Complex Algebraic Geometry: Varieties

Aaron Bertram, 2010
3. Projective Varieties. To first approximation, a projective variety is the locus of zeroes of a system of homogeneous polynomials:

$$
F_{1}, \ldots, F_{m} \in \mathbb{C}\left[x_{1}, \ldots, x_{n+1}\right]
$$

in projective n-space. More precisely, a projective variety is an abstract variety that is isomorphic to a variety determined by a homogeneous prime ideal in $\mathbb{C}\left[x_{1}, \ldots, x_{n+1}\right]$. Projective varieties are proper, which is the analogue of "compact" in the category of abstract varieties.
Projective n-space \mathbb{P}^{n} is the set of lines through the origin in \mathbb{C}^{n+1}.
The homogeneous "coordinate" of a point in $\mathbb{P}^{n}\left(=\operatorname{line}\right.$ in $\left.\mathbb{C}^{n+1}\right)$ is:

$$
\left(x_{1}: \cdots: x_{n+1}\right) \quad \text { (not all zero) }
$$

and it is well-defined modulo:

$$
\left(x_{1}: \cdots: x_{n+1}\right)=\left(\lambda x_{1}: \cdots: \lambda x_{n+1}\right) \text { for } \lambda \in \mathbb{C}^{*}
$$

Projective n-space is an overlapping union:

$$
\mathbb{P}^{n}=\bigcup_{i=1}^{n+1} U_{i} ; \quad U_{i}=\left\{\left(x_{1}: \cdots: x_{m}: \cdots x_{n+1}\right) \mid x_{m} \neq 0\right\}=\mathbb{C}^{n}
$$

and a disjoint union:

$$
\mathbb{P}^{n}=\mathbb{C}^{n} \cup \mathbb{C}^{n-1} \cup \mathbb{C}^{n-2} \cup \cdots \cup \mathbb{C}^{0}
$$

where $\mathbb{C}^{n-m}=\left\{\left(x_{1}: \cdots: x_{n+1}\right) \mid x_{1}=\cdots=x_{m}=0, x_{m+1} \neq 0\right\}$
The polynomial ring is graded by degree:

$$
\mathbb{C}\left[x_{1}, \ldots, x_{n+1}\right]=\bigoplus_{d=0}^{\infty} \mathbb{C}\left[x_{1}, \ldots, x_{n+1}\right]_{d}
$$

and the nonzero polynomials $F \in \mathbb{C}\left[x_{1}, \ldots, x_{n+1}\right]_{d}$ are the homogeneous polynomials of degree d. The value of a homogeneous polynomial F of degree d at a point $x \in \mathbb{P}^{n}$ is not well-defined, since:

$$
F\left(\lambda x_{1}, \ldots, \lambda x_{n+1}\right)=\lambda^{d} F\left(x_{1}, \ldots, x_{n+1}\right)
$$

However, the locus of zeroes of F is well-defined, hence F determines a projective hypersurface if $d>0$:

$$
V(F)=\left\{\left(x_{1}: \cdots: x_{n+1}\right) \in \mathbb{P}^{n} \mid F\left(x_{1}: \cdots: x_{n+1}\right)=0\right\} \subset \mathbb{P}^{n}
$$

Definition: An ideal $I \subset \mathbb{C}\left[x_{1}, \ldots, x_{n+1}\right]$ is homogeneous if:

$$
I=\bigoplus I_{d} ; \text { where } I_{d}=I \cap \mathbb{C}\left[x_{1}, \ldots, x_{n+1}\right]_{d}
$$

equivalently, I has (finitely many) homogeneous generators.
Corollary 3.1: For a homogeneous ideal $I \subset \mathbb{C}\left[x_{1}, \ldots, x_{n+1}\right]$,
$V(I)=\left\{\left(x_{1}: \cdots: x_{n+1}\right) \mid F\left(x_{1}: \cdots: x_{n+1}\right)=0\right.$ for all $\left.F \in I\right\} \subset \mathbb{P}^{n}$
is an intersection of finitely many projective hypersurfaces.
The sets $V(I) \subset \mathbb{P}^{n}$ are the algebraic subsets of \mathbb{P}^{n}. The irreducible algebraic sets are defined as in the case of affine varieties, and satisfy:

$$
X=V(\mathcal{P}) \subset \mathbb{P}^{n}
$$

for a unique homogeneous prime ideal $\mathcal{P} \subset \mathbb{C}\left[x_{1}, \ldots, x_{n+1}\right]$. Thus each irreducible algebraic set inside \mathbb{P}^{n} has a homogeneous coordinate ring:

$$
R(X):=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] / \mathcal{P}=\bigoplus \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]_{d} / \mathcal{P}_{d}
$$

