Emre Gul
 Lesson Plan on Matrix Transformations

Objectives
Students will be able:

- to form transformation matrices for reflection on x -axis, y -axis, $y=x$ and $y=-x$ using unit square
- to form transformation matrices for rotation $90^{\circ},-90^{\circ}$ and 180° using uniit square
- to find reflectional and rotational image of a figure using matrices

First Part of the lesson plan: Forming transformation matrices

Activity Directions:

- Cut out the unit square and place it with O at the origin.
- Now move the square according to transformations on the table below and write down the new positions for corner A and B.
- Write the coordinates for \mathbf{A} down the first column and for \mathbf{B} down the second column.
- Fill up the table

Transformation	Matrix
1. Reflect on x -axis	$M_{r e f_{x}}=\left[\begin{array}{ll}\cdots & \ldots \\ \ldots & \ldots\end{array}\right]$
2.Reflect on y -axis	$M_{\text {refy }}=\left[\begin{array}{ll}\ldots & \ldots \\ \ldots & \ldots\end{array}\right]$
3.Reflect in the line $y=x$	$M_{r e f_{y=x}}=\left[\begin{array}{ll}\cdots & \cdots \\ \ldots & \ldots\end{array}\right]$
4. Reflect in the line $y=-x$	$M_{r e f_{y=-x}}=\left[\begin{array}{cc}\cdots & \cdots \\ \cdots & \cdots\end{array}\right]$
5. Rotate 90° counterclockwise	$M_{90^{\circ}}=\left[\begin{array}{cc}\cdots & \cdots \\ \ldots & \ldots\end{array}\right]$
6. Rotate 180°	$M_{180^{\circ}}=\left[\begin{array}{lll}\ldots & \cdots \\ \ldots & \ldots\end{array}\right]$
7. Rotate 90° clockwise	$M_{-90^{\circ}}=\left[\begin{array}{lll}\cdots & \cdots \\ \ldots & \cdots\end{array}\right]$

Second Part of the Lesson:

Transform the figure using matrix multiplication

We have formed the transpormations matrices. Now we are going to transform the figures using matrix multiplications.

Here are the directions:

1. $A B C$ is a triangle with the given vertices $Q(1,-2), R(3,-2), S(1,-6)$
2. Form the figure matrix using coordinates of the triagle. Write the coordinates for \mathbf{Q} down the first column, for \boldsymbol{R} down the second column, and for \mathbf{S} down the third column.
3. Multiply the matrix with the each transformation matrix
4. Figure out the coordinates of the imaage from the produc and draw the image on the coordinate plane

Here is the figure:

Third Part of the Lesson:

Students are going to solve an aplication question in this part of the lesson. Here is the application problem:

Perform the indicatated transformation to the figure below using matrices.

1. Reflect the figure with respet to x -axis
2. Reflect the figure with respecto y-axis
3. Reflect the figure with respecto $y=x$
4. Reflect the figure with respecto $y=-x$
5. Rotate the figure 90° counterclockwise
6. Rotate the figure 180° counterclockwise
7. Rotate the figure -90° clockwise
8. Dialate the figure by $r=\frac{1}{2}$
