
Math 6130 Notes. Fall 2002.

3. Affine Varieties. These are geometric objects associated to the domains:

C[x1, ..., xn]/P

that define “local” complex algebraic geometry.

Definition: (a) A subset V ⊆ Cn is an algebraic set if there is an ideal
I ⊆ C[x1, ..., xn] for which V = V (I) (see Corollary 1.4).

(b) An ideal I ⊆ C[x1, ..., xn] is radical if I =
√
I (see Corollary 1.4).

Proposition 3.1: (a) Every algebraic set V ⊆ Cn is the zero locus:

V = {f1(x1, ..., xn) = f2(x1, ..., xn) = ... = fm(x1, ..., xn) = 0}

of a finite set of polynomials f1, ..., fm ∈ C[x1, ..., xn].

(b) The maps V 7→ I(V ) and I 7→ V (I) of Corollary 1.4 give a bijection:

{algebraic subsets V ⊆ Cn} ↔ {radical ideals I ⊆ C[x1, ..., xn]}

(c) A topology on Cn, called the Zariski topology, results when:

U ⊆ Cn is open ⇔ Z := Cn − U is an algebraic set

Proof: For (a), note that if I = 〈f1, ..., fm〉, then

V (I) = {f1(x1, ..., xn) = f2(x1, ..., xn) = ... = fm(x1, ..., xn) = 0}

and every ideal is generated by finitely many fi by the Basis Theorem.

For (b), recall that Corollary 1.4 of the Nullstellensatz tells us that:

I(V (I)) =
√
I

so I(V (I)) = I if I is a radical ideal. Since V (I) = V (
√
I) and

√√
I =
√
I, it

follows that any algebraic set is V (I) for a radical ideal I, hence the bijection.

Finally, for (c), we need the following properties, which are easily checked:

(i) ∅ = V (〈1〉) and Cn = V (〈0〉) are closed.

(ii) If V1 = V (I1) and V2 = V (I2), then V1 ∪ V2 = V (I1I2) is closed.

(iii) If Vλ = V (Iλ) for λ ∈ Λ, then ∩λ∈ΛVλ = V (
∑
λ∈Λ Iλ) is closed.
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Remark: The bijection of (b) is “inclusion reversing,” i.e.

V1 ⊆ V2 ⇔ I(V1) ⊇ I(V2)

as is easily checked from the definition.

Definition: A closed set Z ⊆ Cn is irreducible if there is no pair of proper
closed subsets Z1, Z2 ⊂ Z with the property that Z = Z1 ∪ Z2.

Proposition 3.2: Features of the Zariski topology include the following:

(a) Every descending chain of closed sets: Cn ⊇ Z1 ⊇ Z2 ⊇ ... stabilizes.

(b) Every non-empty open subset U ⊆ Cn is dense.

(c) In the correspondence of Proposition 3.1(b), the irreducible algebraic
sets correspond to prime ideals.

(d) Every closed set Z ⊆ Cn is a finite union of irreducible closed subsets.

Proof: Part (a) follows from the bijection of Proposition 3.1(b), since as-
cending chains of radical ideals in C[x1, ..., xn] stabilize (Proposition 1.1(a)).

Part (b) is just a restatement of the assertion that Cn itself is irreducible
(if U weren’t dense, then U ∪ (Cn−U) = Cn so Cn wouldn’t be irreducible,
and if Cn = Z1 ∪ Z2, then U = Cn − Z1 ⊂ Z2 wouldn’t be dense!) Since Cn

corresponds to the zero ideal under the bijection of Proposition 3.1(b), this
will follow from (c).

As for (c), suppose Z is a closed set. If I := I(Z) isn’t prime, then there
are f, g 6∈ I such that fg ∈ I, and then Z1 := V (〈f〉+I) and Z2 := V (〈g〉+I)
satisfy: Z1∪Z2 = V ((〈f〉+I)(〈g〉+I)) = Z showing that Z isn’t irreducible.
On the other hand, if Z isn’t irreducible, then write Z = Z1 ∪ Z2 and let
f ∈ I(Z1)− I, g ∈ I(Z2)− I, and then fg ∈ I shows that I isn’t prime.

