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3. Projective Varieties. To first approximation, a projective variety
is the locus of zeroes of a system of homogeneous polynomials:

F1, . . . , Fm ∈ C[x1, . . . , xn+1]

in projective n-space. More precisely, a projective variety is an abstract
variety that is isomorphic to a variety determined by a homogeneous
prime ideal in C[x1, . . . , xn+1]. Projective varieties are proper, which is
the analogue of “compact” in the category of abstract varieties.

Projective n-space Pn is the set of lines through the origin in Cn+1.

The homogeneous “coordinate” of a point in Pn (= line in Cn+1) is:

(x1 : · · · : xn+1) (not all zero)

and it is well-defined modulo:

(x1 : · · · : xn+1) = (λx1 : · · · : λxn+1) for λ ∈ C∗

Projective n-space is an overlapping union:

Pn =
n+1⋃
i=1

Ui; Ui = {(x1 : · · · : xm : · · ·xn+1) |xm 6= 0} = Cn

and a disjoint union:

Pn = Cn ∪ Cn−1 ∪ Cn−2 ∪ · · · ∪ C0

where Cn−m = {(x1 : · · · : xn+1) | x1 = · · · = xm = 0, xm+1 6= 0}
The polynomial ring is graded by degree:

C[x1, . . . , xn+1] =
∞⊕

d=0

C[x1, . . . , xn+1]d

and the nonzero polynomials F ∈ C[x1, . . . , xn+1]d are the homogeneous
polynomials of degree d. The value of a homogeneous polynomial F of
degree d at a point x ∈ Pn is not well-defined, since:

F (λx1, . . . , λxn+1) = λdF (x1, . . . , xn+1)

However, the locus of zeroes of F is well-defined, hence F determines
a projective hypersurface if d > 0:

V (F ) = {(x1 : · · · : xn+1) ∈ Pn | F (x1 : · · · : xn+1) = 0} ⊂ Pn,

Definition: An ideal I ⊂ C[x1, . . . , xn+1] is homogeneous if:

I =
⊕

Id; where Id = I ∩ C[x1, . . . , xn+1]d
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equivalently, I has (finitely many) homogeneous generators.

Corollary 3.1: For a homogeneous ideal I ⊂ C[x1, . . . , xn+1],

V (I) = {(x1 : · · · : xn+1) | F (x1 : · · · : xn+1) = 0 for all F ∈ I} ⊂ Pn

is an intersection of finitely many projective hypersurfaces.

The sets V (I) ⊂ Pn are the algebraic subsets of Pn. The irreducible
algebraic sets are defined as in the case of affine varieties, and satisfy:

X = V (P) ⊂ Pn

for a unique homogeneous prime ideal P ⊂ C[x1, . . . , xn+1]. Thus each
irreducible algebraic set inside Pn has a homogeneous coordinate ring:

R(X) := C[x1, . . . , xn]/P =
⊕

C[x1, . . . , xn]d/Pd

Warning: Unlike the coordinate rings of isomorphic affine varieties,
homogeneous rings of isomorphic projective varieties will not usually
be isomorphic graded rings. Even more fundamentally, a non-constant
element of the homogeneous ring of X ⊂ Pn is not a function.

(In fact, homogeneous rings are made up of sections of line bundles.)

Note: There is one homogeneous maximal ideal, namely:

〈x1, . . . , xn+1〉 ⊂ C[x1, . . . , xn+1]

This is usually called the irrelevant homogeneous ideal, and it contains
all other homogeneous ideals.

Definition: A homogeneous ideal m ⊂ C[x1, . . . , xn+1] is homaximal if
it is maximal among all homogeneous ideals other than 〈x1, . . . , xn+1〉.
Exercises 3.1:

(a) Given a homogeneous I ⊂ 〈x1, . . . , xn+1〉, there is a bijection:

{homaximal ideals mx containing I} ↔ {points x ∈ V (I) ⊂ Pn}
(b) There is a (Zariski) topology on X = V (P) generated by:

UF := X − V (F ) ⊂ Pn

for F ∈ R(X)d consisting of open sets of the form UI := X − V (I) for
homogeneous ideals I ⊂ R(X).

Definition: The field of rational functions on X = V (P) ⊂ Pn is:

C(X) :=

{
F

G
| F,G ∈ R(X)d for some d, and G 6= 0

}
/ ∼

Good News: Rational functions are C-valued functions on some U .

