally closed. We'll first prove that m is principal. Pick an $a \in m$, and find n from (c) so that $m^{n} \subseteq\langle a\rangle$ but $m^{n-1} \nsubseteq\langle a\rangle$. Now choose $b \in m^{n-1}-\langle a\rangle$ and consider $\phi=\frac{b}{a} \in K$ (the field of fractions of A). By the choice of a and b, we know that $\phi \notin A$. On the other hand, $\phi m \subseteq A$ since $b \in m^{n-1}$ and $m^{n} \subseteq\langle a\rangle$. But $\phi m \nsubseteq m$, since if it were, we'd have:

$$
A[\phi] \hookrightarrow m[\phi]=m ; \sum \alpha_{i} \phi^{i} \mapsto \sum a \alpha_{i} \phi^{i}
$$

an inclusion of A-modules and since A is integrally closed, $A[\phi]$ is not finitely generated, so this would violate Noetherianness of A. Thus there is a unit $u \in A$ and $\pi \in m$ such that $\phi \pi=u$. But now for any $a \in m$, we have $\phi a=a^{\prime} \in A$, so $a=a^{\prime} \phi^{-1}=\left(a^{\prime} u^{-1}\right) \pi$. So $m=\langle\pi\rangle$.

Now let's define the valuation. If $a \in A$, then either a is a unit or $a \in m$. In the latter case, we can write $a=\pi a_{1}$, and repeat the question of a_{1}. This gives an ascending chain of ideals:

$$
\langle a\rangle \subset\left\langle a_{1}\right\rangle \subset\left\langle a_{2}\right\rangle \subset \ldots
$$

that eventually stabilizes since A is Noetherian.

But this can only happen if $\left\langle a_{n}\right\rangle=A$ (since $\left.\pi^{-1} \notin A\right)$. Thus a_{n} is a unit, and we can write:

$$
a=\pi^{n} a_{n}=u \pi^{n}
$$

and the value of n in this expression is evidently unique. Thus we may define: $\nu\left(u \pi^{n}\right)=n$ and extend to a valuation on K^{*} with the desired $A=A_{\nu}$.
Proposition 11.2: A normal variety is non-singular in codimension 1.
Proof: Since the non-singular points of any variety are open (Prop 10.1) it suffices to show that given a normal variety X, there is no codimension 1 closed subvariety $Z \subset X$ such that $Z \subseteq \operatorname{Sing}(X)$.

For this, we may assume X is affine, so $\mathbf{C}[X]$ is integrally closed and then for any closed subvariety $Z \subset X$:

$$
\mathcal{O}_{X, Z}=\mathbf{C}[X]_{I(Z)} \subset \mathbf{C}(X)
$$

is also integrally closed (see Proposition 9.4). When Z has codimension 1, this is a Noetherian ring with a unique prime, so by Proposition 11.1, the ring $\mathcal{O}_{X, Z}$ is a DVR. In that case, let $\pi \in m_{Z}$ be a uniformizing parameter. Then $\pi \in \mathcal{O}_{X}(U)$ for some $U \cap Z \neq \emptyset$, and by shrinking U if necessary, we obtain an open subset $V \subset X$ such that:

- $V=U_{f} \subset X$ is a basic open set (hence an affine variety)
- $V \cap Z \neq \emptyset$
- $I(V \cap Z)=\langle\pi\rangle \subset \mathbf{C}[V]$

So let's replace X by V and Z by $Z \cap V$. Here's the main point. If $z \in Z$ and the images of $f_{1}, \ldots, f_{m} \in \mathbf{C}[X]$ under the map $\mathbf{C}[X] \rightarrow \mathbf{C}[Z] \rightarrow \mathcal{O}_{Z, z}$ are a basis for the Zariski cotangent space $T_{z}^{*} Z=m_{z} / m_{z}^{2}$ of Z at z, then because $I(Z)=\langle\pi\rangle$ it follows that $\mathcal{O}_{Z, z}=\mathcal{O}_{X, z} / \pi$ and so the images of $f_{1}, \ldots, f_{m}, \pi$ under $\mathbf{C}[X] \rightarrow \mathcal{O}_{X, z}$ also span the Zariski tangent space $T_{z}^{*} X$ of X at z.