Finally, if some closed set Z ⊆ Cn were not a finite union of irreducible
closed subsets, we could express Z = Z1 ∪ Z ′1 as a union of proper closed
sets such that one (or both) of them, say Z1, is also not a finite union of
irreducibles. But then Z1 = Z2 ∪ Z ′2 decomposes in the same way, and we
obtain inductively a chain of closed sets:

Cn ⊃ Z ⊃ Z1 ⊃ Z2 ⊃ ...

that never stabilizes, in violation of (a).
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Remark: The irreducible closed subsets Zi in the finite union from (d):

Z = Z1 ∪ ... ∪ Zm
are unique (up to permutation) and are the (irreducible) components of Z.

Example: A hypersurface is the zero locus of one non-zero polynomial:

V (f) = {(a1, ..., an) ∈ Cn | f(a1, ..., an) = 0} ⊂ Cn

By Proposition 3.1(a), hypersurfaces generate all the closed sets in the
Zariski topology, since V (I) = V (f1) ∩ ... ∩ V (fm) when I = 〈f1, ..., fm〉.
Equivalently, all open sets U ⊂ Cn are finite unions of basic open sets, which
are defined to be the complements Cn − V (f) of hypersurfaces.

Since C[x1, ..., xn] is a UFD, the principal ideal 〈f〉 decomposes as a
product of prime ideals according to the factorization: f =

∏m
i=1 fi as a

product of irreducible polynomials. If no fi appears with multiplicity > 1,
then 〈f〉 is radical, so 〈f〉 = I(V (f)) and:

V (f) = V (f1) ∪ V (f1) ∪ ... ∪ V (fm)

is the expression of V (f) as a union of its irreducible components.

Definition: An affine variety is any irreducible closed subset X ⊆ Cn. The
Zariski topology on X is induced from the Zariski topology on Cn and the
hypersurfaces and basic open sets in X are the (proper) intersections of X
with hypersurfaces of Cn and their complements in X, respectively. The
affine coordinate ring of X is the domain C[X] := C[x1, ..., xn]/P where
P = I(X) is the prime ideal associated to X in Proposition 3.2(c).

Observation: The algebraic (i.e. closed) subsets of X are in bijection with
the radical ideals of C[x1, ..., xn] containing P , i.e. the radical ideals of C[X].
The irreducible closed sets in X are in bijection with the prime ideals in C[X].

Examples: (a) The hyperbolas V (xy − a) ⊂ C2 (a 6= 0) are affine varieties
(even though they don’t look irreducible when we visualize them in R2!).
Recall from §1 that if X = V (xy − a), then:

C[X] = C[x, y]/〈xy − a〉 ∼→ C[t, t−1]; x 7→ t, y 7→ at−1

and this ring is a principal ideal domain, with prime ideals 〈t − b〉 (b 6= 0).
Thus the irreducible closed sets in X are the points (b, ba−1) ∈ X, and all
closed subsets (other than X itself) are finite.
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(b) The cuspidal cubic V (y2 − x3) ⊂ C2 is also an affine variety, with:

C[X] = C[x, y]/〈y2 − x3〉 ∼→ C[t2, t3]; x 7→ t2, y 7→ t3

This is not a principal ideal domain, because in particular the maximal
ideals 〈t2 − b2, t3 − b3〉 are not principal. But the points of X are still the
only irreducible closed sets since any nonzero polynomial f(t2, t3) vanishes
for only finitely many values of t, so every closed subset of X is finite.

(c) The nodal cubic V (y2−x2(x+ 1)) ⊂ C2 is also an affine variety, with

C[X] = C[x, y]/〈y2 − x2(x+ 1)〉 ∼→ C[t2 − 1, t(t2 − 1)]

which is once again not a principal ideal domain, but by the same argument
as in (b), all hypersurfaces, hence all closed subsets are finite.

(d) Rather surprisingly, it is the “nonsingular” cubic:

X = V (y2 − (x3 − a))

whose Zariski topology is hardest to see, since C[X] is neither a PID nor a
subring of C[t]. The question is: Why are the hypersurfaces in X all finite?

