Complex Algebraic Geometry: Smooth Curves

Aaron Bertram, 2010

12. First Steps Towards Classifying Curves. The Riemann-Roch Theorem is a powerful tool for classifying smooth projective curves, i.e. giving us a start on the following questions:
"What are all the curves of a given genus (up to isomorphism)?" or
"When is there a smooth curve of genus g and degree d in \mathbb{P}^{r} ?"
Genus Zero Curves: Abstractly, they are easy to describe:
Proposition 12.1. If $g(C)=0$, then C is isomorphic to \mathbb{P}^{1}.
Proof: Consider $D=p$. Then by the Riemann-Roch inequality:

$$
l(p)=\operatorname{dim}(L(p)) \geq 1+1-g=2
$$

so there is a non-constant $\phi \in \mathbb{C}(C)$ with pole of order one at p, and no other poles, defining a regular map: $\Phi: C \rightarrow \mathbb{P}^{1}$ of degree one which is therefore an isomorphism.

The rational normal curve is the embedding:

$$
\Phi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{d} ; \quad(x: y) \mapsto\left(x^{d}: x^{d-1} y: x^{d-2} y^{2}: \cdots: y^{d}\right)
$$

and its image under arbitrary change of basis of \mathbb{P}^{d}.
Notice that every map of degree d from \mathbb{P}^{1} to \mathbb{P}^{r} whose image does not lie in any hyperplane is a projection of the rational normal curve. There is a sort of converse to this.

Definition. $C \subset \mathbb{P}^{r}$ spans \mathbb{P}^{r} if it is not contained in a hyperplane.
Proposition 12.2: Every $C \subset \mathbb{P}^{d}$ of degree less than d fails to span. The only curve of degree d that spans \mathbb{P}^{d} is the rational normal curve.

Proof: Since $l(D) \leq d+1$ for all divisors on all curves, the first sentence is immediate. As for the second, suppose $l(D)=d+1$, choose $p \in C$ and note that $l(D-(d-1) p)=2$. As in Proposition 12.1, this implies that $C=\mathbb{P}^{1}$, and then embedding is the rational normal curve because a projection would have larger degree.

The Riemann-Roch Theorem is very useful for finding embeddings of smooth curves of higher genus by means of:
Definition/Exercise 12.1: Let D be an effective divisor.
Then the linear series $|D|$ is:
(a) Base point free if

$$
l(D-p)=l(D)-1 \text { for all } p \in C
$$

in which case the regular map: $\Phi: C \rightarrow \mathbb{P}^{r} ; x \mapsto\left(\phi_{1}(x): \cdots: \phi_{r}(x): 1\right)$ (for a choice of basis $\phi_{1}, \cdots \phi_{r}, 1 \in L(D)$) has degree d. In fact, the map can be defined without resorting to a choice of basis if \mathbb{P}^{r} is replaced by the dual $|D|^{\vee}$ of the projective space $|D|$.
(b) Very ample if

$$
l(D-p-q)=l(D)-2 \text { for all } p, q \text { (including } p=q) \text { in } C
$$

in which case the map Φ from (a) is a closed embedding.
Genus One Curves: These curves are distinguished in that:

$$
l\left(K_{C}\right)=\operatorname{dim}(\Omega[C])=1, \text { and } \operatorname{deg}\left(K_{C}\right)=0
$$

so they admit differential forms ω with no zeroes or poles. This is also a consequence of the fact that genus one curves (with a choice of origin) are (Lie) groups. This was proved classically with the help of:
Proposition 12.3. All curves of genus one are smooth plane cubics.
Proof: Consider the linear series $L(n p)$ for $p \in C$:
(a) $l(p)=1$, so $L(p)=\mathbb{C}$, the constant functions.
(b) $l(2 p)=2$. Let $\phi \in L(2 p)-L(p)$. This defines a two-to-one map:

$$
\Phi: C \rightarrow \mathbb{P}^{1} ; x \mapsto(\phi(x): 1)
$$

ramifying over ∞ and three other points (by Riemann-Hurwitz).
(c) $l(3 p)=3$. Let $\psi \in L(3 p)-L(2 p)$. Then:

$$
\Phi: C \rightarrow \mathbb{P}^{2} ; x \mapsto(\phi(x): \psi(x): 1)
$$

is a closed embedding as a smooth plane curve.
(d) $l(4 p)=4$. This has basis $1, \phi, \psi, \phi^{2}$.
(e) $l(5 p)=5$. This has basis $1, \phi, \psi, \phi^{2}, \phi \psi$.
(f) $l(6 p)=6$. There is a linear dependence involving ψ^{2} and ϕ^{3} :

$$
\psi^{2}-k \phi^{3}=a \phi \psi+b \phi^{2}+c \psi+d \phi+e
$$

This is the equation defining the image of C in (c). Indeed, after completing the square, it has the form:

$$
y^{2}=(x-a)(x-b)(x-c)
$$

where $a, b, c \in \mathbb{C}$ are the (distinct) points over which the map in (b) ramifies. Moreover, after composing with an automorphism of \mathbb{P}^{1}, we may assume that:

$$
a=0, b=1, c=\lambda
$$

for some $\lambda \neq 0,1, \infty$.