In other words, the dimensions of the Zariski tangent spaces satisfy:

$$
\operatorname{dim}\left(\mathcal{O}_{X, z}\right) \leq \operatorname{dim}\left(\mathcal{O}_{Z, z}\right)+1
$$

But if $z \in Z$ is a non-singular point of Z, then $\operatorname{dim}\left(\mathcal{O}_{Z, z}\right)=\operatorname{dim}(Z)$ and then the inequality above is an equality since $\operatorname{dim}(X)=\operatorname{dim}(Z)+1$ and $z \in X$ is also a non-singular point of X. Since there is a nonempty open set of nonsingular points in Z, it follows that $Z \not \subset \operatorname{Sing}(X)$, as desired.

Proposition 11.3: If $\Phi: X-->\mathbf{C P}^{n}$ is a rational map and X is normal, then Φ is regular in codimension 1.

Proof: Recall that if $X \subset \mathbf{C P}^{m}$ then in a neighborhood of of each point $p \in X$ in the domain of X we can write $\Phi=\left(F_{0}: \ldots: F_{n}\right)$ for some d and $F_{i} \in \mathbf{C}\left[x_{0}, \ldots, x_{m}\right]_{d}$ and conversely, so in particular, the domain of Φ is open. Thus to prove Φ is regular in codimension 1 , we only have to prove that Φ is regular at some point $p \in Z$ of each codimension 1 closed subvariety $Z \subset X$.

By Proposition 11.1 each $\mathcal{O}_{X, Z}=\mathbf{C}(X)_{\nu}$ for some valuation ν on $\mathbf{C}(X)^{*}$. Consider now the valuations of the ratios:

$$
\nu\left(\frac{F_{i}}{F_{j}}\right) \in \mathbf{C}(X) \text { for some expression } \Phi=\left(F_{0}: \ldots: F_{n}\right)
$$

valid near some point of X. If we choose $\nu\left(\frac{F_{i_{0}}}{F_{j_{0}}}\right)$ minimal (certainly negative!), then since they satisfy: $\nu\left(\frac{F_{i_{0}}}{F_{j_{0}}}\right)+\nu\left(\frac{F_{i}}{F_{i_{0}}}\right)=\nu\left(\frac{F_{i}}{F_{j_{0}}}\right) \geq \nu\left(\frac{F_{i_{0}}}{F_{j_{0}}}\right)$, each $\nu\left(\frac{F_{i}}{F_{i_{0}}}\right) \geq 0$. Thus the components of the rational map:

$$
\Phi: X-->\mathbf{C}^{n} \cong U_{i_{0}} \subseteq \mathbf{C P}^{n} ; p \mapsto\left(\frac{F_{0}}{F_{i_{0}}}, \ldots, \frac{F_{n}}{F_{i_{0}}}\right)
$$

are all in $\mathcal{O}_{X, Z}$, so for some open subset $U \subset X$ with $U \cap Z \neq \emptyset$, each component belongs to U, and then Φ is regular all along U, as desired.

Example: Consider the map to the line through the origin:

$$
\pi: \mathbf{C}^{2}-->\mathbf{C P}^{1} ;(x, y) \mapsto(x: y)
$$

As we've seen, this cannot be extended to a regular map across $(0,0)$. But if we restrict this to the (nonsingular) curve $C=V\left(y^{2}-x(x-1)(x-\lambda)\right.$):

$$
\left.\pi\right|_{C}: C \rightarrow \mathbf{C P}^{1}
$$

becomes regular across $(0,0)$. That's because (as in the Proposition):

$$
x=\frac{y^{2}}{(x-1)(x-\lambda)}
$$

in a neighborhood of $(0,0)$, and then in that neighborhood:

$$
\pi(x, y)=\left(\frac{y^{2}}{(x-1)(x-\lambda)}: y\right)=\left(\frac{y}{(x-1)(x-\lambda)}: 1\right)
$$

so $\pi(0,0)=(0: 1)$ (the vertical tangent line!). Notice that we couldn't do this if $\lambda=0$, but in that case C is singular at $(0,0)$.