Bad News/Exercise 3.2: The only rational functions defined every-
where on X are the constant functions.
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Proposition 3.2: The sheaf OX of C-valued functions on (the open
sets of) an irreducible algebraic set X = V (P) ⊂ Pn defined by:

Ox :=

{
F

G
| G(x) 6= 0

}
⊂ C(X) and OX(U) :=

⋂
x∈U

Ox ⊂ C(X)

gives (X,OX) the structure of a prevariety.

Proof: We need to prove (X,OX) is locally affine.

For each i = 1, . . . , n+ 1, either:

(a) xi ∈ P , in which case X ∩ Ui = ∅, or else

(b) xi 6∈ P , in which case Uxi
= X ∩ Ui, with OX |Uxi

is isomorphic
to the affine variety corresponding to the C-algebra:

C[Uxi
] = C

[
x1

xi

, . . . ,
xn+1

xi

]
/P̃ , where F (

x1

xi

, · · · , xn+1

xi

) ∈ P̃ ⇔ F ∈ P

which, incidentally, satisfies C(Uxi
) = C(X). Since X is covered by

these open sets, it follows that X is locally affine.

Definition: A prevariety is projective if it is isomorphic to one of the
X = V (P) ⊂ Pn with sheaf of C-valued functions defined as above.

As for separatedness, first notice:

Proposition 3.3: Pm × Pn is projective, and Pn is separated.

Proof: The Segre embedding is the map (of sets):

σ : Pn × Pm → P(n+1)(m+1)−1

((x1 : · · · : xn+1), (y1 : · · · : ym+1)) 7→ (· · · : xiyj : . . . )

(We will use zij as homogeneous coordinates for points of P(n+1)(m+1)−1.)
The image of σ is the irreducible algebraic set:

Xm,n := V ({zijzkl − zilzkj}) ⊂ P(n+1)(m+1)−1

and moreover, as a prevariety, Xm,n (with sheaf of regular functions)
is the product of Pn and Pm. Also, if n = m, then:

δ(Pn) = Xn,n ∩ V ({zij − zji})
is closed, so Pn is separated.

Exercise 3.3: (a) Carefully show that the projection πPm : Xm,n → Pm

is a morphism of prevarieties.

(b) Extend Proposition 3.3 to describe the product of projective
prevarieties X = V (P) ⊂ Pn and Y = V (Q) ⊂ Pm as an irreducible,
closed subset of Xm,n, hence it is a projective prevariety, and then
conclude that all projective prevarieties are varieties.
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Definition: An open subset U ⊂ X of a projective variety, together
with the induced sheaf OX |U of C-valued functions, or more generally,
any variety isomorphic to such a pair (U,OX |U), is quasi-projective.

Proposition 3.4: A quasi-affine variety is also quasi-projective.

Proof: It suffices to show that each affine variety is quasi-projective.
To this end, suppose (Y,OY ) is isomorphic to the affine variety obtained
from X = V (P) ⊂ Cn. Then we may identify Cn with Un+1 ⊂ Pn and
take the (Zariski) closure X of X ⊂ Pn. Then

X = V (Ph), where Ph = 〈fh | f ∈ P〉
and fh(x1, . . . , xn+1) := xd

n+1f( x1

xn+1
, . . . , xn

xn+1
) whenever d = deg(f).

Check that Ph defined this way is a prime ideal, and that X ∩Cn = X.

Exercise 3.4: Find generators 〈f1, · · · fm〉 = P of a prime ideal with
the property that the fh

i do not generate Ph.

Definition: In a category whose objects are topological spaces, whose
morphisms are continuous, and in which products exist, a separated
object X is proper if “projecting from X is universally closed,” i.e.

πY : X × Y → Y

maps closed sets Z ⊂ X × Y to closed sets πY (Z) ⊂ Y , for all Y .

Exercise 3.5: In the category of topological spaces, compact implies
proper, and conversely, any proper space with the property that every
open cover has a countable subcover is also compact.

Concrete Example: Suppose (X,OX) is affine and f ∈ C[X] is a
non-constant function. Then the hyperbola over Uf :

V (xf − 1) ⊂ X × C

is closed, but its projection to C has image C∗, which is not closed.
Thus, the only proper affine variety is the one-point space.