(e) Suppose f(x, y), g(x, y) ∈ C[x, y] are relatively prime of degrees d, e.
Then their homogenizations from §2 (changing variables x ↔ x1

x0
, y ↔ x2

x0
)

F (x0, x1, x2) ∈ C[x0, x1, x2]d, G(x0, x1, x2) ∈ C[x0, x1, x2]e are still relatively
prime, and so in particular, G ∈ C[x0, x1, x2]/〈F 〉 is not a zero-divisor.

Thus the Hilbert polynomial of C[x0, x1, x2]/〈F,G〉 is the constant de,
and it follows (see Exercise 2.4) that V (F ) ∩ V (G) ⊂ CP2 is finite. In fact:

|V (F ) ∩ V (G)| ≤ de

and so it follows also that V (f) ∩ V (g) ≤ de. From this we see that:

• Every hypersurface in every “plane curve” affine variety V (f) ⊂ C2 is
finite, so every closed subset is finite, and

• The irreducible closed sets in C2 are either irreducible hypersurfaces
V (f) ⊂ C2 or points, since any irreducible closed subset is contained in an
irreducible hypersurface. Thus the closed sets are finite unions of points and
irreducible hypersurfaces.
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Definition: A regular function on an affine variety X is any f ∈ C[X].

Notice that a regular function is a well-defined function on X. That is,

f(a1, ..., an) = f(a1, ..., an) ∈ C

where f ∈ C[x1, ..., xn] is any polynomial reducing to f mod P . Since the
polynomials in P vanish at all points of X by definition, this is well-defined.

Definition: A rational function on X is an element φ ∈ C(X) of the field
of fractions of the coordinate ring C[X].

A rational function φ is thus the ratio of two regular functions f
g
. If

C[X] is a UFD (as in the case of Cn itself) then the ratio can be put in
lowest terms to get a preferred expression for φ. In general, however, there
may be several equally good expressions for φ as ratios of regular functions.
If (a1, ..., an) ∈ X and if there is (at least) one such expression for which
g(a1, ..., an) 6= 0, then φ(a1, ..., an) is well-defined, and φ is also a well-defined
function in an open neighborhood of (a1, ..., an). In this case we say that φ
is regular at (a1, ..., an), otherwise we say that φ has a pole at (a1, ..., an).

Proposition 3.3: The only rational functions φ ∈ C(X) that are regular at
all the points of X are the regular functions.

Proof: Consider all the possible expressions for such a φ as a ratio φ = f
g
.

The set of denominators g that occur (and 0) is an ideal Iφ ⊆ C[X] since:

φ =
f1

g1

=
f2

g2

⇒ φ =
f1 + f 2

g1 + g2

and φ =
h f1

h g1

unless g1 + g2 = 0 or h = 0

By assumption, given (a1, ..., an) ∈ X there is a g ∈ Iφ with g(a1, ..., an) 6= 0.
But maximal ideals of C[X] are maximal ideals of C[x1, ..., xn] containing P ,
which, by the Nullstellensatz, are the ideals of the form 〈x1− a1, ..., xn− an〉
for (a1, ..., an) ∈ X. So the assumption tells us that Iφ is contained in no
maximal ideal, which is to say that 1 ∈ Iφ, so φ = f for some f , as desired.

Example: In C[x1, x2, x3, x4]/〈x1x4− x2x3〉, the rational function φ = x1

x2
=

x3

x4
is regular on {(a, b, c, d) | b 6= 0 or d 6= 0 and ad = bc} ⊂ X = {ad = bc}

meaning that the locus where φ has a pole is the plane:

C2 = {(a, 0, c, 0)} ⊂ X ⊂ C4

and φ does not have a pole at points (0, 0, c, d) (d 6= 0) and (a, b, 0, 0) (b 6= 0)
even though one of the expressions for φ is 0

0
at such points.
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Definition: The sheaf of regular functions OX on X is defined by:

OX(U) := {φ ∈ C(X) | φ is regular at all points of U}

for Zariski-open subsets U ⊆ X.

