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3. Projective Varieties. To first approximation, a projective variety
is the locus of zeroes of a system of homogeneous polynomials:

Fl,.‘.,FmEC[QTl,...,ZEn_,_l]

in projective n-space. More precisely, a projective variety is an abstract
variety that is isomorphic to a variety determined by a homogeneous
prime ideal in C[xy, ..., z,41]. Projective varieties are proper, which is
the analogue of “compact” in the category of abstract varieties.

Projective n-space P" is the set of lines through the origin in C**1.
The homogeneous “coordinate” of a point in P (= line in C"*!) is:
(x1:++:xy41) (not all zero)
and it is well-defined modulo:
(1 : i xpy1) = Azt Axyyq) for A € C*

Projective n-space is an overlapping union:
n+1

IP’”:UUi; U={(xy - 1xpm: - xpp) om0 =C"
i=1

and a disjoint union:
P*=C"uC*!'ucC*?uy.--uC’
where C"™™ = {(zy : -+t Xpy1) | 21 = =2y, = 0,241 # 0}

The polynomial ring is graded by degree:
C[%l, e ,.an+1] = @(C[.I‘l, R 7$n+1]d
d=0

and the nonzero polynomials ' € C[xy, ..., Z,41]q are the homogeneous
polynomials of degree d. The value of a homogeneous polynomial F' of
degree d at a point z € P" is not well-defined, since:

F()\I’h N 7)\xn+1) = /\dF(I'l, ce 7$n+1)

However, the locus of zeroes of I is well-defined, hence F' determines
a projective hypersurface if d > 0:

V(F) :{(.Tl : "‘:.Tn+1) GPn | F(Z’l . "'337n+1)=0}C]Pn,
Definition: An ideal I C Clzy,...,2,.1] is homogeneous if:

I = @[d; where I, = INClzy, ..., Tni1la
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equivalently, I has (finitely many) homogeneous generators.
Corollary 3.1: For a homogeneous ideal I C Clxy, ..., Zu41],

V) ={(z1:xpp) | Flxy - txpy) =0foral Fel} CP"
is an intersection of finitely many projective hypersurfaces.

The sets V(I) C P™ are the algebraic subsets of P"*. The irreducible
algebraic sets are defined as in the case of affine varieties, and satisfy:

X=V(P)cp"

for a unique homogeneous prime ideal P C Clxy, ..., Z,41]. Thus each
irreducible algebraic set inside P™ has a homogeneous coordinate ring:

R(X):=Clz1,...,2,)/P = @ Clas, ... xala/Pu

Warning: Unlike the coordinate rings of isomorphic affine varieties,
homogeneous rings of isomorphic projective varieties will not usually
be isomorphic graded rings. Even more fundamentally, a non-constant
element of the homogeneous ring of X C P" is not a function.

(In fact, homogeneous rings are made up of sections of line bundles.)
Note: There is one homogeneous maximal ideal, namely:
<l’1, N ,l’n+1> C C[Z’l, N ,an]

This is usually called the irrelevant homogeneous ideal, and it contains
all other homogeneous ideals.

Definition: A homogeneous ideal m C Clxy, ..., z,41] is homazimal if
it is maximal among all homogeneous ideals other than (xq, ..., Z,41).

Exercises 3.1:
(a) Given a homogeneous I C (x1,...,Zn41), there is a bijection:

{homaximal ideals m, containing I} < {points = € V(I) C P"}
(b) There is a (Zariski) topology on X = V(P) generated by:
Up:= X — V(F) C P"

for F' € R(X), consisting of open sets of the form U; := X — V (I) for
homogeneous ideals I C R(X).

Definition: The field of rational functions on X = V(P) C P" is:
F
C(X) := {5 | F,G € R(X), for some d, and G # 0} / ~

Good News: Rational functions are C-valued functions on some U.

Bad News/Exercise 3.2: The only rational functions defined every-
where on X are the constant functions.
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Proposition 3.2: The sheaf Ox of C-valued functions on (the open
sets of) an irreducible algebraic set X = V(P) C P" defined by:

F
0, = {5 | G(x) # O} C C(X) and Ox(U) := ﬂ 0, C C(X)
zelU
gives (X, Ox) the structure of a prevariety.
Proof: We need to prove (X, Ox) is locally affine.
For each i = 1,...,n+ 1, either:
(a) x; € P, in which case X NU; = 0, or else

(b) zi ¢ P, in which case U, = X NU;, with Ox|y,, is isomorphic
to the affine variety corresponding to the C-algebra:

Clu,]=C {ﬁ,...,xnﬂ] /P, WhereF(ﬂ,--- 7$n+1) EPSFeP

which, incidentally, satisfies C(U,,) = C(X). Since X is covered by
these open sets, it follows that X is locally affine.

Definition: A prevariety is projective if it is isomorphic to one of the
X = V(P) C P* with sheaf of C-valued functions defined as above.

As for separatedness, first notice:
Proposition 3.3: P x P" is projective, and P" is separated.
Proof: The Segre embedding is the map (of sets):
o:P* x P" — P(nJrl)(erl)fl
(@1 @), (s Ymgn)) = iy )

(We will use 2;; as homogeneous coordinates for points of P(+H(m+1)-1 )
The image of ¢ is the irreducible algebraic set:

X =V ({zij2u — zazk;}) C P+ (m+1)-1

and moreover, as a prevariety, X,,, (with sheaf of regular functions)
is the product of P™* and P™. Also, if n = m, then:

6(P") = X NV ({235 — 25i})
is closed, so P" is separated.

Exercise 3.3: (a) Carefully show that the projection mpm : X, ,, — P™
is a morphism of prevarieties.

