Complex Algebraic Geometry: Smooth Curves
Aaron Bertram, 2010

12. First Steps Towards Classifying Curves. The Riemann-Roch
Theorem is a powerful tool for classifying smooth projective curves, i.e.
giving us a start on the following questions:

“What are all the curves of a given genus (up to isomorphism)?” or
“When is there a smooth curve of genus g and degree d in P"?”
Genus Zero Curves: Abstractly, they are easy to describe:
Proposition 12.1. If g(C') = 0, then C is isomorphic to P!
Proof: Consider D = p. Then by the Riemann-Roch inequality:
I(p) =dim(L(p)) 2 1+1—g=2

so there is a non-constant ¢ € C(C') with pole of order one at p, and no
other poles, defining a regular map: ® : ¢ — P! of degree one which
is therefore an isomorphism.

The rational normal curve is the embedding:
P = PL (x:y) e (22 y?)
and its image under arbitrary change of basis of P¢.
Notice that every map of degree d from P! to P" whose image does

not lie in any hyperplane is a projection of the rational normal curve.
There is a sort of converse to this.

Definition. C' C P" spans P" if it is not contained in a hyperplane.

Proposition 12.2: Every C' C P? of degree less than d fails to span.
The only curve of degree d that spans P¢ is the rational normal curve.

Proof: Since (D) < d+ 1 for all divisors on all curves, the first
sentence is immediate. As for the second, suppose [(D) = d+ 1, choose
p € C and note that [(D — (d — 1)p) = 2. As in Proposition 12.1, this
implies that C' = P!, and then embedding is the rational normal curve
because a projection would have larger degree.

The Riemann-Roch Theorem is very useful for finding embeddings
of smooth curves of higher genus by means of:

Definition /Exercise 12.1: Let D be an effective divisor.
Then the linear series | D] is:

(a) Base point free if

I(D—p)=1l(D)—1foralpedC
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in which case the regular map: ® : C' — P"; z+— (¢1(z) : -+ @ ¢p(x) 1 1)
(for a choice of basis ¢y, - - - ¢, 1 € L(D)) has degree d. In fact, the map
can be defined without resorting to a choice of basis if P" is replaced
by the dual |D]Y of the projective space |D|.

(b) Very ample if
I(D—p—q)=1(D)—2 for all p,q (including p = q) in C
in which case the map ® from (a) is a closed embedding.
Genus One Curves: These curves are distinguished in that:
I(K¢o) =dim(Q[C]) =1, and deg(K¢) =0

so they admit differential forms w with no zeroes or poles. This is also
a consequence of the fact that genus one curves (with a choice of origin)
are (Lie) groups. This was proved classically with the help of:

Proposition 12.3. All curves of genus one are smooth plane cubics.
Proof: Consider the linear series L(np) for p € C:
(a) I(p) = 1, so L(p) = C, the constant functions.
(b) I(2p) = 2. Let ¢ € L(2p) — L(p). This defines a two-to-one map:
d:C—P 2 (o(z): 1)
ramifying over oo and three other points (by Riemann-Hurwitz).
(c) I(3p) = 3. Let ¥ € L(3p) — L(2p). Then:
D:C —Phae (¢p(x) Y(z): 1)
is a closed embedding as a smooth plane curve.
(d) 1(4p) = 4. This has basis 1, ¢, 1, ¢*.
(e) 1(5p) = 5. This has basis 1, ¢, 1, ¢2, ¢1p.
(f) I(6p) = 6. There is a linear dependence involving ¥? and ¢?:
V2 — k¢ = agp +bd* +cp +do + e

This is the equation defining the image of C' in (c¢). Indeed, after
completing the square, it has the form:

y'=(z—a)(z—b)z—0)
where a,b,c € C are the (distinct) points over which the map in (b)

ramifies. Moreover, after composing with an automorphism of P!, we
may assume that:

for some A # 0, 1, c0.
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Curves of Higher Genus. These curves break into two camps; the
hyperelliptic curves and the canonical curves embedded in P9~! by the
linear series |K¢|. For the first few “higher” genera, the canonical
curves are easy to describe. After that, things are more subtle.

