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12. First Steps Towards Classifying Curves. The Riemann-Roch
Theorem is a powerful tool for classifying smooth projective curves, i.e.
giving us a start on the following questions:

“What are all the curves of a given genus (up to isomorphism)?” or

“When is there a smooth curve of genus g and degree d in Pr?”

Genus Zero Curves: Abstractly, they are easy to describe:

Proposition 12.1. If g(C) = 0, then C is isomorphic to P1.

Proof: Consider D = p. Then by the Riemann-Roch inequality:

l(p) = dim(L(p)) ≥ 1 + 1− g = 2

so there is a non-constant φ ∈ C(C) with pole of order one at p, and no
other poles, defining a regular map: Φ : C → P1 of degree one which
is therefore an isomorphism.

The rational normal curve is the embedding:

Φ : P1 → Pd; (x : y) 7→ (xd : xd−1y : xd−2y2 : · · · : yd)

and its image under arbitrary change of basis of Pd.

Notice that every map of degree d from P1 to Pr whose image does
not lie in any hyperplane is a projection of the rational normal curve.
There is a sort of converse to this.

Definition. C ⊂ Pr spans Pr if it is not contained in a hyperplane.

Proposition 12.2: Every C ⊂ Pd of degree less than d fails to span.
The only curve of degree d that spans Pd is the rational normal curve.

Proof: Since l(D) ≤ d + 1 for all divisors on all curves, the first
sentence is immediate. As for the second, suppose l(D) = d+1, choose
p ∈ C and note that l(D − (d− 1)p) = 2. As in Proposition 12.1, this
implies that C = P1, and then embedding is the rational normal curve
because a projection would have larger degree.

The Riemann-Roch Theorem is very useful for finding embeddings
of smooth curves of higher genus by means of:

Definition/Exercise 12.1: Let D be an effective divisor.
Then the linear series |D| is:

(a) Base point free if

l(D − p) = l(D)− 1 for all p ∈ C
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in which case the regular map: Φ : C → Pr; x 7→ (φ1(x) : · · · : φr(x) : 1)
(for a choice of basis φ1, · · ·φr, 1 ∈ L(D)) has degree d. In fact, the map
can be defined without resorting to a choice of basis if Pr is replaced
by the dual |D|∨ of the projective space |D|.

(b) Very ample if

l(D − p− q) = l(D)− 2 for all p, q (including p = q) in C

in which case the map Φ from (a) is a closed embedding.

Genus One Curves: These curves are distinguished in that:

l(KC) = dim(Ω[C]) = 1, and deg(KC) = 0

so they admit differential forms ω with no zeroes or poles. This is also
a consequence of the fact that genus one curves (with a choice of origin)
are (Lie) groups. This was proved classically with the help of:

Proposition 12.3. All curves of genus one are smooth plane cubics.

Proof: Consider the linear series L(np) for p ∈ C:

(a) l(p) = 1, so L(p) = C, the constant functions.

(b) l(2p) = 2. Let φ ∈ L(2p)−L(p). This defines a two-to-one map:

Φ : C → P1; x 7→ (φ(x) : 1)

ramifying over ∞ and three other points (by Riemann-Hurwitz).

(c) l(3p) = 3. Let ψ ∈ L(3p)− L(2p). Then:

Φ : C → P2;x 7→ (φ(x) : ψ(x) : 1)

is a closed embedding as a smooth plane curve.

(d) l(4p) = 4. This has basis 1, φ, ψ, φ2.

(e) l(5p) = 5. This has basis 1, φ, ψ, φ2, φψ.

(f) l(6p) = 6. There is a linear dependence involving ψ2 and φ3:

ψ2 − kφ3 = aφψ + bφ2 + cψ + dφ+ e

This is the equation defining the image of C in (c). Indeed, after
completing the square, it has the form:

y2 = (x− a)(x− b)(x− c)
where a, b, c ∈ C are the (distinct) points over which the map in (b)
ramifies. Moreover, after composing with an automorphism of P1, we
may assume that:

a = 0, b = 1, c = λ

for some λ 6= 0, 1,∞.
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Curves of Higher Genus. These curves break into two camps; the
hyperelliptic curves and the canonical curves embedded in Pg−1 by the
linear series |KC |. For the first few “higher” genera, the canonical
curves are easy to describe. After that, things are more subtle.

Definition. A curve C of genus ≥ 2 is hyperelliptic if there is a map:

Φ : C → P1 of degree 2

or, equivalently, if there exist p, q ∈ C such that l(p+ q) = 2.

Proposition 12.4. Every curve of genus 2 is canonically hyperelliptic.

