Prime Numbers are an essential tool in modern cryptography.

Definition. An integer \(p > 1 \) is prime if its only divisors are 1 and \(p \). An integer \(n > 1 \) that is not prime is called composite.

Facts. (i) Each integer \(n > 1 \) factors uniquely as a product of primes (up to reordering the factors).

(ii) There are infinitely many primes. In any arithmetic progression:
\[
a, a + d, a + 2d, a + 3d, \ldots \text{ with } \gcd(a, d) = 1
\]
there are infinitely many primes.

Prime Issues. Given a (very large) integer \(n \), how do we:

(a) Determine quickly whether \(n \) is prime (probably vs for sure)?

(b) If it is composite, quickly factor \(n \)? (The BIG question!)

(c) Given a prime \(p \), compute “discrete logarithms” (mod \(p \)).

Groups and Rings are useful “algebraic” concepts.

Definition. (a) A group is a set \(G \) with a “multiplication”:
\[
\cdot : G \times G \to G
\]
with the following properties

(i) Multiplication is associative.

(ii) There is a unique identity element \(e \in G \) with the property that:
\[
eg \cdot g = g = g \cdot e \text{ for all } g \in G
\]

(iii) Each \(g \in G \) has a unique inverse element \(g^{-1} \in G \) such that:
\[
g \cdot g^{-1} = e = g^{-1} \cdot g
\]

If multiplication is also commutative, then \(G \) is an abelian group.

(b) A ring is a set \(R \) with an addition and multiplication:
\[
+ : R \times R \to R \text{ and } \cdot : R \times R \to R
\]
such that

(i) \((R, +)\) is an abelian group. The additive identity is called 0.

(ii) \((R, \cdot)\) satisfies the first two properties of a group. It cannot satisfy the third since 0 is not invertible. We call the multiplicative identity 1. If \(R^\times \) is the set of invertible elements, however, then \((R^\times, \cdot)\) is a group.

(iii) Addition and multiplication satisfy the distributive law.

If multiplication is commutative, then \(R \) is called a commutative ring.
A field is a commutative ring in which only 0 is not invertible.

Examples. (a) The integers mod \(n \) \((\mathbb{Z}/n\mathbb{Z})\) are a commutative ring.

(b) \(\mathbb{Z}/p\mathbb{Z}\) is a field exactly when \(p \) is a prime. It is also denoted \(F_p \).

(c) The \(n \times n \) matrices are a (non-commutative) ring, denoted:

\[M(n, R) \]

where the entries of the matrix belong to the (commutative) ring \(R \). For example:

(i) \(M(n, \mathbb{R}) \) are matrices with real coefficients.

(ii) \(M(n, \mathbb{Q}) \) are matrices with rational coefficients.

(iii) \(M(n, \mathbb{Z}) \) are matrices with integer coefficients.

(iii) \(M(n, F_p) \) are matrices with integer mod \(p \) coefficients.

Cramer’s Rule. An \(n \times n \) matrix \(A \in M(n, R) \) has a multiplicative inverse if and only if \(\det(A) \) has a multiplicative inverse in the ring \(R \).

Notation. The (non-abelian) group \((M(n, R)^\times, \cdot)\) of invertible \(n \times n \) matrices is denoted by:

\[\text{GL}(n, R) \]

The subgroup of matrices of determinant 1 is denoted by:

\[\text{SL}(n, R) \]

Definition. A finite abelian group \(G \) is cyclic if there is an element \(g \in G \) such that:

\[G = \{ g, g^2, g^3, \ldots, g^d = e \} \]

Any such \(g \) is called a primitive element. Once \(g \in G \) is identified as a primitive element, then the other primitive elements are exactly the powers \(g^e \) with the property that \(\gcd(e, d) = 1 \).

Fact. The abelian groups \((\mathbb{Z}/p\mathbb{Z})^\times, \cdot) \) are cyclic, though it not obvious which numbers mod \(p \) are the primitive elements.

Some Equations you will need to be able to solve include:

\[ax + by = c \text{ with integer coefficients } a, b, c \]

When \(\gcd(a, b) | c \), this has infinitely many integer solutions.

When \(\gcd(a, b) \not| c \), this has no integer solutions.

(Review how these solutions are found using Euclid’s algorithm).

Note that solving:

\[ax + ny = 1 \]

gives \(x = a^{-1} \) in \((\mathbb{Z}/n\mathbb{Z})^\times\), so each \(a \) with \(\gcd(a, n) = 1 \) has an inverse.
You will also be asked to solve the

Chinese Remainder Problem. Given congruences equations:

\[x \equiv a_1 \pmod{n_1}, \ldots, x \equiv a_m \pmod{n_m} \]

with each \(\gcd(n_i, n_j) = 1 \), there is an \(x \pmod{n_1 \cdots n_m} \) solving all the congruences simultaneously.