Remark: Putting Propositions 11.2 and 11.3 together in dimension 1 gives a very striking result. Namely, if $X \subset \mathbf{C P}^{n}$ is any quasi-projective variety of dimension 1 (i.e. a curve), let C be the normalization of the closure of X. Then C is a non-singular (Proposition 11.2) projective curve with:

$$
\mathbf{C}(C) \cong \mathbf{C}(X)
$$

Moreover, if C^{\prime} is any other non-singular projective curve with:

$$
\mathbf{C}\left(C^{\prime}\right) \cong \mathbf{C}(C)
$$

then the associated birational map:

$$
\Phi: C-->C^{\prime}
$$

is an isomorphism(!) (by Proposition 11.3 applied to Φ and Φ^{-1}). Thus up to isomorphism, there is only one non-singular projective curve with a given field of rational functions. Moreover, if: $\mathbf{C}(C) \subset \mathbf{C}\left(C^{\prime \prime}\right)$ is an inclusion of such fields, then again by Proposition 11.3, the associated rational map:

$$
\Phi: C^{\prime \prime} \rightarrow C
$$

is actually regular, so the field inclusions correspond to (finite) maps of the non-singular projective "models" of the fields. We will study more properties of non-singular projective curves later.
Proposition 11.4: If $\Phi: X \rightarrow Y$ is a birational surjective regular map and Y is non-singular, then if Φ is not an isomorphism, it is also not an isomorphism in codimension 1.

Proof: If Φ is not an isomorphism, let $q \in Y$ be a point where Φ^{-1} is not defined and let $p \in \Phi^{-1}(q)$ (if Φ^{-1} were defined everywhere, then it would be a regular inverse of $\Phi!$). Consider affine neighborhoods $q \in V$ and $p \in U \subset \Phi^{-1}(V)$, and let $U \subset \mathbf{C}^{n}$ be a closed embedding. Then locally:

$$
\Phi^{-1}=\left(\phi_{1}, \ldots, \phi_{n}\right): V-->U \subset \mathbf{C}^{n}
$$

and to say that $\Phi^{-1}(q)$ is not defined is to say that some $\phi=\phi_{i} \notin \mathcal{O}_{Y, q}$. But we've proved that $\mathcal{O}_{Y, q}$ is a UFD in $\S 10$, so we can write $\phi=\frac{f}{g}$ in lowest terms, with $f, g \in \mathcal{O}_{Y, q}$. When we pull back: $\Phi^{*}(\phi)=x_{i} \in \mathbf{C}[U]$ is the i th coordinate function, so:

$$
\Phi^{*}(f)=x_{i} \Phi^{*}(g) \in \mathcal{O}_{X, p}
$$

and we can shrink V (and U) further so that $f, g \in \mathbf{C}[V]$.

Consider the hypersurface $V\left(\Phi^{*}(g)\right) \subset U$. We know $p \in V\left(\Phi^{*}(g)\right)$ since otherwise $g(q) \neq 0$ would give $\frac{f}{g} \in \mathcal{O}_{Y, q}$. Each component $Z \subset V\left(\Phi^{*}(g)\right)$ (containing p) has codimension 1 in U by Krull's Principal Ideal Theorem. On the other hand, the image:

$$
\Phi(Z) \subset V(f) \cap V(g)
$$

must have codimension ≥ 2 in V. That's because if we write:

$$
g=u g_{1} \cdots g_{n}
$$

as a product of irreducibles (and shrink V again so that each $\left.g_{i} \in \mathbf{C}[V]\right)$ then the $V\left(g_{i}\right)$ are the irreducible components of $V(g)$ and $f \notin\left(g_{i}\right)=I\left(V\left(g_{i}\right)\right)$ so $V(f) \cap V\left(g_{i}\right) \neq V\left(g_{i}\right)$, and $V(Z)$ is contained in one of these.