Definition. A curve C of genus > 2 is hyperelliptic if there is a map:
® : C — P! of degree 2
or, equivalently, if there exist p, ¢ € C such that l(p + ¢q) = 2.
Proposition 12.4. Every curve of genus 2 is canonically hyperelliptic.
Proof: The canonical divisor satisfiess:
deg(K¢) =29 —2=2and [(K¢) =2

Thus this hyperelliptic map is canonical in the sense that it is the
map to P! (or |K¢|Y) induced by the canonical linear series. It is also
canonical in the sense that it is the unique degree two map to P!, for
either of the following two reasons:

Proposition 12.5. For divisors of degree 2g — 2 on a smooth curve C'
of genus g, either D = K¢ or else (D) =g — 1.

Proof: Suppose deg(D) = 2g — 2. Then by Riemann-Roch:
(D)~ I(Ke —D)=g—1
But (K¢ — D) =0 unless D = K.

Proposition 12.6. There is at most one map of degree two from a
curve C' of genus > 2 to P! (modulo automorphisms of P*).

Proof: Suppose there were two such maps: ® and ¥ : C — P
Choose a point p € C', which, for convenience, is not a ramification
point of either map. Let p +q = & 1(®(p)) and p+r = TH(T(p)).
Then we conclude that there are rational functions:

peLlpt+q —Candpe L(p+r)—C

and we can further conclude that 1,¢,9 € L(p 4+ q + r) are linearly
independent. This would define a regular map = : C' — P? of degree 3,
which either embeds C' as a smooth plane cubic (in which case g = 1)
or else maps C' onto a nodal or cuspidal cubic curve (in which case

g=0).
Proposition 12.7. For divisors D of degree d > 2g + 1 on C,
d:C — P9 =|D|"

is a closed embedding.



Proof: By Riemann-Roch, we have:

I(D)y=d—g+1, (D—p)=d—gand(D—p—q)=d—1—g
since (K¢ — D) =l(Ke —D+p)=l(Kc—D+p+q) =0.
Similarly,

Proposition 12.8. If D = K¢ and C' is not hyperelliptic, then:
d:C—P ! =|Kg|Y

is a closed embedding, and conversely, if C' C P97! is a genus g curve
of degree 2g — 2 that spans P97!, then C is a canonically embedded
(non-hyperelliptic) curve.

Proof: As in Proposition 12.7, the embedding follows from:

10)=1p)=1llp+q) =1

for non-hyperelliptic curves. From [(p+ q) = 2 for selected p,q € C on
a hyperelliptic curve, it follows that |K¢| does not embed such curves
(see the Proof of Proposition 12.9 below to see what does happen).
From Proposition 12.5, we conclude that all spanning smooth curves
of genus g and degree 2g — 2 are canonically embedded.

Proposition 12.9. There exist hyperelliptic curves of every genus.

Proof: The affine plane curve C' C C? defined by:

y'=(r—ar) - (z = azgn)

and mapping to C! via projection on the z-axis should be completed,
by adding one point at infinity, to a smooth projective curve of genus g.
The closure in P? won’t serve the purpose, since it is singular for g > 2.
Instead, let p € C' be one of the ramification points, and suppose there
were a smooth, projective curve C' C C obtained by adding one point.
Then:

¢ € L(2p)
would be a rational function with pole of order two at p, and by the
Riemann-Roch theorem, there would be a basis:

17 ¢a ¢27 e ’¢g—l € L((2g - 2)p)

from which it follows (by Proposition 12.5) that (29 — 2)p = K¢ (!)
and the canonical map for a hyperelliptic curve is the 2:1 map to P!,
followed by the embedding of P! in P9~! as a rational normal curve.
We may further extend to a basis:

17¢7 ¢27 e 7¢g’¢) S L((2g+ 1)p)
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by introducing a new rational function ¢» € L((2g + 1)p) — L((2¢9)p).
This would give an embedding (by Proposition 12.7):

P:C — P!
_ After completing the square (as in Proposition 12.3), one would have
C C P9 (embedded by z +— (¢(z) : ¢*(x) : -+ : ¢9(x) : () : 1)) as
the closure of
C=V(wy—ai,ag—ai, - wg—af 2l — H(xl —a;)) C C9*H!

Exercise: Prove that the closure of C' is smooth, by finding enough

homogeneous polynomials in [(C) C Clzy, ..., x4

Proposition 12.10. The following projective curves are embedded by
the canonical linear series, hence in particular are not hyperelliptic:

(a) (Genus 3) A smooth plane curve of degree four.