Warning: Unlike the coordinate rings of isomorphic affine varieties, homogeneous rings of isomorphic projective varieties will not usually be isomorphic graded rings. Even more fundamentally, a non-constant element of the homogeneous ring of $X \subset \mathbb{P}^{n}$ is not a function.
(In fact, homogeneous rings are made up of sections of line bundles.)
Note: There is one homogeneous maximal ideal, namely:

$$
\left\langle x_{1}, \ldots, x_{n+1}\right\rangle \subset \mathbb{C}\left[x_{1}, \ldots, x_{n+1}\right]
$$

This is usually called the irrelevant homogeneous ideal, and it contains all other homogeneous ideals.
Definition: A homogeneous ideal $m \subset \mathbb{C}\left[x_{1}, \ldots, x_{n+1}\right]$ is homaximal if it is maximal among all homogeneous ideals other than $\left\langle x_{1}, \ldots, x_{n+1}\right\rangle$.

Exercises 3.1:

(a) Given a homogeneous $I \subset\left\langle x_{1}, \ldots, x_{n+1}\right\rangle$, there is a bijection:
$\left\{\right.$ homaximal ideals m_{x} containing $\left.I\right\} \leftrightarrow\left\{\right.$ points $\left.x \in V(I) \subset \mathbb{P}^{n}\right\}$
(b) There is a (Zariski) topology on $X=V(\mathcal{P})$ generated by:

$$
U_{F}:=X-V(F) \subset \mathbb{P}^{n}
$$

for $F \in R(X)_{d}$ consisting of open sets of the form $U_{I}:=X-V(I)$ for homogeneous ideals $I \subset R(X)$.

Definition: The field of rational functions on $X=V(\mathcal{P}) \subset \mathbb{P}^{n}$ is:

$$
\mathbb{C}(X):=\left\{\left.\frac{F}{G} \right\rvert\, F, G \in R(X)_{d} \text { for some } d, \text { and } G \neq 0\right\} / \sim
$$

Good News: Rational functions are \mathbb{C}-valued functions on some U.
Bad News/Exercise 3.2: The only rational functions defined everywhere on X are the constant functions.

Proposition 3.2: The sheaf \mathcal{O}_{X} of \mathbb{C}-valued functions on (the open sets of) an irreducible algebraic set $X=V(\mathcal{P}) \subset \mathbb{P}^{n}$ defined by:

$$
\mathcal{O}_{x}:=\left\{\left.\frac{F}{G} \right\rvert\, G(x) \neq 0\right\} \subset \mathbb{C}(X) \text { and } \mathcal{O}_{X}(U):=\bigcap_{x \in U} \mathcal{O}_{x} \subset \mathbb{C}(X)
$$

gives $\left(X, \mathcal{O}_{X}\right)$ the structure of a prevariety.
Proof: We need to prove $\left(X, \mathcal{O}_{X}\right)$ is locally affine.
For each $i=1, \ldots, n+1$, either:
(a) $x_{i} \in \mathcal{P}$, in which case $X \cap U_{i}=\emptyset$, or else
(b) $x_{i} \notin \mathcal{P}$, in which case $U_{x_{i}}=X \cap U_{i}$, with $\left.\mathcal{O}_{X}\right|_{U_{x_{i}}}$ is isomorphic to the affine variety corresponding to the \mathbb{C}-algebra:
$\mathbb{C}\left[U_{x_{i}}\right]=\mathbb{C}\left[\frac{x_{1}}{x_{i}}, \ldots, \frac{x_{n+1}}{x_{i}}\right] / \widetilde{\mathcal{P}}$, where $F\left(\frac{x_{1}}{x_{i}}, \cdots, \frac{x_{n+1}}{x_{i}}\right) \in \widetilde{\mathcal{P}} \Leftrightarrow F \in \mathcal{P}$ which, incidentally, satisfies $\mathbb{C}\left(U_{x_{i}}\right)=\mathbb{C}(X)$. Since X is covered by these open sets, it follows that X is locally affine.