Finally, by the theorem on the dimension of the fibers of a regular map, we see that since $\operatorname{dim}(Z)>\operatorname{dim}(\Phi(Z))$, it follows that every $z \in Z$ is contained in a fiber of Φ of dimension ≥ 1, so Φ is not an isomorphism anywhere on Z.

We've actually shown that the set of points $p \in X$ where Φ fails to be an isomorphism is a union of codimension 1 subvarieties of X. This is called the exceptional locus of the birational map Φ.
Moral Example: It's time you saw the Cremona transformation:

$$
\Phi: \mathbf{C P}^{2}-->\mathbf{C P}^{2} ;(x: y: z) \mapsto\left(\frac{1}{x}: \frac{1}{y}: \frac{1}{x}\right)=(y z: x z: x y)
$$

By Proposition 11.3, this is regular in codimension 1, and indeed it is:

$$
\operatorname{domain}(\Phi)=\mathbf{C} \mathbf{P}^{2}-\{(0: 0: 1),(0: 1: 0),(1: 0: 0)\}
$$

Note that $\Phi^{2}=\mathrm{id}$, but the exceptional locus of Φ are $V(x) \cup V(y) \cup V(z)$ (this is only morally an example, since Φ isn't regular and it isn't surjective).
Main Example: If X is non-singular, then any rational map:

$$
\Phi: X-->\mathbf{C P}^{n}
$$

gives rise to a birational, surjective regular projection $\sigma=\pi_{1}: \bar{\Gamma}_{\Phi} \rightarrow X$ from the closure of the graph of Φ (in $X \times \mathbf{C P}^{n}$) to X. Evidently, σ restricts to an isomorphism from Γ_{Φ} to the domain of Φ, and the Proposition tells us that the exceptional set of σ is a union of codimsion 1 subvarieties, which is to say that the "boundary" $\bar{\Gamma}_{\Phi}-\Gamma_{\Phi}$ is a union of codimension 1 subvarieties mapping to the "indeterminate locus" $X-\operatorname{dom}(\Phi)$ of the rational map Φ.

The simplest instance of this is:
The Blow up of a point in \mathbf{C}^{n} : Consider the rational map:

$$
\Phi: \mathbf{C}^{n}-->\mathbf{C P}^{n-1} ; \quad \Phi\left(p_{1}, \ldots, p_{n}\right)=\left(p_{1}: \ldots: p_{n}\right)
$$

In other words, Φ maps a point $p \in \mathbf{C}^{n}$ (other than the origin) to the point in projective space corresponding to the line through p and the origin. Then:

$$
b l_{0}\left(\mathbf{C}^{n}\right):=\bar{\Gamma}_{\Phi}=\Gamma_{\Phi} \cup\left(\{0\} \times \mathbf{C P}^{n-1}\right)
$$

because $\sigma^{-1}(0) \subseteq\left(\{0\} \times \mathbf{C P}^{n-1}\right)$ is required to have codimension 1 in $b l_{0}\left(\mathbf{C}^{n}\right)$ (which has dimension n). This exceptional variety "nicely" fits with Γ_{Φ} :
Proposition 11.5: $b l_{0}\left(\mathbf{C}^{n}\right) \subset \mathbf{C}^{n} \times \mathbf{C P}^{n-1}$ is:
(a) non-singular and
(b) given by explicit equations (which we give in the proof).
(σ is sometimes called a blow-down, σ-process or monoidal transformation)
Proof: Consider the ring $\mathbf{C}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$ graded by degree in y, as in the proof of Proposition 6.7. We've seen that the closed subsets of $\mathbf{C}^{n} \times \mathbf{C P}^{n-1}$ are all of the form $V(I)$ for homogeneous ideals I. Then:

