Complex Algebraic Geometry: Smooth Curves Aaron Bertram, 2010

12. First Steps Towards Classifying Curves. The Riemann-Roch Theorem is a powerful tool for classifying smooth projective curves, i.e. giving us a start on the following questions:

"What are all the curves of a given genus (up to isomorphism)?" or

"When is there a smooth curve of genus g and degree d in \mathbb{P}^r ?"

Genus Zero Curves: Abstractly, they are easy to describe:

Proposition 12.1. If g(C) = 0, then C is isomorphic to \mathbb{P}^1 .

Proof: Consider D = p. Then by the Riemann-Roch *inequality*:

$$l(p) = \dim(L(p)) \ge 1 + 1 - g = 2$$

so there is a non-constant $\phi \in \mathbb{C}(C)$ with pole of order one at p, and no other poles, defining a regular map: $\Phi : C \to \mathbb{P}^1$ of degree one which is therefore an isomorphism.

The rational normal curve is the embedding:

$$\Phi: \mathbb{P}^1 \to \mathbb{P}^d; \quad (x:y) \mapsto (x^d: x^{d-1}y: x^{d-2}y^2: \cdots: y^d)$$

and its image under arbitrary change of basis of \mathbb{P}^d .

Notice that every map of degree d from \mathbb{P}^1 to \mathbb{P}^r whose image does not lie in any hyperplane is a projection of the rational normal curve. There is a sort of converse to this.

Definition. $C \subset \mathbb{P}^r$ spans \mathbb{P}^r if it is not contained in a hyperplane.

Proposition 12.2: Every $C \subset \mathbb{P}^d$ of degree less than d fails to span. The only curve of degree d that spans \mathbb{P}^d is the rational normal curve.

Proof: Since $l(D) \leq d+1$ for all divisors on all curves, the first sentence is immediate. As for the second, suppose l(D) = d+1, choose $p \in C$ and note that l(D - (d-1)p) = 2. As in Proposition 12.1, this implies that $C = \mathbb{P}^1$, and then embedding is the rational normal curve because a projection would have larger degree.

The Riemann-Roch Theorem is very useful for finding embeddings of smooth curves of higher genus by means of:

Definition/Exercise 12.1: Let *D* be an effective divisor.

Then the linear series |D| is:

(a) Base point free if

$$l(D-p) = l(D) - 1 \text{ for all } p \in C$$

in which case the regular map: $\Phi : C \to \mathbb{P}^r$; $x \mapsto (\phi_1(x) : \cdots : \phi_r(x) : 1)$ (for a choice of basis $\phi_1, \cdots \phi_r, 1 \in L(D)$) has degree d. In fact, the map can be defined without resorting to a choice of basis if \mathbb{P}^r is replaced by the dual $|D|^{\vee}$ of the projective space |D|.

(b) Very ample if

$$l(D - p - q) = l(D) - 2$$
 for all p, q (including $p = q$) in C

in which case the map Φ from (a) is a *closed embedding*.

Genus One Curves: These curves are distinguished in that:

$$l(K_C) = \dim(\Omega[C]) = 1$$
, and $\deg(K_C) = 0$

so they admit differential forms ω with no zeroes or poles. This is also a consequence of the fact that genus one curves (with a choice of origin) are (Lie) groups. This was proved classically with the help of:

Proposition 12.3. All curves of genus one are smooth plane cubics.

Proof: Consider the linear series L(np) for $p \in C$:

- (a) l(p) = 1, so $L(p) = \mathbb{C}$, the constant functions.
- (b) l(2p) = 2. Let $\phi \in L(2p) L(p)$. This defines a two-to-one map: $\Phi: C \to \mathbb{P}^1; \ x \mapsto (\phi(x): 1)$

ramifying over ∞ and three other points (by Riemann-Hurwitz).

(c)
$$l(3p) = 3$$
. Let $\psi \in L(3p) - L(2p)$. Then:
 $\Phi: C \to \mathbb{P}^2; x \mapsto (\phi(x): \psi(x): 1)$

is a closed embedding as a smooth plane curve.