(b) (Genus 4) A smooth complete intersection QNS C P? of surfaces
of degrees two and three.

(c) (Genus 5) A smooth complete intersection Q; N Qy N Q3 C P* of
hypersurfaces of degree two.

Proof: Each is an embedded curve of genus g and degree 2g — 2,
as can be checked from the Hilbert polynomial. Therefore, each is an
embedded canonical curve

Exercise: Prove that every smooth plane curve of degree > 4 is not
hyperelliptic by finding an embedding of the curve (of genus g = (d;))
in P9=! of degree 29 — 2.

Theorem 12.11. “Most” curves of genus > 3 are not hyperelliptic.

Sketch of a Proof: As shown in Propositions 12.6 and 12.9, each
such curve has a unique degree two map to P! (up to automorphisms)
ramified at 2g + 2 distinct (unordered) points:

1
ai, -+ 03942 €P

This means that we can think of the set of all hyperelliptic curves as
a quotient of the parameter space:

P¥2 _ A
of unordered distinct 2g + 2-tuples of points on P!, by the relation:

(a1 + -+ aggra) ~ (ay +--- a’ng) & a(a;) =
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for some a € PGL(2,C) = Aut(P!). It follows from invariant theory
that there is a quasi-projective variety ‘H, and a surjective map:

hy : (P12 — A) — H,

such that the fibers of h, are the equivalence classes of sets of points.
In other words, H, is a (coarse) moduli space for hyperelliptic curves of
genus g, and the dimension of H, is 29+ 2 — dim(PGL(2,C)) = 2¢g — 1.

On the other hand, recall from Proposition 12.7 that every smooth
curve can be embedded in P9"! by simply choosing a divisor of degree
2g+1 on the curve, and from Proposition 12.9 that hyperelliptic curves
can be explicitly so embedded. Suppose C' C P9*! is such an embedded
curve, of degree 2g + 1, and consider a generic projection to P!:

(1) @ : C — P' of degree 2g + 1 ramifiying over ay, ..., ag, € P*

(the number of ramification points is computed by Riemann-Hurwitz).
One can associate a “monodromy representation” of the fundamental
group of P' — {ay,...,ae¢,} by choosing a base point ay € P!, and
following the 2g + 1 sheets of the cover over loops 7; emanating from
ap and looping once around a; to get transpositions of the sheets and
a representation into the symmetric group:

6g
() p: T (P'—{a1, -, agy}, a0) = Sagi1; Vi — ti,Hti =1,(t;) = Lo

i=1
Four big theorems are needed:

Fundamental Theorem of Riemann Surfaces.
Each representation (x) comes from a uniquely determined map ().

Irreducibility Theorem. There is a variety Hu,, the Hurwitz variety,
parametrizing the covers (x), together with a finite surjective map:

7, : Hu, — (P% — A)
of degree equal to the number of ways of writing:
1 =t;---tey as a product of transpositions that generate X944

Fundamental Theorem on Moduli of Curves: There is a quasi-
projective variety M, and a surjective regular map:

mg : Huyg — M,
whose fibers are the equivalence classes under the relation:

C —P)~[C =P



Deformation Theory: The Zariski tangent space to each fiber:
m; (C) ={f:C —P'| f has simple ramification}

g
at [f] is L(D), where D = f~!(—Kp1) (with multiplicities, if necessary)
is a divisor of degree 2(2¢g+1), and so [(D) = 3g+3 by Riemann-Roch.

Thus,
dim(M,) = dim(Hu,) — dim(m; ' (C)) = 6g — (3g +3) = 3g — 3

g
and so dim(M) > dim(H,) when g > 3, which gives meaning to the
assertion that “most” curves are not hyperelliptic.

Example. The smooth plane curves C' C P? of degree 4 are parametrized
by an open subset U C P since dim C[z,y, 2], = 15, and two such

curves are isomorphic if and only if they are related by a change of
basis of P2. In fact, there is an open W C M3 and a surjective map:

U — W C Mj with fibers PGL(3, C)

and the dimensions work out: 14 — dim(PGL(3,C) = 6 = 3(3) — 3.
Note that M3 — W = H3, which has dimension 2(3) — 1 = 5.