$$
b l_{0}\left(\mathbf{C}^{n}\right)=V:=V\left(\left\langle x_{i} y_{j}-x_{j} y_{i}\right\rangle\right)
$$

since this contains Γ_{Φ} (and no other points over $0 \neq p \in \mathbf{C}^{n}$) and is closed and irreducible. Note that V does contain $0 \times \mathbf{C P}{ }^{n-1}$, as we proved it must(!) We see that V is irreducible and nonsingular by covering it with open affine subsets. Namely, let $U_{i}=\mathbf{C}^{n} \times\left(\mathbf{C} \mathbf{P}^{n-1}-V\left(y_{i}\right)\right)$. Then:

$$
\mathbf{C}\left[U_{i}\right] / I\left(V \cap U_{i}\right) \cong \mathbf{C}\left[x_{1}, \ldots, x_{n}, \frac{y_{1}}{y_{i}}, \ldots, \frac{y_{n}}{y_{i}}\right] /\left\langle x_{i}\left(\frac{y_{j}}{y_{i}}\right)-x_{j}, \ldots, x_{k}\left(\frac{y_{j}}{y_{i}}\right)-x_{j}\left(\frac{y_{k}}{y_{i}}\right)\right\rangle
$$

but all relations follow from the first ones, solving $x_{j}=x_{i} \frac{y_{j}}{y_{i}}$ so this ring is a domain, $V \cap U_{i} \subset U_{i}$ is closed and irreducible, and:

$$
\mathbf{C}\left[U_{i}\right] / I\left(V \cap U_{i}\right)=\mathbf{C}\left[V \cap U_{i}\right] \cong \mathbf{C}\left[x_{i}, \frac{y_{1}}{y_{i}}, \ldots, \frac{y_{n}}{y_{i}}\right]
$$

so that $b l_{0}\left(\mathbf{C}^{n}\right) \cap U_{i}=V \cap U_{i} \cong \mathbf{C}^{n}$ is, in particular, nonsingular!
Remark: $b l_{0}\left(\mathbf{C}^{n}\right)$ defined above is not an affine variety, since there is a closed embedding $\mathbf{C P} \mathbf{P}^{n-1} \hookrightarrow b l_{0}\left(\mathbf{C}^{n}\right)$. It is quasi-projective, of course, as it sits inside $\mathbf{C}^{n} \times \mathbf{C P}^{n-1}$ as a (non-singular) closed subvariety.

First Generalization: Blowing up a point in $\mathbf{C P}^{n}$. Consider

$$
\pi: \mathbf{C P}^{n}-->\mathbf{C P}^{n-1}
$$

the projection from a point $p \in \mathbf{C P}^{n}$. With suitable basis, we can assume $p=0 \in \mathbf{C}^{n} \subset \mathbf{C P}{ }^{n}$. It follows that:

$$
b l_{p}\left(\mathbf{C P}^{n}\right):=\bar{\Gamma}_{\pi} \subset \mathbf{C P}^{n} \times \mathbf{C P}^{n-1}
$$

is a non-singular projective variety, with open (not affine!) cover given by:

$$
b l_{p}\left(\mathbf{C P}^{n}\right)=b l_{0}\left(\mathbf{C}^{n}\right) \cup\left(\mathbf{C P}^{n}-p\right)
$$

and these open sets patch by the projection $\sigma: \Gamma_{\pi} \xrightarrow{\sim} \mathbf{C P}^{n}-p$.
That was the easy generalization. Next:
Proposition 11.6: If $X \subset \mathbf{C P}^{n}$ is an embedded variety (maybe singular) of dimension m and $p \in X$ is a (maybe singular) point, then the variety:

$$
b l_{p}(X):=\bar{\Gamma}_{\left.\pi\right|_{X}}=\Gamma_{\left.\pi\right|_{X}} \cup P C_{p} X \subset b l_{p}\left(\mathbf{C P}^{n}\right)
$$

where $P C_{p} X \subset\{p\} \times \mathbf{C P}^{n-1}$ is the "projectivized tangent cone" of X at p. If p is nonsingular then $P C_{p}(X) \subset \mathbf{C P}^{n-1}$ is naturally identified with the projective tangent space to X at p, and $b l_{p}(X)$ is nonsingular along $P C_{p}(X)$.