(b) Extend Proposition 3.3 to describe the product of projective
prevarieties X = V(P) C P*" and Y = V(Q) C P™ as an irreducible,
closed subset of X, ,, hence it is a projective prevariety, and then
conclude that all projective prevarieties are varieties.
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Definition: An open subset U C X of a projective variety, together
with the induced sheaf Ox|y of C-valued functions, or more generally,
any variety isomorphic to such a pair (U, Ox|v), is quasi-projective.
Proposition 3.4: A quasi-affine variety is also quasi-projective.

Proof: It suffices to show that each affine variety is quasi-projective.
To this end, suppose (Y, Oy ) is isomorphic to the affine variety obtained
from X = V(P) C C". Then we may identify C" with U,;; C P" and
take the (Zariski) closure X of X C P". Then

X =V(P"), where P" = (f"| f € P)

and f"(z1,...,2p11) = 2l f(Z2—, ..., %) whenever d = deg(f).

Tn+1 7 ) Tn+1

Check that P" defined this way is a prime ideal, and that X NC" = X.

Exercise 3.4: Find generators (fi,--- f,) = P of a prime ideal with
the property that the f do not generate P".

Definition: In a category whose objects are topological spaces, whose
morphisms are continuous, and in which products exist, a separated
object X is proper if “projecting from X is universally closed,” i.e.

Ty . XxY—-Y
maps closed sets Z C X x Y to closed sets my(Z) C Y, for all Y.

Exercise 3.5: In the category of topological spaces, compact implies
proper, and conversely, any proper space with the property that every
open cover has a countable subcover is also compact.

Concrete Example: Suppose (X,Ox) is affine and f € C[X] is a
non-constant function. Then the hyperbola over Uy:

V(zf-1)c X xC

is closed, but its projection to C has image C*, which is not closed.
Thus, the only proper affine variety is the one-point space.

General Example: If U C X is an open subset of a separated object
and U # U (e.g. any quasi-projective variety properly contained in a
projective variety), then U is not proper. Indeed, the closed diagonal
in X x X determines a closed set:

AN(U x X)
that projects to U C X.
Theorem (Grothendieck) Projective varieties are proper varieties.

To prove this, we need a result from commutative algebra:
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Nakayama’s Lemma (Version 1): Suppose M is a finitely generated
module over a ring A and I C A is an ideal such that:
IM =M
Then there an element a € I such that (1 4+ a)m =0 for all m € M.
Proof: Let mq,...,m, € M be generators. Then IM = M gives:

n

m; = g a;ym; for a;; € 1

j=1
implying that the matrix 1 — (a;;) has a kernel, hence b = det(1— (a;;))
satisfies bm; = 0 for all 4, and evidently, b = 1 4 a for some a € I.

Proof: (of the theorem) It suffices to prove that for all n, m:
mem 2 P* x C™ — C™ is a closed map
Let Clzy, -+ - Tpy1) = R(P™) and Clyy, - - - , ym| = C[C™], and suppose
Z C P" x C™ is closed

Then we need to show that mem (Z) = V(J) for some J C Clyy, . . ., Ym]-
To this end, grade the ring C[Z,7] := Clx1, -+, Zni1,Y1,° " ,Ym] Dy
degree in the z-variables:

C[f,?j] = @C[iﬁl, 7$n+1]d ®C[y1> aym]
d

and consider the subsets defined by homogeneous ideals:
V(I)cP*xC™ I=E 1. c PClz, 7l
d d

Then the theorem follows immediately from:

Claim 1: Every closed set Z C P™ x C™ is equal to some V (I).

Claim 2: wem(V(1)) = V(Ip), the “degree zero” part of the ideal I.
Proof of Claim 1: Cover P" by the open sets U; = C"* x C™ with:

X Tn
ClUi] =C[=, ..., ™= y1,-. ., Y]
ZT; ZT;

and, given a closed set Z C P" x C™, define a homogeneous ideal I by:

F
Id = {F € C[f,y]d | 3 S ](Z N Ul> C C[UZ] for all Z}
T;
It is clear that Z C V/(I). For the other inclusion, suppose (a,b) & Z.
Then (a,b) € U; for some i, so there is an f € I(Z N U;) such that
f(a,b) # 0. It follows that z¢f € C[U;] for some d, and then that
F =29 f € I,. Since F(a,b) # 0, it follows that (a,b) & V(I).



Proof of Claim 2: Again, the inclusion mcm(Z) C V(Ip) is clear.
For the other inclusion, suppose b = (by,...,b,) € mem(Z), and let
my = (Y1 — b1, - .., Ym — bin) be the corresponding maximal ideal. Then:

ZNMP"xb)=10, so(ZNU;)N(U; x b) =0 for all

which in turn implies that:

](ZQUZ) +C |:ﬂ7”'7l'n+1:| <My :(C[UZ] for all ¢

ZT; ZT;
and thus for each i = 1,...,n+1, there exist f; € [(ZNU;), g;; € C[U}]
and m;; € my, such that f; +>° ; gijmi; = 1. Moreover, by multiplying
through by a sufficiently large power d; of each x;, we can arrange that:
E + Z Gijmij = ZL’,LLZZ for Fl S [di7 Gi]’ S C[T, y]dz
J
If we moreover take d > Y d;, then we have I;+CI[Z, y]s-my = C[T, 7]

Thus the finitely generated Clyy, ..., ym,] -modules:
Md = C[T, y]d/]d satisfy my - Md = Md
hence by Nakayama’s lemma, there is an f € Clyy,- -, y] such that
f(b) #0and fMy; =0, ie. f-C[z,yly € I;. But this implies f-x¢ € I,
for all 4, from which it follows that f € I, as desired.

Corollary 3.5/Exercise 3.6: Any morphism ¢ : X — Y from a
projective variety X to an abstract variety Y is a closed mapping.