Proof: The canonical divisor satisfiess:

deg(KC) = 2g − 2 = 2 and l(KC) = 2

Thus this hyperelliptic map is canonical in the sense that it is the
map to P1 (or |KC |∨) induced by the canonical linear series. It is also
canonical in the sense that it is the unique degree two map to P1, for
either of the following two reasons:

Proposition 12.5. For divisors of degree 2g− 2 on a smooth curve C
of genus g, either D = KC or else l(D) = g − 1.

Proof: Suppose deg(D) = 2g − 2. Then by Riemann-Roch:

l(D)− l(KC −D) = g − 1

But l(KC −D) = 0 unless D = KC .

Proposition 12.6. There is at most one map of degree two from a
curve C of genus ≥ 2 to P1 (modulo automorphisms of P1).

Proof: Suppose there were two such maps: Φ and Ψ : C → P1.
Choose a point p ∈ C, which, for convenience, is not a ramification
point of either map. Let p + q = Φ−1(Φ(p)) and p + r = Ψ−1(Ψ(p)).
Then we conclude that there are rational functions:

φ ∈ L(p+ q)− C and ψ ∈ L(p+ r)− C

and we can further conclude that 1, φ, ψ ∈ L(p + q + r) are linearly
independent. This would define a regular map Ξ : C → P2 of degree 3,
which either embeds C as a smooth plane cubic (in which case g = 1)
or else maps C onto a nodal or cuspidal cubic curve (in which case
g = 0).

Proposition 12.7. For divisors D of degree d ≥ 2g + 1 on C,

Φ : C → Pd−g = |D|∨

is a closed embedding.
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Proof: By Riemann-Roch, we have:

l(D) = d− g + 1, l(D − p) = d− g and l(D − p− q) = d− 1− g

since l(KC −D) = l(KC −D + p) = l(KC −D + p+ q) = 0.

Similarly,

Proposition 12.8. If D = KC and C is not hyperelliptic, then:

Φ : C → Pg−1 = |KC |∨

is a closed embedding, and conversely, if C ⊂ Pg−1 is a genus g curve
of degree 2g − 2 that spans Pg−1, then C is a canonically embedded
(non-hyperelliptic) curve.

Proof: As in Proposition 12.7, the embedding follows from:

l(0) = l(p) = l(p+ q) = 1

for non-hyperelliptic curves. From l(p+ q) = 2 for selected p, q ∈ C on
a hyperelliptic curve, it follows that |KC | does not embed such curves
(see the Proof of Proposition 12.9 below to see what does happen).
From Proposition 12.5, we conclude that all spanning smooth curves
of genus g and degree 2g − 2 are canonically embedded.

Proposition 12.9. There exist hyperelliptic curves of every genus.

Proof: The affine plane curve C ⊂ C2 defined by:

y2 = (x− a1) · · · (x− a2g+1)

and mapping to C1 via projection on the x-axis should be completed,
by adding one point at infinity, to a smooth projective curve of genus g.
The closure in P2 won’t serve the purpose, since it is singular for g ≥ 2.
Instead, let p ∈ C be one of the ramification points, and suppose there
were a smooth, projective curve C ⊂ C obtained by adding one point.
Then:

φ ∈ L(2p)

would be a rational function with pole of order two at p, and by the
Riemann-Roch theorem, there would be a basis:

1, φ, φ2, · · · , φg−1 ∈ L((2g − 2)p)

from which it follows (by Proposition 12.5) that (2g − 2)p = KC(!)
and the canonical map for a hyperelliptic curve is the 2:1 map to P1,
followed by the embedding of P1 in Pg−1 as a rational normal curve.
We may further extend to a basis:

1, φ, φ2, · · · , φg, ψ ∈ L((2g + 1)p)
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by introducing a new rational function ψ ∈ L((2g + 1)p) − L((2g)p).
This would give an embedding (by Proposition 12.7):

Φ : C ↪→ Pg+1

After completing the square (as in Proposition 12.3), one would have
C ⊂ Pg+1 (embedded by x 7→ (φ(x) : φ2(x) : · · · : φg(x) : ψ(x) : 1)) as
the closure of

C = V (x2 − x2
1, x3 − x3

1, · · · , xg − xg
1, x

2
g+1 −

∏
(x1 − ai)) ⊂ Cg+1

Exercise: Prove that the closure of C is smooth, by finding enough
homogeneous polynomials in I(C) ⊂ C[x1, . . . , xg+2].

Proposition 12.10. The following projective curves are embedded by
the canonical linear series, hence in particular are not hyperelliptic:

(a) (Genus 3) A smooth plane curve of degree four.