Definition: A prevariety is projective if it is isomorphic to one of the $X=V(\mathcal{P}) \subset \mathbb{P}^{n}$ with sheaf of \mathbb{C}-valued functions defined as above.

As for separatedness, first notice:
Proposition 3.3: $\mathbb{P}^{m} \times \mathbb{P}^{n}$ is projective, and \mathbb{P}^{n} is separated.
Proof: The Segre embedding is the map (of sets):

$$
\begin{gathered}
\sigma: \mathbb{P}^{n} \times \mathbb{P}^{m} \rightarrow \mathbb{P}^{(n+1)(m+1)-1} \\
\left(\left(x_{1}: \cdots: x_{n+1}\right),\left(y_{1}: \cdots: y_{m+1}\right)\right) \mapsto\left(\cdots: x_{i} y_{j}: \ldots\right)
\end{gathered}
$$

(We will use $z_{i j}$ as homogeneous coordinates for points of $\mathbb{P}^{(n+1)(m+1)-1}$.) The image of σ is the irreducible algebraic set:

$$
X_{m, n}:=V\left(\left\{z_{i j} z_{k l}-z_{i l} z_{k j}\right\}\right) \subset \mathbb{P}^{(n+1)(m+1)-1}
$$

and moreover, as a prevariety, $X_{m, n}$ (with sheaf of regular functions) is the product of \mathbb{P}^{n} and \mathbb{P}^{m}. Also, if $n=m$, then:

$$
\delta\left(\mathbb{P}^{n}\right)=X_{n, n} \cap V\left(\left\{z_{i j}-z_{j i}\right\}\right)
$$

is closed, so \mathbb{P}^{n} is separated.
Exercise 3.3: (a) Carefully show that the projection $\pi_{\mathbb{P} m}: X_{m, n} \rightarrow \mathbb{P}^{m}$ is a morphism of prevarieties.
(b) Extend Proposition 3.3 to describe the product of projective prevarieties $X=V(\mathcal{P}) \subset \mathbb{P}^{n}$ and $Y=V(\mathcal{Q}) \subset \mathbb{P}^{m}$ as an irreducible, closed subset of $X_{m, n}$, hence it is a projective prevariety, and then conclude that all projective prevarieties are varieties.

Definition: An open subset $U \subset X$ of a projective variety, together with the induced sheaf $\left.\mathcal{O}_{X}\right|_{U}$ of \mathbb{C}-valued functions, or more generally, any variety isomorphic to such a pair $\left(U,\left.\mathcal{O}_{X}\right|_{U}\right)$, is quasi-projective.

Proposition 3.4: A quasi-affine variety is also quasi-projective.
Proof: It suffices to show that each affine variety is quasi-projective. To this end, suppose $\left(Y, \mathcal{O}_{Y}\right)$ is isomorphic to the affine variety obtained from $X=V(\mathcal{P}) \subset \mathbb{C}^{n}$. Then we may identify \mathbb{C}^{n} with $U_{n+1} \subset \mathbb{P}^{n}$ and take the (Zariski) closure \bar{X} of $X \subset \mathbb{P}^{n}$. Then

$$
\bar{X}=V\left(\mathcal{P}^{h}\right), \text { where } \mathcal{P}^{h}=\left\langle f^{h} \mid f \in \mathcal{P}\right\rangle
$$

and $f^{h}\left(x_{1}, \ldots, x_{n+1}\right):=x_{n+1}^{d} f\left(\frac{x_{1}}{x_{n+1}}, \ldots, \frac{x_{n}}{x_{n+1}}\right)$ whenever $d=\operatorname{deg}(f)$. Check that \mathcal{P}^{h} defined this way is a prime ideal, and that $\bar{X} \cap \mathbb{C}^{n}=X$.
Exercise 3.4: Find generators $\left\langle f_{1}, \cdots f_{m}\right\rangle=\mathcal{P}$ of a prime ideal with the property that the f_{i}^{h} do not generate \mathcal{P}^{h}.