- (d) l(4p) = 4. This has basis $1, \phi, \psi, \phi^2$.
- (e) l(5p) = 5. This has basis $1, \phi, \psi, \phi^2, \phi\psi$.
- (f) l(6p) = 6. There is a linear dependence involving ψ^2 and ϕ^3 :

$$\psi^2 - k\phi^3 = a\phi\psi + b\phi^2 + c\psi + d\phi + e$$

This is the equation defining the image of C in (c). Indeed, after completing the square, it has the form:

$$y^{2} = (x - a)(x - b)(x - c)$$

where $a, b, c \in \mathbb{C}$ are the (distinct) points over which the map in (b) ramifies. Moreover, after composing with an automorphism of \mathbb{P}^1 , we may assume that:

$$a = 0, b = 1, c = \lambda$$

for some $\lambda \neq 0, 1, \infty$.

Curves of Higher Genus. These curves break into two camps; the hyperelliptic curves and the *canonical* curves embedded in \mathbb{P}^{g-1} by the linear series $|K_C|$. For the first few "higher" genera, the canonical curves are easy to describe. After that, things are more subtle.

Definition. A curve C of genus ≥ 2 is *hyperelliptic* if there is a map:

$$\Phi: C \to \mathbb{P}^1$$
 of degree 2

or, equivalently, if there exist $p, q \in C$ such that l(p+q) = 2.

Proposition 12.4. Every curve of genus 2 is canonically hyperelliptic.

Proof: The canonical divisor satisfiess:

$$\deg(K_C) = 2g - 2 = 2$$
 and $l(K_C) = 2$

Thus this hyperelliptic map is canonical in the sense that it is the map to \mathbb{P}^1 (or $|K_C|^{\vee}$) induced by the canonical linear series. It is also canonical in the sense that it is the unique degree two map to \mathbb{P}^1 , for either of the following two reasons:

Proposition 12.5. For divisors of degree 2g - 2 on a smooth curve C of genus g, either $D = K_C$ or else l(D) = g - 1.

Proof: Suppose deg(D) = 2g - 2. Then by Riemann-Roch:

$$l(D) - l(K_C - D) = g - 1$$

But $l(K_C - D) = 0$ unless $D = K_C$.

Proposition 12.6. There is *at most* one map of degree two from a curve C of genus ≥ 2 to \mathbb{P}^1 (modulo automorphisms of \mathbb{P}^1).

Proof: Suppose there were two such maps: Φ and $\Psi : C \to \mathbb{P}^1$. Choose a point $p \in C$, which, for convenience, is not a ramification point of either map. Let $p + q = \Phi^{-1}(\Phi(p))$ and $p + r = \Psi^{-1}(\Psi(p))$. Then we conclude that there are rational functions:

$$\phi \in L(p+q) - \mathbb{C}$$
 and $\psi \in L(p+r) - \mathbb{C}$

and we can further conclude that $1, \phi, \psi \in L(p+q+r)$ are linearly independent. This would define a regular map $\Xi : C \to \mathbb{P}^2$ of degree 3, which either embeds C as a smooth plane cubic (in which case g = 1) or else maps C onto a nodal or cuspidal cubic curve (in which case g = 0).

Proposition 12.7. For divisors D of degree $d \ge 2g + 1$ on C,

$$\Phi: C \to \mathbb{P}^{d-g} = |D|^{\vee}$$

is a closed embedding.

Proof: By Riemann-Roch, we have:

l(D) = d - g + 1, l(D - p) = d - g and l(D - p - q) = d - 1 - gsince $l(K_C - D) = l(K_C - D + p) = l(K_C - D + p + q) = 0$. Similarly,

0,7

Proposition 12.8. If $D = K_C$ and C is not hyperelliptic, then:

$$\Phi: C \to \mathbb{P}^{g-1} = |K_C|^{\vee}$$

is a closed embedding, and conversely, if $C \subset \mathbb{P}^{g-1}$ is a genus g curve of degree 2g - 2 that spans \mathbb{P}^{g-1} , then C is a canonically embedded (non-hyperelliptic) curve.

Proof: As in Proposition 12.7, the embedding follows from:

$$l(0) = l(p) = l(p+q) = 1$$

for non-hyperelliptic curves. From l(p+q) = 2 for selected $p, q \in C$ on a hyperelliptic curve, it follows that $|K_C|$ does not embed such curves (see the Proof of Proposition 12.9 below to see what does happen). From Proposition 12.5, we conclude that all spanning smooth curves of genus g and degree 2g - 2 are canonically embedded.