(b) (Genus 4) A smooth complete intersection Q∩S ⊂ P3 of surfaces
of degrees two and three.

(c) (Genus 5) A smooth complete intersection Q1 ∩Q2 ∩Q3 ⊂ P4 of
hypersurfaces of degree two.

Proof: Each is an embedded curve of genus g and degree 2g − 2,
as can be checked from the Hilbert polynomial. Therefore, each is an
embedded canonical curve

Exercise: Prove that every smooth plane curve of degree ≥ 4 is not
hyperelliptic by finding an embedding of the curve (of genus g =

(
d−1
2

)
)

in Pg−1 of degree 2g − 2.

Theorem 12.11. “Most” curves of genus ≥ 3 are not hyperelliptic.

Sketch of a Proof: As shown in Propositions 12.6 and 12.9, each
such curve has a unique degree two map to P1 (up to automorphisms)
ramified at 2g + 2 distinct (unordered) points:

a1, · · · , a2g+2 ∈ P1

This means that we can think of the set of all hyperelliptic curves as
a quotient of the parameter space:

P2g+2 −∆

of unordered distinct 2g + 2-tuples of points on P1, by the relation:

(a1 + · · ·+ a2g+2) ∼ (a′1 + · · · a′2g+2)⇔ α(ai) = a′i
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for some α ∈ PGL(2,C) = Aut(P1). It follows from invariant theory
that there is a quasi-projective variety Hg and a surjective map:

hg : (P2g+2 −∆)→ Hg

such that the fibers of hg are the equivalence classes of sets of points.
In other words, Hg is a (coarse) moduli space for hyperelliptic curves of
genus g, and the dimension of Hg is 2g+ 2−dim(PGL(2,C)) = 2g−1.

On the other hand, recall from Proposition 12.7 that every smooth
curve can be embedded in Pg+1 by simply choosing a divisor of degree
2g+1 on the curve, and from Proposition 12.9 that hyperelliptic curves
can be explicitly so embedded. Suppose C ⊂ Pg+1 is such an embedded
curve, of degree 2g + 1, and consider a generic projection to P1:

(†) Φ : C → P1 of degree 2g + 1 ramifiying over a1, . . . , a6g ∈ P1

(the number of ramification points is computed by Riemann-Hurwitz).
One can associate a “monodromy representation” of the fundamental
group of P1 − {a1, . . . , a6g} by choosing a base point a0 ∈ P1, and
following the 2g + 1 sheets of the cover over loops γi emanating from
a0 and looping once around ai to get transpositions of the sheets and
a representation into the symmetric group:

(∗) ρ : π1(P1−{a1, · · · , a6g}, a0)→ Σ2g+1; γi 7→ ti,

6g∏
i=1

ti = 1, 〈ti〉 = Σg+1

Four big theorems are needed:

Fundamental Theorem of Riemann Surfaces.
Each representation (∗) comes from a uniquely determined map (†).

Irreducibility Theorem. There is a variety Hug, the Hurwitz variety,
parametrizing the covers (∗), together with a finite surjective map:

πg : Hug → (P6g −∆)

of degree equal to the number of ways of writing:

1 = t1 · · · t6g as a product of transpositions that generate Σ2g+1

Fundamental Theorem on Moduli of Curves: There is a quasi-
projective variety Mg and a surjective regular map:

mg : Hug →Mg

whose fibers are the equivalence classes under the relation:

[C → P1] ∼ [C ′ → P1]⇔ C ∼= C ′
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Deformation Theory: The Zariski tangent space to each fiber:

m−1
g (C) = {f : C → P1 | f has simple ramification}

at [f ] is L(D), where D = f−1(−KP1) (with multiplicities, if necessary)
is a divisor of degree 2(2g+1), and so l(D) = 3g+3 by Riemann-Roch.

Thus,

dim(Mg) = dim(Hug)− dim(m−1
g (C)) = 6g − (3g + 3) = 3g − 3

and so dim(Mg) > dim(Hg) when g ≥ 3, which gives meaning to the
assertion that “most” curves are not hyperelliptic.

Example. The smooth plane curves C ⊂ P2 of degree 4 are parametrized
by an open subset U ⊂ P14, since dim C[x, y, z]4 = 15, and two such
curves are isomorphic if and only if they are related by a change of
basis of P2. In fact, there is an open W ⊂M3 and a surjective map:

U → W ⊂M3 with fibers PGL(3,C)

and the dimensions work out: 14 − dim(PGL(3,C) = 6 = 3(3) − 3.
Note that M3 −W = H3, which has dimension 2(3)− 1 = 5.