Definition: In a category whose objects are topological spaces, whose morphisms are continuous, and in which products exist, a separated object X is proper if "projecting from X is universally closed," i.e.

$$
\pi_{Y}: X \times Y \rightarrow Y
$$

maps closed sets $Z \subset X \times Y$ to closed sets $\pi_{Y}(Z) \subset Y$, for all Y.
Exercise 3.5: In the category of topological spaces, compact implies proper, and conversely, any proper space with the property that every open cover has a countable subcover is also compact.
Concrete Example: Suppose $\left(X, \mathcal{O}_{X}\right)$ is affine and $f \in \mathbb{C}[X]$ is a non-constant function. Then the hyperbola over U_{f} :

$$
V(x f-1) \subset X \times \mathbb{C}
$$

is closed, but its projection to \mathbb{C} has image \mathbb{C}^{*}, which is not closed. Thus, the only proper affine variety is the one-point space.
General Example: If $U \subset X$ is an open subset of a separated object and $U \neq \bar{U}$ (e.g. any quasi-projective variety properly contained in a projective variety), then U is not proper. Indeed, the closed diagonal in $X \times X$ determines a closed set:

$$
\Delta \cap(U \times X)
$$

that projects to $U \subset X$.
Theorem (Grothendieck) Projective varieties are proper varieties.
To prove this, we need a result from commutative algebra:

Nakayama's Lemma (Version 1): Suppose M is a finitely generated module over a ring A and $I \subset A$ is an ideal such that:

$$
I M=M
$$

Then there an element $a \in I$ such that $(1+a) m=0$ for all $m \in M$.
Proof: Let $m_{1}, \ldots, m_{n} \in M$ be generators. Then $I M=M$ gives:

$$
m_{i}=\sum_{j=1}^{n} a_{i j} m_{j} \text { for } a_{i j} \in I
$$

implying that the matrix $1-\left(a_{i j}\right)$ has a kernel, hence $b=\operatorname{det}\left(1-\left(a_{i j}\right)\right)$ satisfies $b m_{i}=0$ for all i, and evidently, $b=1+a$ for some $a \in I$.

Proof: (of the theorem) It suffices to prove that for all n, m :

$$
\pi_{\mathbb{C}^{m}}: \mathbb{P}^{n} \times \mathbb{C}^{m} \rightarrow \mathbb{C}^{m} \text { is a closed map }
$$

Let $\mathbb{C}\left[x_{1}, \cdots x_{n+1}\right]=R\left(\mathbb{P}^{n}\right)$ and $\mathbb{C}\left[y_{1}, \cdots, y_{m}\right]=\mathbb{C}\left[\mathbb{C}^{m}\right]$, and suppose $Z \subset \mathbb{P}^{n} \times \mathbb{C}^{m}$ is closed

Then we need to show that $\pi_{\mathbb{C}^{m}}(Z)=V(J)$ for some $J \subset \mathbb{C}\left[y_{1}, \ldots, y_{m}\right]$. To this end, grade the ring $\mathbb{C}[\bar{x}, \bar{y}]:=\mathbb{C}\left[x_{1}, \cdots, x_{n+1}, y_{1}, \cdots, y_{m}\right]$ by degree in the x-variables:

$$
\mathbb{C}[\bar{x}, \bar{y}]=\bigoplus_{d} \mathbb{C}\left[x_{1}, \cdots, x_{n+1}\right]_{d} \otimes \mathbb{C}\left[y_{1}, \cdots, y_{m}\right]
$$

and consider the subsets defined by homogeneous ideals:

$$
V(I) \subset \mathbb{P}^{n} \times \mathbb{C}^{m} ; \quad I=\bigoplus_{d} I_{d} \subset \bigoplus_{d} \mathbb{C}[\bar{x}, \bar{y}]_{d}
$$