Proof: Let $Y=X \cap \mathbf{C}^{n}$ for $p=0 \in \mathbf{C}^{n} \subset \mathbf{C P}^{n}$ as above. It follows from Proposition 11.5 that the blow-up of Y at p is the unique component:

$$
b l_{p}(Y) \subset V\left(\left\langle x_{i} y_{j}-x_{j} y_{i}, f\left(x_{1}, \ldots, x_{n}\right)\right)|f \in I(Y)\rangle\right)
$$

containing the graph of $\left.\pi\right|_{Y}: Y-->\mathbf{C P}^{n-1}$. This is covered by:

$$
b l_{p}(Y) \cap U_{i} \subset V\left(\left\langle f\left(x_{i} \frac{y_{1}}{y_{i}}, \ldots, x_{i} \frac{y_{n}}{y_{i}}\right)\right\rangle\right) \subset \mathbf{C}^{n}=b l_{p}\left(\mathbf{C}^{n}\right) \cap U_{i}
$$

Expand f as a sum of homogeneous polynomials $f=f_{d_{0}}+f_{d_{0}+1}+\ldots f_{d}$. with $f_{d_{0}} \neq 0$. Since $0 \in Y$ we have $d_{0} \geq 1$ and then:

$$
f\left(x_{i} \frac{y_{1}}{y_{i}}, \ldots, x_{i} \frac{y_{n}}{y_{i}}\right)=x_{i}^{d_{0}}\left(f_{d_{0}}\left(\frac{y_{1}}{y_{i}}, \ldots, \frac{y_{n}}{y_{i}}\right)+x_{i} f_{d_{0}}\left(\frac{y_{1}}{y_{i}}, \ldots, \frac{y_{n}}{y_{i}}\right)+\ldots\right)
$$

gives:

$$
V\left(\left\langle f\left(x_{i} \frac{y_{1}}{y_{i}}, \ldots, x_{i} \frac{x_{n}}{x_{i}}\right)\right\rangle\right)=V\left(x_{i}\right) \cup V\left(\left\langle\frac{f\left(x_{i} \frac{y_{1}}{y_{i}}, \ldots, x_{i} \frac{y_{n}}{y_{i}}\right)}{x_{i}^{d_{0}}}\right\rangle\right)
$$

Consider the inclusion of polynomial rings (with $z_{j}=\frac{y_{j}}{y_{i}}$ for convenience):
$A=\mathbf{C}\left[x_{i} z_{1}, \ldots, x_{i} z_{i-1}, x_{i}, x_{i} z_{i+1}, \ldots, x_{i} z_{n}\right] \subset \mathbf{C}\left[z_{1}, \ldots, z_{i-1}, x_{i}, z_{i+1}, \ldots, z_{n}\right]=B$
The ideal $P=\left\{f\left(x_{i} z_{1}, \ldots, x_{i} z_{n}\right) \mid f \in I(Y)\right\} \subset A$ is prime by assumption, and the ideal $Q=\left\langle\left.\frac{1}{x_{i}^{d_{0}}} f\left(x_{i} z_{1}, \ldots, x_{i} z_{n}\right) \right\rvert\, f \in I(Y)\right\rangle \subset B$ is equal to $P_{x_{i}} \cap B$ for the natural inclusion $B \subset A_{x_{i}}$. So it is prime, too.