Curves of Higher Genus. These curves break into two camps; the hyperelliptic curves and the canonical curves embedded in \mathbb{P}^{g-1} by the linear series $\left|K_{C}\right|$. For the first few "higher" genera, the canonical curves are easy to describe. After that, things are more subtle.
Definition. A curve C of genus ≥ 2 is hyperelliptic if there is a map:

$$
\Phi: C \rightarrow \mathbb{P}^{1} \text { of degree } 2
$$

or, equivalently, if there exist $p, q \in C$ such that $l(p+q)=2$.
Proposition 12.4. Every curve of genus 2 is canonically hyperelliptic.
Proof: The canonical divisor satisfiess:

$$
\operatorname{deg}\left(K_{C}\right)=2 g-2=2 \text { and } l\left(K_{C}\right)=2
$$

Thus this hyperelliptic map is canonical in the sense that it is the map to \mathbb{P}^{1} (or $\left|K_{C}\right|^{\vee}$) induced by the canonical linear series. It is also canonical in the sense that it is the unique degree two map to \mathbb{P}^{1}, for either of the following two reasons:
Proposition 12.5. For divisors of degree $2 g-2$ on a smooth curve C of genus g, either $D=K_{C}$ or else $l(D)=g-1$.

Proof: Suppose $\operatorname{deg}(D)=2 g-2$. Then by Riemann-Roch:

$$
l(D)-l\left(K_{C}-D\right)=g-1
$$

But $l\left(K_{C}-D\right)=0$ unless $D=K_{C}$.
Proposition 12.6. There is at most one map of degree two from a curve C of genus ≥ 2 to \mathbb{P}^{1} (modulo automorphisms of \mathbb{P}^{1}).

Proof: Suppose there were two such maps: Φ and $\Psi: C \rightarrow \mathbb{P}^{1}$. Choose a point $p \in C$, which, for convenience, is not a ramification point of either map. Let $p+q=\Phi^{-1}(\Phi(p))$ and $p+r=\Psi^{-1}(\Psi(p))$. Then we conclude that there are rational functions:

$$
\phi \in L(p+q)-\mathbb{C} \text { and } \psi \in L(p+r)-\mathbb{C}
$$

and we can further conclude that $1, \phi, \psi \in L(p+q+r)$ are linearly independent. This would define a regular map $\Xi: C \rightarrow \mathbb{P}^{2}$ of degree 3 , which either embeds C as a smooth plane cubic (in which case $g=1$) or else maps C onto a nodal or cuspidal cubic curve (in which case $g=0$).
Proposition 12.7. For divisors D of degree $d \geq 2 g+1$ on C,

$$
\Phi: C \rightarrow \mathbb{P}^{d-g}=|D|^{\vee}
$$

is a closed embedding.

Proof: By Riemann-Roch, we have:

$$
l(D)=d-g+1, l(D-p)=d-g \text { and } l(D-p-q)=d-1-g
$$

since $l\left(K_{C}-D\right)=l\left(K_{C}-D+p\right)=l\left(K_{C}-D+p+q\right)=0$.
Similarly,
Proposition 12.8. If $D=K_{C}$ and C is not hyperelliptic, then:

$$
\Phi: C \rightarrow \mathbb{P}^{g-1}=\left|K_{C}\right|^{\vee}
$$

is a closed embedding, and conversely, if $C \subset \mathbb{P}^{g-1}$ is a genus g curve of degree $2 g-2$ that spans \mathbb{P}^{g-1}, then C is a canonically embedded (non-hyperelliptic) curve.

Proof: As in Proposition 12.7, the embedding follows from:

$$
l(0)=l(p)=l(p+q)=1
$$

for non-hyperelliptic curves. From $l(p+q)=2$ for selected $p, q \in C$ on a hyperelliptic curve, it follows that $\left|K_{C}\right|$ does not embed such curves (see the Proof of Proposition 12.9 below to see what does happen). From Proposition 12.5, we conclude that all spanning smooth curves of genus g and degree $2 g-2$ are canonically embedded.