It will be important for applications to be able to quickly compute:

\[a^n \pmod{p} \]

when \(n \) and \(p \) are large numbers. This can be done by writing \(n \) in binary and recognizing that \(a^{2^k} \) is computed via \(k \) **successive squares**.

Euler’s Theorem:

\[a^{\phi(n)} \equiv 1 \pmod{n} \]

for all invertible \(a \in \mathbb{Z}/n\mathbb{Z} \)

where \(\phi(n) \) is the Euler \(\phi \) function (or **totient**) defined by:

\[\phi(n) = \text{the number of invertible elements of } \mathbb{Z}/n\mathbb{Z} \]

There is a convenient formula for the phi function:

\[\phi(n) = \phi(p_1^{k_1} \cdots p_m^{k_m}) = \prod (p_i^{k_i} - p_i^{k_i - 1}) = n \cdot \prod (1 - \frac{1}{p_i}) \]

so you “only” need to know the prime factors of \(n \) to compute \(\phi(n) \).

Corollary (Fermat’s Little Theorem):

\[a^{p-1} \equiv 1 \pmod{p} \]

for all \(a \in \mathbb{F}_p \)

Corollary: An equation of the form:

\[x^d \equiv 1 \pmod{p} \]

has \(d \) distinct solutions (\(\phi(d) \) of them primitive) if \(d|p-1 \).

Corollary: An equation of the form:

\[x^d \equiv a \pmod{p} \]

where \(\gcd(d, p-1) = 1 \) has exactly **one** solution, given by \(x = a^e \), where \(e = d^{-1} \) as integers \(\pmod{p-1} \).

Quadratic Reciprocity is a very deep Number Theory result.

Definition. The **Legendre symbol** for primes \(p \) and \(a \in (\mathbb{Z}/p\mathbb{Z})^\times \) is:

\[
\left(\frac{a}{p} \right) = \begin{cases}
1 & \text{if } a \text{ has (two) square roots } \pmod{p} \\
-1 & \text{if } a \text{ has no square roots } \pmod{p}
\end{cases}
\]
The Legendre symbol is *multiplicative*, i.e. if \(a = bc \), then:

\[
\left(\frac{a}{p} \right) = \left(\frac{b}{p} \right) \left(\frac{c}{p} \right)
\]

This follows from

Euler’s Criterion. If \(p \) is an odd prime, then:

\[
\left(\frac{a}{p} \right) \equiv a^{p-1} \pmod{p}
\]

This immediately gives:

\[
(*) \quad \left(\frac{-1}{p} \right) = \begin{cases}
1 & \text{if } p \equiv 1 \pmod{4} \\
-1 & \text{if } p \equiv 3 \pmod{4}
\end{cases}
\]

It is a little bit harder to prove:

\[
(**) \quad \left(\frac{2}{p} \right) = \begin{cases}
1 & \text{if } p \equiv 1 \text{ or } 7 \pmod{8} \\
-1 & \text{if } p \equiv 3 \text{ or } 5 \pmod{8}
\end{cases}
\]

and the really deep result allows one to compute any Legendre symbol:

Theorem (QR). If \(p \) and \(q \) are (distinct) odd primes, then:

\[
(***) \quad \left(\frac{p}{q} \right) = \left(\frac{q}{p} \right)
\]

unless both \(p \equiv 3 \pmod{4} \) and \(q \equiv 3 \pmod{4} \), in which case:

\[
\left(\frac{p}{q} \right) = -\left(\frac{q}{p} \right)
\]

It is useful to generalize this to *Jacobi symbols* defined by:

\[
\left(\frac{a}{n} \right) := \left(\frac{a}{p_1} \right)^{k_1} \cdots \left(\frac{a}{p_m} \right)^{k_m}
\]

when \(n = p_1^{k_1} \cdots p_m^{k_m} \) and \(\gcd(a, n) = 1 \).

These symbols are multiplicative, and satisfy the same statements \((*)\), \((***)\) and \((***)\) with “odd \(p \) (and \(q \))” replaced by “odd \(m \) (and \(n \))”.

Warning. When the base \(n \) is composite, the Jacobi symbol does not, in general, compute whether or not \(a \) is a square \(\pmod{n} \).

A final remark on **finite fields**. There are finite fields with any prime power number of elements. Any two such fields are isomorphic, hence it is allowed to denote the finite field with \(p^k \) elements as:

\[
\mathbb{F}_{p^k}
\]

But keep in mind that the rings \(\mathbb{Z}/p^k\mathbb{Z} \) are **not** fields when \(k > 1 \).