Sheaf Overview: A sheaf of abelian groups on a topological space X is,
first of all, a contravariant functor:

F : {open subsets of X} → {abelian groups}

from the category of open subsets of X to the category of abelian groups,
which is to say that F(U) is an abelian group for each open set U ⊆ X and
to each inclusion U ⊆ V is associated a “restriction” group homomorphism:

ρV,U : F(V )→ F(U)

with the following properties:

(i) ρU,U = idF(U) and

(ii) ρV,U ◦ ρW,V = ρW,U : F(W )→ F(U) whenever U ⊆ V ⊆ W .

Finally, there are two additional axioms that a sheaf is required to satisfy.
For all open covers U = ∪λ∈ΛUλ one requires:

(a) If s ∈ F(U) satisfies ρU,Uλ(s) = 0 for all λ ∈ Λ, then s = 0.

(b) Given sλ ∈ F(Uλ) with ρUλ,Uλ∩Uµ(sλ) = ρUµ,Uλ∩Uµ(sµ) for all λ, µ, then
there is an s ∈ F(U) (unique by (a)) such that ρU,Uλ(s) = sλ for all λ.

And if the functor is to the category of commutative rings (with 1) then
F is a sheaf of commutative rings (with 1).

Role in Geometry: A differentiable manifold M admits an open cover
M = ∪Uλ such that the Uλ are homeomorphic (via hλ) to open sets in Rn

and such that the “glueing functions” hµ ◦ h−1
λ : hλ(Uλ ∩ Uµ)

∼→ hµ(Uλ ∩ Uµ)
are not just homeomorphisms but diffeomorphisms. The notion of a function
f : U → R being C∞ is then well-defined (checked on subsets of Rn) and:

C∞M (U) := {C∞ functions f : U → R}

defines a sheaf of commutative rings, with ρV,U the ordinary restriction of
functions. Properties (a) and (b) are built into the definition of a function!
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From this point of view, a mapping of differentiable manifolds Φ : M → N
is itself differentiable if it is continuous and if, for all open subsets U ⊂ N :

Φ∗ : C∞N (U)→ C∞M (Φ−1(U)); Φ∗(f) = f ◦ Φ

that is, if C∞ functions on (open sets of) N pull back to C∞ functions on M .

Back to Regular Functions: The sheaf of regular functions OX defined
above on an affine variety is a sheaf of commutative rings. In this case, ρUV
is the identity map, when viewed as a map of rational functions φ ∈ C(X).
Again, property (b) is automatic, but property (a) merits a check, just to
make sure that zero (as a function) is the same as zero (as a rational function).

Proposition 3.4: If 0 = φ ∈ OX(U) as a function on any (nonzero) open
set U ⊂ X, then 0 = φ ∈ C(X) as a rational function .

Proof: If φ = f
g

where g is regular at a point of U , then by assumption:

f(a1, ..., an) = 0 for all (a1, ..., an) ∈ U − V (g)

But all nonempty open sets are dense in X (as in Proposition 3.2(b)) so it
follows that f(a1, ..., an) = 0 for all points of X (the zero locus is closed!).
But then f = 0 ∈ C[X], so φ = 0

g
∈ C(X) is indeed zero.

In the spirit of differentiable maps of differentiable manifolds, we define:

Definition: A map Φ : X → Y of affine varieties is a regular map if:

(a) Φ is continuous, as a map of (Zariski) topological spaces

(b) Φ∗ : OY (U) → OX(Φ−1(U)). That is, when φ ∈ C(Y ) is regular at
all points of U , there is a (unique by Proposition 3.4) ψ ∈ C(X), regular at
the points of Φ−1(U), such that ψ = φ ◦ Φ : Φ−1(U) → C. Or, to put it
succinctly, Φ pulls back regular functions to regular functions.