Proposition 12.9. There exist hyperelliptic curves of every genus.
Proof: The affine plane curve $C \subset \mathbb{C}^{2}$ defined by:

$$
y^{2}=\left(x-a_{1}\right) \cdots\left(x-a_{2 g+1}\right)
$$

and mapping to \mathbb{C}^{1} via projection on the x-axis should be completed, by adding one point at infinity, to a smooth projective curve of genus g. The closure in \mathbb{P}^{2} won't serve the purpose, since it is singular for $g \geq 2$. Instead, let $p \in C$ be one of the ramification points, and suppose there were a smooth, projective curve $C \subset \bar{C}$ obtained by adding one point. Then:

$$
\phi \in L(2 p)
$$

would be a rational function with pole of order two at p, and by the Riemann-Roch theorem, there would be a basis:

$$
1, \phi, \phi^{2}, \cdots, \phi^{g-1} \in L((2 g-2) p)
$$

from which it follows (by Proposition 12.5) that $(2 g-2) p=K_{C}(!)$ and the canonical map for a hyperelliptic curve is the $2: 1 \mathrm{map}$ to \mathbb{P}^{1}, followed by the embedding of \mathbb{P}^{1} in \mathbb{P}^{g-1} as a rational normal curve. We may further extend to a basis:

$$
1, \phi, \phi^{2}, \cdots, \phi^{g}, \psi \in L((2 g+1) p)
$$

by introducing a new rational function $\psi \in L((2 g+1) p)-L((2 g) p)$. This would give an embedding (by Proposition 12.7):

$$
\Phi: \bar{C} \hookrightarrow \mathbb{P}^{g+1}
$$

After completing the square (as in Proposition 12.3), one would have $\bar{C} \subset \mathbb{P}^{g+1}\left(\right.$ embedded by $\left.x \mapsto\left(\phi(x): \phi^{2}(x): \cdots: \phi^{g}(x): \psi(x): 1\right)\right)$ as the closure of

$$
C=V\left(x_{2}-x_{1}^{2}, x_{3}-x_{1}^{3}, \cdots, x_{g}-x_{1}^{g}, x_{g+1}^{2}-\prod\left(x_{1}-a_{i}\right)\right) \subset \mathbb{C}^{g+1}
$$

Exercise: Prove that the closure of C is smooth, by finding enough homogeneous polynomials in $I(\bar{C}) \subset \mathbb{C}\left[x_{1}, \ldots, x_{g+2}\right]$.
Proposition 12.10. The following projective curves are embedded by the canonical linear series, hence in particular are not hyperelliptic:
(a) (Genus 3) A smooth plane curve of degree four.
(b) (Genus 4) A smooth complete intersection $Q \cap S \subset \mathbb{P}^{3}$ of surfaces of degrees two and three.
(c) (Genus 5) A smooth complete intersection $Q_{1} \cap Q_{2} \cap Q_{3} \subset \mathbb{P}^{4}$ of hypersurfaces of degree two.

Proof: Each is an embedded curve of genus g and degree $2 g-2$, as can be checked from the Hilbert polynomial. Therefore, each is an embedded canonical curve

Exercise: Prove that every smooth plane curve of degree ≥ 4 is not hyperelliptic by finding an embedding of the curve (of genus $g=\binom{d-1}{2}$) in \mathbb{P}^{g-1} of degree $2 g-2$.

Theorem 12.11. "Most" curves of genus ≥ 3 are not hyperelliptic.
Sketch of a Proof: As shown in Propositions 12.6 and 12.9, each such curve has a unique degree two map to \mathbb{P}^{1} (up to automorphisms) ramified at $2 g+2$ distinct (unordered) points:

$$
a_{1}, \cdots, a_{2 g+2} \in \mathbb{P}^{1}
$$

This means that we can think of the set of all hyperelliptic curves as a quotient of the parameter space:

$$
\mathbb{P}^{2 g+2}-\Delta
$$

of unordered distinct $2 g+2$-tuples of points on \mathbb{P}^{1}, by the relation:

$$
\left(a_{1}+\cdots+a_{2 g+2}\right) \sim\left(a_{1}^{\prime}+\cdots a_{2 g+2}^{\prime}\right) \Leftrightarrow \alpha\left(a_{i}\right)=a_{i}^{\prime}
$$

for some $\alpha \in \operatorname{PGL}(2, \mathbb{C})=\operatorname{Aut}\left(\mathbb{P}^{1}\right)$. It follows from invariant theory that there is a quasi-projective variety \mathcal{H}_{g} and a surjective map:

$$
h_{g}:\left(\mathbb{P}^{2 g+2}-\Delta\right) \rightarrow \mathcal{H}_{g}
$$

such that the fibers of h_{g} are the equivalence classes of sets of points. In other words, \mathcal{H}_{g} is a (coarse) moduli space for hyperelliptic curves of genus g, and the dimension of \mathcal{H}_{g} is $2 g+2-\operatorname{dim}(\operatorname{PGL}(2, \mathbb{C}))=2 g-1$.