Then the theorem follows immediately from:
Claim 1: Every closed set $Z \subset \mathbb{P}^{n} \times \mathbb{C}^{m}$ is equal to some $V(I)$.
Claim 2: $\pi_{\mathbb{C}^{m}}(V(I))=V\left(I_{0}\right)$, the "degree zero" part of the ideal I.
Proof of Claim 1: Cover \mathbb{P}^{n} by the open sets $U_{i}=\mathbb{C}^{n} \times \mathbb{C}^{m}$ with:

$$
\mathbb{C}\left[U_{i}\right]=\mathbb{C}\left[\frac{x_{1}}{x_{i}}, \ldots, \frac{x_{n+1}}{x_{i}}, y_{1}, \ldots, y_{m}\right]
$$

and, given a closed set $Z \subset \mathbb{P}^{n} \times \mathbb{C}^{m}$, define a homogeneous ideal I by:

$$
I_{d}:=\left\{F \in \mathbb{C}[\bar{x}, \bar{y}]_{d} \left\lvert\, \frac{F}{x_{i}^{d}} \in I\left(Z \cap U_{i}\right) \subset \mathbb{C}\left[U_{i}\right]\right. \text { for all } i\right\}
$$

It is clear that $Z \subseteq V(I)$. For the other inclusion, suppose $(a, b) \notin Z$. Then $(a, b) \in U_{i}$ for some i, so there is an $f \in I\left(Z \cap U_{i}\right)$ such that $f(a, b) \neq 0$. It follows that $x_{i}^{d} f \in \mathbb{C}\left[U_{i}\right]$ for some d, and then that $F:=x_{i}^{d+1} f \in I_{d}$. Since $F(a, b) \neq 0$, it follows that $(a, b) \notin V(I)$.

Proof of Claim 2: Again, the inclusion $\pi_{\mathbb{C}^{m}}(Z) \subset V\left(I_{0}\right)$ is clear. For the other inclusion, suppose $b=\left(b_{1}, \ldots, b_{m}\right) \notin \pi_{\mathbb{C}^{m}}(Z)$, and let $m_{b}=\left\langle y_{1}-b_{1}, \ldots, y_{m}-b_{m}\right\rangle$ be the corresponding maximal ideal. Then:
$Z \cap\left(\mathbb{P}^{n} \times b\right)=\emptyset$, so $\left(Z \cap U_{i}\right) \cap\left(U_{i} \times b\right)=\emptyset$ for all i
which in turn implies that:

$$
I\left(Z \cap U_{i}\right)+\mathbb{C}\left[\frac{x_{1}}{x_{i}}, \ldots, \frac{x_{n+1}}{x_{i}}\right] \cdot m_{b}=\mathbb{C}\left[U_{i}\right] \text { for all } i
$$

and thus for each $i=1, \ldots, n+1$, there exist $f_{i} \in I\left(Z \cap U_{i}\right), g_{i j} \in \mathbb{C}\left[U_{i}\right]$ and $m_{i j} \in m_{b}$ such that $f_{i}+\sum_{j} g_{i j} m_{i j}=1$. Moreover, by multiplying through by a sufficiently large power d_{i} of each x_{i}, we can arrange that:

$$
F_{i}+\sum_{j} G_{i j} m_{i j}=x_{i}^{d_{i}} \text { for } F_{i} \in I_{d_{i}}, G_{i j} \in \mathbb{C}[\bar{x}, \bar{y}]_{d_{i}}
$$

If we moreover take $d>\sum d_{i}$, then we have $I_{d}+\mathbb{C}[\bar{x}, \bar{y}]_{d} \cdot m_{b}=\mathbb{C}[\bar{x}, \bar{y}]_{d}$.
Thus the finitely generated $\mathbb{C}\left[y_{1}, \ldots, y_{m}\right]$-modules:

$$
M_{d}:=\mathbb{C}[\bar{x}, \bar{y}]_{d} / I_{d} \text { satisfy } m_{b} \cdot M_{d}=M_{d}
$$

hence by Nakayama's lemma, there is an $f \in \mathbb{C}\left[y_{1}, \cdots, y_{m}\right]$ such that $f(b) \neq 0$ and $f M_{d}=0$, i.e. $f \cdot \mathbb{C}[\bar{x}, \bar{y}]_{d} \in I_{d}$. But this implies $f \cdot x_{i}^{d} \in I_{d}$ for all i, from which it follows that $f \in I_{0}$, as desired.
Corollary 3.5/Exercise 3.6: Any morphism $\Phi: X \rightarrow Y$ from a projective variety X to an abstract variety Y is a closed mapping.