Proposition 3.5: For affine varieties X ⊂ Cn and Y ⊂ Cm, a mapping
Φ : X → Y is a regular map if and only if there are polynomials:

f1, ..., fm ∈ C[x1, ..., xn] such that Φ = (f1, ..., fm) : X → Y

and so there is a natural bijection:

{regular maps Φ : X → Y } ↔

{C-algebra homomorphisms Φ∗ : C[Y ]→ C[X]}
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Proof: Let y1, ..., ym be the coordinates on Cm. Then y1, ..., ym ∈ C[Y ]
are regular functions, i.e. elements ofOY (Y ). By the definition, if Φ : X → Y
is a regular map, then Φ∗(y1), ...,Φ∗(ym) ∈ OX(X). But by Proposition 3.3,
OX(X) = C[X], so Φ∗(y1) = f 1, ...,Φ

∗(ym) = fm for some regular functions
f 1, ..., fm ∈ C[X], and then indeed:

Φ(a1, ..., an) = (f1(a1, ..., an), ..., fm(a1, ..., an))

for any choice of representatives f1, .., fm ∈ C[x1, ..., xn].

Conversely, C-algebra homomorphisms Φ∗ : C[Y ] → C[X] are set by
choosing the regular functions f 1 = Φ∗(y1), .., fm = Φ∗(ym) (arbitrarily!).
Thus the maps Φ = (f 1, ..., fm) : X → Y are in a natural bijection with the
C-algebra homomorphisms Φ∗ : C[Y ]→ C[X], since any such Φ is clearly a
regular map.

Remark: If we think of the affine varieties (with sheaves of regular functions)
as a category with regular maps as the morphisms, then Proposition 3.5
shows that this is the same as the category of domains C[x1, ..., xn]/P with
C-algebra homomorphisms (going in the opposite direction!) via X 7→ C[X]
and Φ 7→ Φ∗. That is, any property of affine varieties translates into an
equivalent property of such domains and vice versa.

So why bother with affine varieties at all? The reason is geometric. Since
affine varieties, unlike domains, are topological spaces with sheaves on them,
we can ask the following questions of an arbitrary topological space X with
a sheaf OX of commutative rings on it.

(1) Is X with the sheaf OX isomorphic to an affine variety? Or,

(2) Does there exist an open cover X = ∪Uλ such that the (topological)
spaces Uλ with induced sheaves OUλ are isomorphic to affine varieties?

Example (Quasi-Affine Varieties): Let W ⊂ X be an open subset of an
affine variety, with induced sheaf OW of regular functions defined by:

OW (U) := OX(U)

for all open subsets U ⊂ W . This topological space W with its sheaf OW is
called a quasi-affine variety. A regular map Φ : W → Y to an affine variety
(or another quasi-affine variety) is defined by requiring Φ to be (as always!)
(a) continuous, and (b) pull back regular functions to regular functions.
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Proposition 3.6: Each basic open quasi-affine subset W = X −V (f) ⊂ X
of an affine variety X is isomorphic to the affine “hyperbola variety over W”:

Y := V (〈P, 1− xn+1f〉) ⊂ Cn+1

where X = V (P ) ⊂ Cn and f ∈ C[x1, ..., xn] is any representative of f .

Proof: We need a bijection Φ : W → Y so that Φ and Φ−1 are regular.
Here it is:

Φ(a1, ..., an) = (a1, ..., an,
1

f(a1, ..., an)
)

with inverse Φ−1(b1, ..., bn+1) = (b1, ..., bn). The inverse Φ−1 is regular as a
map from Y to X by Proposition 3.5, since it is given by the polynomials
x1, ..., xn, and it follows that Φ−1 is also regular as a map to W .

As for Φ itself, if U = Y − V (g) is a basic open set, then

Φ−1(U) = {(a1, ..., an) ∈W | g(a1, ..., an,
1

f(a1, ..., an)
) 6= 0}

is open since g(x1, ..., xn, f
−1(x1, ..., xn)) = h(x1,...,xn)

fN
for some h ∈ C[x1, ..., xn]

and then Φ−1(U) = W − V (h). Since these sets generate the topology on Y ,
this is enough to see that Φ is continuous.

And if φ = k
g
∈ C(Y ) is regular at (a1, ..., an, f

−1(a1, ..., an)) ∈ U then

Φ∗(φ) =
k(x1, ..., xn, f

−1)

g(x1, ..., xn, f−1)
=

l(x1, ..., xn)

fMh(x1, ..., xn)

for some M and l, and this is a rational function on X which is regular at
the point (a1, ..., an) = Φ−1(a1, ...., an, f

−1(a1, ..., an)). So (b) is satisfied.