General Example: If U ⊂ X is an open subset of a separated object
and U 6= U (e.g. any quasi-projective variety properly contained in a
projective variety), then U is not proper. Indeed, the closed diagonal
in X ×X determines a closed set:

∆ ∩ (U ×X)

that projects to U ⊂ X.

Theorem (Grothendieck) Projective varieties are proper varieties.

To prove this, we need a result from commutative algebra:
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Nakayama’s Lemma (Version 1): Suppose M is a finitely generated
module over a ring A and I ⊂ A is an ideal such that:

IM = M

Then there an element a ∈ I such that (1 + a)m = 0 for all m ∈M .

Proof: Let m1, . . . ,mn ∈M be generators. Then IM = M gives:

mi =
n∑

j=1

aijmj for aij ∈ I

implying that the matrix 1− (aij) has a kernel, hence b = det(1− (aij))
satisfies bmi = 0 for all i, and evidently, b = 1 + a for some a ∈ I.

Proof: (of the theorem) It suffices to prove that for all n,m:

πCm : Pn × Cm → Cm is a closed map

Let C[x1, · · ·xn+1] = R(Pn) and C[y1, · · · , ym] = C[Cm], and suppose

Z ⊂ Pn × Cm is closed

Then we need to show that πCm(Z) = V (J) for some J ⊂ C[y1, . . . , ym].
To this end, grade the ring C[x, y] := C[x1, · · · , xn+1, y1, · · · , ym] by
degree in the x-variables:

C[x, y] =
⊕

d

C[x1, · · · , xn+1]d ⊗ C[y1, · · · , ym]

and consider the subsets defined by homogeneous ideals:

V (I) ⊂ Pn × Cm; I =
⊕

d

Id ⊂
⊕

d

C[x, y]d

Then the theorem follows immediately from:

Claim 1: Every closed set Z ⊂ Pn × Cm is equal to some V (I).

Claim 2: πCm(V (I)) = V (I0), the “degree zero” part of the ideal I.

Proof of Claim 1: Cover Pn by the open sets Ui = Cn ×Cm with:

C[Ui] = C[
x1

xi

, . . . ,
xn+1

xi

, y1, . . . , ym]

and, given a closed set Z ⊂ Pn×Cm, define a homogeneous ideal I by:

Id :=

{
F ∈ C[x, y]d |

F

xd
i

∈ I(Z ∩ Ui) ⊂ C[Ui] for all i

}
It is clear that Z ⊆ V (I). For the other inclusion, suppose (a, b) 6∈ Z.
Then (a, b) ∈ Ui for some i, so there is an f ∈ I(Z ∩ Ui) such that
f(a, b) 6= 0. It follows that xd

i f ∈ C[Ui] for some d, and then that
F := xd+1

i f ∈ Id. Since F (a, b) 6= 0, it follows that (a, b) 6∈ V (I).
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Proof of Claim 2: Again, the inclusion πCm(Z) ⊂ V (I0) is clear.
For the other inclusion, suppose b = (b1, . . . , bm) 6∈ πCm(Z), and let
mb = 〈y1−b1, . . . , ym−bm〉 be the corresponding maximal ideal. Then:

Z ∩ (Pn × b) = ∅, so (Z ∩ Ui) ∩ (Ui × b) = ∅ for all i

which in turn implies that:

I(Z ∩ Ui) + C
[
x1

xi

, . . . ,
xn+1

xi

]
·mb = C[Ui] for all i

and thus for each i = 1, . . . , n+1, there exist fi ∈ I(Z∩Ui), gij ∈ C[Ui]
and mij ∈ mb such that fi +

∑
j gijmij = 1. Moreover, by multiplying

through by a sufficiently large power di of each xi, we can arrange that:

Fi +
∑

j

Gijmij = xdi
i for Fi ∈ Idi

, Gij ∈ C[x, y]di

If we moreover take d >
∑
di, then we have Id +C[x, y]d ·mb = C[x, y]d.

Thus the finitely generated C[y1, . . . , ym] -modules:

Md := C[x, y]d/Id satisfy mb ·Md = Md

hence by Nakayama’s lemma, there is an f ∈ C[y1, · · · , ym] such that
f(b) 6= 0 and fMd = 0, i.e. f ·C[x, y]d ∈ Id. But this implies f ·xd

i ∈ Id
for all i, from which it follows that f ∈ I0, as desired.

Corollary 3.5/Exercise 3.6: Any morphism Φ : X → Y from a
projective variety X to an abstract variety Y is a closed mapping.