On the other hand, recall from Proposition 12.7 that every smooth curve can be embedded in \mathbb{P}^{g+1} by simply choosing a divisor of degree $2 g+1$ on the curve, and from Proposition 12.9 that hyperelliptic curves can be explicitly so embedded. Suppose $C \subset \mathbb{P}^{g+1}$ is such an embedded curve, of degree $2 g+1$, and consider a generic projection to \mathbb{P}^{1} :
$(\dagger) \Phi: C \rightarrow \mathbb{P}^{1}$ of degree $2 g+1$ ramifiying over $a_{1}, \ldots, a_{6 g} \in \mathbb{P}^{1}$
(the number of ramification points is computed by Riemann-Hurwitz). One can associate a "monodromy representation" of the fundamental group of $\mathbb{P}^{1}-\left\{a_{1}, \ldots, a_{6 g}\right\}$ by choosing a base point $a_{0} \in \mathbb{P}^{1}$, and following the $2 g+1$ sheets of the cover over loops γ_{i} emanating from a_{0} and looping once around a_{i} to get transpositions of the sheets and a representation into the symmetric group:

$$
(*) \rho: \pi_{1}\left(\mathbb{P}^{1}-\left\{a_{1}, \cdots, a_{6 g}\right\}, a_{0}\right) \rightarrow \Sigma_{2 g+1} ; \gamma_{i} \mapsto t_{i}, \prod_{i=1}^{6 g} t_{i}=1,\left\langle t_{i}\right\rangle=\Sigma_{g+1}
$$

Four big theorems are needed:

Fundamental Theorem of Riemann Surfaces.

Each representation $(*)$ comes from a uniquely determined map (\dagger).
Irreducibility Theorem. There is a variety Hu_{g}, the Hurwitz variety, parametrizing the covers $(*)$, together with a finite surjective map:

$$
\pi_{g}: \mathrm{Hu}_{g} \rightarrow\left(\mathbb{P}^{6 g}-\Delta\right)
$$

of degree equal to the number of ways of writing:

$$
1=t_{1} \cdots t_{6 g} \text { as a product of transpositions that generate } \Sigma_{2 g+1}
$$

Fundamental Theorem on Moduli of Curves: There is a quasiprojective variety \mathcal{M}_{g} and a surjective regular map:

$$
m_{g}: \mathrm{Hu}_{g} \rightarrow \mathcal{M}_{g}
$$

whose fibers are the equivalence classes under the relation:

$$
\left[C \rightarrow \mathbb{P}^{1}\right] \sim\left[C^{\prime} \rightarrow \mathbb{P}^{1}\right] \Leftrightarrow C \cong C^{\prime}
$$

Deformation Theory: The Zariski tangent space to each fiber:

$$
m_{g}^{-1}(C)=\left\{f: C \rightarrow \mathbb{P}^{1} \mid f \text { has simple ramification }\right\}
$$

at $[f]$ is $L(D)$, where $D=f^{-1}\left(-K_{\mathbb{P}^{1}}\right)$ (with multiplicities, if necessary) is a divisor of degree $2(2 g+1)$, and so $l(D)=3 g+3$ by Riemann-Roch.

Thus,

$$
\operatorname{dim}\left(\mathcal{M}_{g}\right)=\operatorname{dim}\left(\mathrm{Hu}_{g}\right)-\operatorname{dim}\left(m_{g}^{-1}(C)\right)=6 g-(3 g+3)=3 g-3
$$

and so $\operatorname{dim}\left(\mathcal{M}_{g}\right)>\operatorname{dim}\left(\mathcal{H}_{g}\right)$ when $g \geq 3$, which gives meaning to the assertion that "most" curves are not hyperelliptic.
Example. The smooth plane curves $C \subset \mathbb{P}^{2}$ of degree 4 are parametrized by an open subset $U \subset \mathbb{P}^{14}$, since $\operatorname{dim} \mathbb{C}[x, y, z]_{4}=15$, and two such curves are isomorphic if and only if they are related by a change of basis of \mathbb{P}^{2}. In fact, there is an open $W \subset \mathcal{M}_{3}$ and a surjective map:

$$
U \rightarrow W \subset \mathcal{M}_{3} \text { with fibers } \operatorname{PGL}(3, \mathbb{C})
$$

and the dimensions work out: $14-\operatorname{dim}(\operatorname{PGL}(3, \mathbb{C})=6=3(3)-3$. Note that $\mathcal{M}_{3}-W=\mathcal{H}_{3}$, which has dimension $2(3)-1=5$.