Corollary 3.7: Every quasi-affine variety has an open cover by quasi-affine
varieties that are isomorphic to affine varieties.

Proof: If Y is quasi-affine, then Y ⊂ X is open in some affine variety,
and then Y is covered by basic open sets in X which are isomorphic to affine
“hyperbola” varieties by Proposition 3.6.
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Exercises 3.

1. (a) Show that the Zariski topology on C2 and the product of the Zariski
topologies on C2 = C1 ×C1 are not the same.

(b) Prove that each non-empty open subset in an affine variety is dense.

(c) If X ⊆ Cn is an affine variety with C[X] = C[x1, ..., xn]/P , and if
I ⊆ C[X] and P ⊆ J ⊆ C[x1, ..., xn] are ideals such that J/P = I, prove
that

√
J/P =

√
I, and conclude that, as claimed in the text:

{closed subsets of X} ↔ {radical ideals in C[X]}

2. Prove that if X an affine variety, then the contravariant functor:

Z(U) = Z; with identity restrictions ρV U = idZ

defines a sheaf of abelian groups, the “constant sheaf of integers” on X.

On the other hand, if X is a topological space which is not irreducible
(i.e. if there are proper closed subsets Z1, Z2 ⊂ X such that Z1 ∪ Z2 = X)
prove that this is not a sheaf. Fix the definition in that case to make a sheaf!

3. If Z ⊂ X is a closed subset of an affine (or quasi-affine) variety X, define
the sheaf of ideals of Z by:

IZ(U) := {regular functions on U that vanish along Z ∩ U} ⊆ OX(U)

Prove that this is a sheaf of abelian groups.

4. (a) If U = X−V (g) is a basic open subset of an affine variety, prove that:

OX(U) = C[X]g :=

{
f

gm
| f ∈ C[X], m ≥ 0

}
⊂ C(X)

(b) Find OCn(U) when U is the complement of the origin in Cn.

(c) Prove that when n > 1, the quasi-affine varieties U = Cn − 0 are not
isomorphic to any affine varieties.
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5. (a) A subset Y ⊆ X is locally closed if Y is the intersection U ∩ Z of an
open and closed set. Prove that an intersection of two locally closed sets is
locally closed, but that the union (C2−{y−axis})∪{0} is not locally closed.

(b) If X is a quasi-affine variety and Y ⊂ X is an irreducible locally closed
subset, give Y the induced topology and define, for open subsets U ⊂ Y :

OY (U) := {φ : U → C | ∃V ⊂ X with V ∩ Y = U, an open cover V = ∪Vi

and φi ∈ OX(Vi)) such that φ|Vi∩Y = φi|Vi∩Y }
Prove first that OY is a sheaf, and then show that it is the same sheaf

one obtains by regarding Y ⊆ Y ⊂ X ⊆ Cn as a quasi-affine variety.

(c) If Φ : X → X ′ is a regular map of quasi-affine varieties, prove that
the induced maps Φ|Y : Y → X ′ are regular maps, for all irreducible locally
closed subsets Y ⊆ X and conclude that if Φ is an isomorphism, then Φ
induces isomorphisms Φ|Y : Y → Y ′ = Φ(Y ) of all such quasi-affine varieties.

6. Consider the cuspidal cubic curve: X = V (y2 − x3) ⊂ C2.

(a) Prove that the mapping: Φ : C → X; t 7→ (t2, t3) is a regular map
and a homeomorphism of Zariski topological spaces.

(b) Prove that the inverse mapping Φ−1 : X → C is not a regular map.

7. (a) Prove that C is not isomorphic (as an affine variety) to C∗ = C−{0}.
(b) More generally, prove that C − {p1, ..., pm} and C − {q1, ..., qn} are

never isomorphic if m 6= n.

(c) Prove that C−{p1, p2} and C−{q1, q2} are always isomorphic varieties.
How many different isomorphisms are there between them?

(d) What about C− {p1, ..., pn} and C− {q1, ..., qn} in general?
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