Since $V\left(x_{i}\right)=\pi_{1}^{-1}(0) \subset \mathbf{C}^{n} \times \mathbf{C P}^{n-1}$ and $V(Q)$ is irreducible, we get:
$b l_{p}(Y) \cap U_{i}=V(Q)$ and $\sigma^{-1}(0) \cap U_{i}=V(Q) \cap V\left(x_{i}\right)=V\left(\left\langle f_{d_{0}}\left(\frac{y_{1}}{y_{i}}, \ldots, \frac{y_{n}}{y_{i}}\right)\right\rangle\right)$
Thus $\sigma^{-1}(0)=V\left(\left\langle f_{d_{0}}\left(y_{1}, \ldots, y_{n}\right)\right\rangle\right)=: P C_{p} X \subset \mathbf{C P}^{n-1}$ is the projectivized tangent cone to Y (or X) at p. To repeat, the $f_{d_{0}}\left(x_{1}, \ldots, x_{n}\right)$ are the leading terms in the Taylor polynomials at p of the equations of $Y \subset \mathbf{C}^{n}$.

For the last part, notice that if $F \in I(X)$ and $f=F\left(1, x_{1}, \ldots, x_{n}\right) \in I(Y)$ then

$$
f_{1}=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(p) x_{i}=\sum_{i=1}^{n} \frac{\partial F}{\partial x_{i}}(p) x_{i} \text { (up to a scalar) }
$$

But

$$
V\left(\sum_{i=0}^{n} \frac{\partial F}{\partial x_{i}}(p) x_{i}\right)=\pi\left(V\left(\sum_{i=0}^{n} \frac{\partial F}{\partial x_{i}}(p) x_{i}\right)\right)
$$

from which it follows that $P C_{p}(X) \subseteq \pi\left(\Theta_{p}\right)$ (see Exercise 10.5). But if p is a nonsingular point, then $\left.\pi\left(\Theta_{p}\right)\right) \cong \mathbf{C P}{ }^{m-1}$ so $P C_{p}(X)=\pi\left(\Theta_{p}\right)$ since they have the same dimension! Finally, if p is non-singular, then:

$$
\left\langle x_{i}\right\rangle=\left\langle x_{1}, \ldots, x_{n}, \left.f_{1}\left(\frac{y_{1}}{y_{i}}, \ldots, \frac{y_{n}}{y_{i}}\right) \right\rvert\, f \in I(Y)\right\rangle=I\left(P C_{p}(X) \cap U_{i}\right)
$$

so the ideal of the non-singular subvariety $P C_{p}(X) \cap U_{i} \subset b l_{p}(Y) \cap U_{i}$ is generated by x_{i}, and then as in the proof of Proposition 11.1, it follows that $b l_{p}(Y)$ is non-singular along $P C_{p}(X)$.
Examples: (a) If $Y=V\left(y^{2}-x^{2}+x^{3}\right) \subset \mathbf{C}^{2}$ is the nodal cubic, then:

$$
b l_{0}(Y)=V\left(y-x \frac{y_{2}}{y_{1}},\left(\frac{y_{2}}{y_{1}}\right)^{2}-1+x\right) \cup V\left(x-y \frac{y_{1}}{y_{2}}, 1-\left(\frac{y_{1}}{y_{2}}\right)^{2}+y\left(\frac{y_{1}}{y_{2}}\right)^{3}\right)
$$

is non-singular (the first open set is a parabola!), and:

$$
P C_{p}(Y)=V\left(y^{2}-x^{2}\right)=(0: 1) \cup(1: 0) \subset \mathbf{C} \mathbf{P}^{1} \text { consists of two points }
$$

(b) If $Y=V\left(y^{2}-x^{5}\right)$, then:

$$
b l_{0}(Y)=V\left(y-x \frac{y_{2}}{y_{1}},\left(\frac{y_{2}}{y_{1}}\right)^{2}-x^{3}\right) \cup V\left(x-y \frac{y_{1}}{y_{2}}, 1-y^{3}\left(\frac{y_{1}}{y_{2}}\right)^{5}\right)
$$

and this is singular at the exceptional locus:

