
Math 5405/Cryptography/Spring 2013
Some Number Theoretic Preliminaries

Prime Numbers are an essential tool in modern cryptography.

Definition. An integer p > 1 is prime if its only divisors are 1 and p.
An integer n > 1 that is not prime is called composite.

Facts. (i) Each integer n > 1 factors uniquely as a product of primes
(up to reordering the factors).

(ii) There are infinitely many primes. In any arithmetic progression:

a, a+ d, a+ 2d, a+ 3d, . . . with gcd(a, d) = 1

there are infinitely many primes.

Prime Issues. Given a (very large) integer n, how do we:

(a) Determine quickly whether n is prime (probably vs for sure)?

(b) If it is composite, quickly factor n? (The BIG question!)

(c) Given a prime p, compute “discrete logarithms” (mod p).

Groups and Rings are useful “algebraic” concepts.

Definition. (a) A group is a set G with a “multiplication”:

· : G×G→ G with the following properties

(i) Multiplication is associative.

(ii) There is a unique identity element e ∈ G with the property that:

e · g = g = g · e for all g ∈ G
(iii) Each g ∈ G has a unique inverse element g−1 ∈ G such that:

g · g−1 = e = g−1 · g
If multiplication is also communtative, then G is an abelian group.

(b) A ring is a set R with an addition and multiplication:

+ : R×R→ R and · : R×R→ R such that

(i) (R,+) is an abelian group. The additive identity is called 0.

(ii) (R, ·) satisfies the first two properties of a group. It cannot satisfy
the third since 0 is not invertible. We call the multiplicative identity 1.
If R× is the set of invertible elements, however, then (R×, ·) is a group.

(iii) Addition and multiplication satisfy the distributive law.

If multiplication is commutative, then R is called a commutative ring.
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A field is a commutative ring in which only 0 is not invertible.

Examples. (a) The integers mod n (Z/nZ) are a commutative ring.

(b) Z/pZ is a field exactly when p is a prime. It is also denoted Fp.
(c) The n× n matrices are a (non-commutative) ring, denoted:

M(n,R)

where the entries of the matrix belong to the (commutative) ring R.
For example:

(i) M(n,R) are matrices with real coefficients.

(ii) M(n,Q) are matrices with rational coefficients.

(iii) M(n,Z) are matrices with integer coefficients.

(iii) M(n,Fp) are matrices with integer mod p coefficients.

Cramer’s Rule. An n × n matrix A ∈ M(n,R) has a multiplicative
inverse if and only if det(A) has a multiplicative inverse in the ring R.

Notation. The (non-abelian) group (M(n,R)×, ·) of invertible n×n
matrices is denoted by:

GL(n,R)

The subgroup of matrices of determinant 1 is denoted by:

SL(n,R)

Definition. A finite abelian group G is cyclic if there is an element
g ∈ G such that:

G = {g, g2, g3, . . . , gd = e}
Any such g is called a primitive element. Once g ∈ G is identified as
a primitive element, then the other primitive elements are exactly the
powers ge with the property that gcd(e, d) = 1.

Fact. The abelian groups ((Z/pZ)×, ·) are cyclic, though it not obvious
which numbers mod p are the primitive elements.

Some Equations you will need to be able to solve include:

ax+ by = c with integer coefficients a, b, c

When gcd(a, b)|c, this has infinitely many integer solutions.
When gcd(a, b) 6 | c, this has no integer solutions.

(Review how these solutions are found using Euclid’s algorithm).

Note that solving:
ax+ ny = 1

gives x = a−1 in (Z/nZ)×, so each a with gcd(a, n) = 1 has an inverse.



You will also be asked to solve the

Chinese Remainder Problem. Given congruences equations:

x ≡ a1 (mod n1), · · · , x ≡ am (mod nm)

with each gcd(ni, nj) = 1, there is an x (mod n1 · · ·nm) solving all the
congruences simultaneously.

It will be important for applications to be able to quickly compute:

an (mod p)

when n and p are large numbers. This can be done by writing n in
binary and recognizing that a2k

is computed via k successive squares.

Euler’s Theorem:

aφ(n) ≡ 1 (mod n) for all invertible a ∈ Z/nZ

where φ(n) is the Euler φ function (or totient) defined by:

φ(n) = the number of invertible elements of Z/nZ

There is a convenient formula for the phi function:

φ(n) = φ(pk11 · · · pkm
m ) =

∏
(pki
i − p

ki−1
i ) = n ·

∏
(1− 1

pi
)

so you “only” need to know the prime factors of n to compute φ(n).

Corollary (Fermat’s Little Theorem):

ap−1 ≡ 1 (mod p) for all a ∈ Fp
Corollary: An equation of the form:

xd ≡ 1 (mod p)

has d distinct solutions (φ(d) of them primitive) if d|p− 1.

Corollary: An equation of the form:

xd ≡ a (mod p)

where gcd(d, p − 1) = 1 has exactly one solution, given by x = ae,
where e = d−1 as integers (mod p− 1).

Quadratic Reciprocity is a very deep Number Theory result.

Definition. The Legendre symbol for primes p and a ∈ (Z/pZ)× is:(
a

p

)
=

 1 if a has (two) square roots (mod p)

−1 if a has no square roots (mod p)



The Legendre symbol is multiplicative, i.e. if a = bc, then:(
a

p

)
=

(
b

p

)(
c

p

)
This follows from

Euler’s Criterion. If p is an odd prime, then:(
a

p

)
≡ a

p−1
2 (mod p)

This immediately gives:

(∗)
(
−1

p

)
=

{
1 if p ≡ 1 (mod 4)
−1 if p ≡ 3 (mod 4)

It is a little bit harder to prove:

(∗∗)
(

2

p

)
=

{
1 if p ≡ 1 or 7 (mod 8)
−1 if p ≡ 3 or 5 (mod 8)

and the really deep result allows one to compute any Legendre symbol:

Theorem (QR). If p and q are (distinct) odd primes, then:

(∗ ∗ ∗)
(
p

q

)
=

(
q

p

)
unless both p ≡ 3 (mod 4) and q ≡ 3 (mod 4), in which case:(

p

q

)
= −

(
q

p

)
It is useful to generalize this to Jacobi symbols defined by:(

a

pk11 · · · pkm
m

)
:=

(
a

p1

)k1
· · ·
(
a

pm

)km

when n = pk11 · · · pkm
m and gcd(a, n) = 1.

These symbols are multiplicative, and satisfy the same statements
(∗), (∗∗) and (∗∗∗) with “odd p (and q)” replaced by “odd m (and n)”.

Warning. When the base n is composite, the Jacobi symbol does not,
in general, compute whether or not a is a square (mod n).

A final remark on finite fields. There are finite fields with any
prime power number of elements. Any two such fields are isomorphic,
hence it is allowed to denote the finite field with pk elements as:

Fpk

But keep in mind that the rings Z/pkZ are not fields when k > 1.