Proposition 12.9. There exist hyperelliptic curves of every genus.

Proof: The affine plane curve $C \subset \mathbb{C}^2$ defined by:

$$y^2 = (x - a_1) \cdots (x - a_{2g+1})$$

and mapping to \mathbb{C}^1 via projection on the *x*-axis should be completed, by adding one point at infinity, to a smooth projective curve of genus *g*. The closure in \mathbb{P}^2 won't serve the purpose, since it is singular for $g \ge 2$. Instead, let $p \in C$ be one of the ramification points, and suppose there were a smooth, projective curve $C \subset \overline{C}$ obtained by adding one point. Then:

$$\phi \in L(2p)$$

would be a rational function with pole of order two at p, and by the Riemann-Roch theorem, there would be a basis:

$$1, \phi, \phi^2, \cdots, \phi^{g-1} \in L((2g-2)p)$$

from which it follows (by Proposition 12.5) that $(2g - 2)p = K_C(!)$ and the canonical map for a hyperelliptic curve is the 2:1 map to \mathbb{P}^1 , followed by the embedding of \mathbb{P}^1 in \mathbb{P}^{g-1} as a rational normal curve. We may further extend to a basis:

$$1, \phi, \phi^2, \cdots, \phi^g, \psi \in L((2g+1)p)$$

4

by introducing a new rational function $\psi \in L((2g+1)p) - L((2g)p)$. This would give an embedding (by Proposition 12.7):

$$\Phi:\overline{C}\hookrightarrow\mathbb{P}^{g+1}$$

After completing the square (as in Proposition 12.3), one would have $\overline{C} \subset \mathbb{P}^{g+1}$ (embedded by $x \mapsto (\phi(x) : \phi^2(x) : \cdots : \phi^g(x) : \psi(x) : 1)$) as the closure of

$$C = V(x_2 - x_1^2, x_3 - x_1^3, \cdots, x_g - x_1^g, x_{g+1}^2 - \prod(x_1 - a_i)) \subset \mathbb{C}^{g+1}$$

Exercise: Prove that the closure of C is smooth, by finding enough homogeneous polynomials in $I(\overline{C}) \subset \mathbb{C}[x_1, \ldots, x_{g+2}]$.

Proposition 12.10. The following projective curves are embedded by the canonical linear series, hence in particular are not hyperelliptic:

(a) (Genus 3) A smooth plane curve of degree four.

(b) (Genus 4) A smooth complete intersection $Q \cap S \subset \mathbb{P}^3$ of surfaces of degrees two and three.

(c) (Genus 5) A smooth complete intersection $Q_1 \cap Q_2 \cap Q_3 \subset \mathbb{P}^4$ of hypersurfaces of degree two.

Proof: Each is an embedded curve of genus g and degree 2g - 2, as can be checked from the Hilbert polynomial. Therefore, each is an embedded canonical curve

Exercise: Prove that every smooth plane curve of degree ≥ 4 is not hyperelliptic by finding an embedding of the curve (of genus $g = \binom{d-1}{2}$) in \mathbb{P}^{g-1} of degree 2g - 2.

Theorem 12.11. "Most" curves of genus ≥ 3 are not hyperelliptic.

Sketch of a Proof: As shown in Propositions 12.6 and 12.9, each such curve has a unique degree two map to \mathbb{P}^1 (up to automorphisms) ramified at 2g + 2 distinct (unordered) points:

$$a_1, \cdots, a_{2q+2} \in \mathbb{P}^2$$

This means that we can think of the set of **all** hyperelliptic curves as a quotient of the parameter space:

$$\mathbb{P}^{2g+2} - \Delta$$

of unordered distinct 2g + 2-tuples of points on \mathbb{P}^1 , by the relation:

$$(a_1 + \dots + a_{2g+2}) \sim (a'_1 + \dots + a'_{2g+2}) \Leftrightarrow \alpha(a_i) = a'_i$$

for some $\alpha \in PGL(2, \mathbb{C}) = Aut(\mathbb{P}^1)$. It follows from *invariant theory* that there is a **quasi-projective** variety \mathcal{H}_g and a surjective map:

$$h_q: (\mathbb{P}^{2g+2} - \Delta) \to \mathcal{H}_q$$

such that the fibers of h_g are the equivalence classes of sets of points. In other words, \mathcal{H}_g is a (coarse) moduli space for hyperelliptic curves of genus g, and the dimension of \mathcal{H}_g is $2g + 2 - \dim(\mathrm{PGL}(2,\mathbb{C})) = 2g - 1$.