$$
P C_{p}(Y)=V\left(y^{2}\right)=(1: 0) \in \mathbf{C P}^{1}
$$

Notice that $P C_{p}(Y)$ is a single point (evidently nonsingular) but $b l_{0}(Y)$ is singular at this point. This is no contradiction since the ideal of the point is not given by a single equation!
Final Remark: We can view the blow-up $b l_{p}(X)$ as a surgery, removing the point $p \in X$ and replacing it with the codimension 1 projectivized tangent cone $P C_{p}(X) \subset b l_{p}(X)$. We can ask whether blowing up X along an isolated singular point $p \in X$ "improves" X, in the sense that $b l_{p}(X)$ is less singular than X was. The situation is somewhat complicated in dimension ≥ 3, but in dimension 2 , the answer is yes. That is, if we start with an arbitrary projective surface X and normalize, then by Proposition 11.2, the resulting normal surface S has only finitely many (isolated) singularities, and then blowing up these singularities (and any singularities that occur in the exceptional loci) will eventually produce a non-singular projective surface S_{n} :

$$
S_{n}=b l_{p_{n}}\left(S_{n-1}\right) \rightarrow S_{n-1}=b l_{p_{n-1}}\left(S_{n-2}\right) \rightarrow S_{1}=\cdots b l_{p_{1}}(S) \rightarrow S
$$

Similarly, if $\Phi: S-->S^{\prime}$ is a rational map of normal projective surfaces, then by Proposition 11.3, the indeterminacy locus of Φ is a finite set of points, and it is also true that after finitely many blow-ups, we obtain a regular map:

Thus with the assistance of blow-ups at points, the situation is somewhat similar (but more complicated) than the situation for curves.

Exercises 11.

1. If X is a normal variety, let:

$$
\operatorname{Div}(X)=\bigoplus_{\operatorname{cod} 1 \text { irred } V \subset X} \mathbf{Z}[Z]
$$

i.e. $\operatorname{Div}(X)$ is the free abelian group generated by the codimension 1 closed subvarieties of X. Prove that there is a well-defined homomorphism:

$$
\operatorname{div}: \mathbf{C}(X)^{*} \rightarrow \operatorname{Div}(X) ; \operatorname{div}(\phi)=\sum_{V} \nu_{Z}(\phi)
$$

where ν_{Z} is the discrete valuation defining $\mathcal{O}_{X, Z}$. Identify the kernel of div and prove that if X is an affine variety, then:

$$
\mathbf{C}[X] \text { is a UFD } \Leftrightarrow \text { div is surjective }
$$

(the quotient $\operatorname{Div}(X) / \operatorname{div}\left(\mathbf{C}(X)^{*}\right)$ is called the "class group" of X).
2. Consider the projection from $p=(1: 0: 0: 0)$:

$$
\pi: \mathbf{C} \mathbf{P}^{1} \times \mathbf{C P}^{1}=V(x w-y z)-->\mathbf{C P}^{2} ; \quad(a: b: c: d) \mapsto(b: c: d)
$$

Prove that $b l_{p}\left(\mathbf{C P}^{1} \times \mathbf{C P}{ }^{1}\right)$ is isomorphic to the "compound" blowup:

$$
X:=b l_{\sigma^{-1}(0: 1: 0)}\left(b l_{(1: 0: 0)}\left(\mathbf{C P}^{2}\right)\right)
$$

(this is the blow-up of $\mathbf{C P}{ }^{2}$ at the two points $(0: 1: 0)$ and $\left.(1: 0: 0)\right)$.
3. If $X=\overline{C(V)} \subset \mathbf{P C}^{n}$ is the projective cone over $V \subset \mathbf{C P}^{n-1}$, show that

$$
P C_{p}(X)=V
$$

where $p=0 \in \mathbf{C}^{n} \subset \mathbf{C P}^{n}$ is the vertex of the cone and show that:

$$
\pi_{2}: b l_{p}(X) \rightarrow \mathbf{C P}^{n-1}
$$

has fibers isomorphic to $\mathbf{C P}{ }^{1}$. In fact, find isomorphisms:

$$
b l_{p}(X) \cap U_{i} \cong \mathbf{C P}^{1} \times\left(X-V\left(x_{i}\right)\right)
$$