On the other hand, recall from Proposition 12.7 that every smooth curve can be embedded in \mathbb{P}^{g+1} by simply choosing a divisor of degree 2g+1 on the curve, and from Proposition 12.9 that hyperelliptic curves can be explicitly so embedded. Suppose $C \subset \mathbb{P}^{g+1}$ is such an embedded curve, of degree 2g+1, and consider a generic projection to \mathbb{P}^1 :

(†) $\Phi: C \to \mathbb{P}^1$ of degree 2g + 1 ramifying over $a_1, \ldots, a_{6q} \in \mathbb{P}^1$

(the number of ramification points is computed by Riemann-Hurwitz). One can associate a "monodromy representation" of the fundamental group of $\mathbb{P}^1 - \{a_1, \ldots, a_{6g}\}$ by choosing a base point $a_0 \in \mathbb{P}^1$, and following the 2g + 1 sheets of the cover over loops γ_i emanating from a_0 and looping once around a_i to get transpositions of the sheets and a representation into the symmetric group:

$$(*) \rho : \pi_1(\mathbb{P}^1 - \{a_1, \cdots, a_{6g}\}, a_0) \to \Sigma_{2g+1}; \ \gamma_i \mapsto t_i, \prod_{i=1}^{6g} t_i = 1, \langle t_i \rangle = \Sigma_{g+1}$$

Four big theorems are needed:

Fundamental Theorem of Riemann Surfaces.

Each representation (*) comes from a uniquely determined map (\dagger) .

Irreducibility Theorem. There is a *variety* Hu_g , the Hurwitz variety, parametrizing the covers (*), together with a finite surjective map:

$$\pi_g: \operatorname{Hu}_g \to (\mathbb{P}^{6g} - \Delta)$$

of degree equal to the number of ways of writing:

 $1 = t_1 \cdots t_{6q}$ as a product of transpositions that generate Σ_{2q+1}

Fundamental Theorem on Moduli of Curves: There is a quasiprojective variety \mathcal{M}_q and a surjective regular map:

$$m_g: \operatorname{Hu}_g \to \mathcal{M}_g$$

whose fibers are the equivalence classes under the relation:

$$[C \to \mathbb{P}^1] \sim [C' \to \mathbb{P}^1] \Leftrightarrow C \cong C$$

 $\mathbf{6}$

Deformation Theory: The Zariski tangent space to each fiber:

 $m_q^{-1}(C) = \{ f : C \to \mathbb{P}^1 \mid f \text{ has simple ramification} \}$

at [f] is L(D), where $D = f^{-1}(-K_{\mathbb{P}^1})$ (with multiplicities, if necessary) is a divisor of degree 2(2g+1), and so l(D) = 3g+3 by Riemann-Roch.

Thus,

$$\dim(\mathcal{M}_g) = \dim(\mathrm{Hu}_g) - \dim(m_q^{-1}(C)) = 6g - (3g+3) = 3g - 3$$

and so $\dim(\mathcal{M}_g) > \dim(\mathcal{H}_g)$ when $g \geq 3$, which gives meaning to the assertion that "most" curves are not hyperelliptic.

Example. The smooth plane curves $C \subset \mathbb{P}^2$ of degree 4 are parametrized by an open subset $U \subset \mathbb{P}^{14}$, since dim $\mathbb{C}[x, y, z]_4 = 15$, and two such curves are isomorphic if and only if they are related by a change of basis of \mathbb{P}^2 . In fact, there is an open $W \subset \mathcal{M}_3$ and a surjective map:

 $U \to W \subset \mathcal{M}_3$ with fibers $\mathrm{PGL}(3,\mathbb{C})$

and the dimensions work out: $14 - \dim(\operatorname{PGL}(3, \mathbb{C}) = 6 = 3(3) - 3$. Note that $\mathcal{M}_3 - W = \mathcal{H}_3$, which has dimension 2(3) - 1 = 5.