
Polynomials.
Math 4800/6080 Project Course

2. The Plane.

“Boss, boss, ze plane, ze plane!”

–Tattoo, Fantasy Island

The points of the plane R2 are ordered pairs (x, y) of real numbers.
We’ll also use vector notation to denote a point of the plane:[

x
y

]
∈ R2

In high school geometry, we talk about congruences and similarities.
These are examples of affine linear transformations of the plane.

Definition. A general linear transformation is an invertible map:

A : R2 → R2

with the following two properties:

A

([
x1
y1

]
+

[
x2
y2

])
= A

([
x1
y1

])
+ A

([
x2
y2

])
for all pairs of vectors, and

A

(
α

[
x
y

])
= αA

([
x
y

])
for all scalars α ∈ R. In particular, A fixes the origin (0, 0).

A linear transformation is realized by matrix multiplication:

A

([
x
y

])
=

[
a b
c d

] [
x
y

]
where the matrix is computed via:

A

([
1
0

])
=

[
a
c

]
and A

([
0
1

])
=

[
b
d

]
Examples. The rotation counter-clockwise (around the origin) by the
angle θ is given by:

R

([
x
y

])
=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
x
y

]
A rotation is a rigid motion of the plane, meaning that it does not
change the distances between two points (or the angles between two
vectors). It also preserves “orientation,” meaning that a clock would
measure clockwise in the same way before and after a rotation.
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A reflection is another rigid motion. The basic reflections are:[
−1 0

0 1

]
and

[
1 0
0 −1

]
across the y-axis and x-axis, respectively. Reflecting across the x-axis,
followed by rotating by θ gives rise to another reflection:[

cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
1 0
0 −1

]
=

[
cos(θ) sin(θ)
sin(θ) − cos(θ)

]
this time across the line given (in polar coordinates!) by:

r =
θ

2

A little exercise with trigonometry angle addition formulas gives:[
cos(θ2) − sin(θ2)
sin(θ2) cos(θ2)

] [
cos(θ1) − sin(θ1)
sin(θ1) cos(θ1)

]
=

[
cos(θ1 + θ2) − sin(θ1 + θ2)
sin(θ1 + θ2) cos(θ1 + θ2)

]
from which we verify the (intuitively obvious) fact that rotating by θ1
and then by θ2 results in a rotation by θ1 + θ2. In particular, rotations
commute with each other. On the other hand, reflecting across r = θ1/2
followed by reflecting across r = θ2/2 gives rise to:[

cos(θ2) sin(θ2)
sin(θ2) − cos(θ2)

] [
cos(θ1) sin(θ1)
sin(θ1) − cos(θ1)

]
=

[
cos(θ2 − θ1) − sin(θ2 − θ1)
sin(θ2 − θ1) cos(θ2 − θ1)

]
which is a rotation by the difference of the two angles θ2 − θ1. In
particular, the two reflection matrices do not (usually) commute since
rotating by θ1 − θ2 is the inverse of rotating by θ2 − θ1.

Definition. A set of linear transformations is a group (or class) if it is
closed under compositions and taking inverses.

In our examples,

(a) The set of rotations (by an angle 0 ≤ θ < 2π) is a group, but

(b) The set of reflections across the lines r = θ/2 is not a group,
since the composition of two reflections is a rotation, not a reflection.
However,

(c) The union of the sets of rotations and reflections is a group.

Remark. To complete a verification of (c), you would need to check
that a rotation followed by a reflection is a reflection, and also that
a reflection followed by a rotation is a reflection. I encourage you to
check these and also to verify the two matrix multiplications above.
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Definition. A translation of R2 is a mapping:

T : R2 → R2

given by:

T

([
x
y

])
=

[
x
y

]
+

[
x0
y0

]
Important Remark. A translation is not a linear transformation and
cannot be described by matrix multiplication. However, a translation is
a rigid motion, since it clearly does not change the lengths of vectors or
the angles between them. It also, like rotations (and unlike reflections)
preserves orientation.

Congruences are rigid motions of the plane that preserve orientation.
Each of these can be expressed as a rotation followed by a translation.

C

([
x
y

])
=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
x
y

]
+

[
x0
y0

]
But a congruence may be more intuitive if the translation is done

first, followed by the rotation. Linear algebra comes to our rescue:[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]([
x
y

]
+

[
x0
y0

])
=

=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
x
y

]
+

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
x0
y0

]
is also a rotation followed by a translation (but not by the same vector!)
One can check that a composition of congruences is a congruence and
that the inverse of a congruence is a congruence. They are a group.

Debate. Some might argue that a planar shape is congruent to its
“mirror image” under a reflection. For this to be so, we need to enlarge
our group of congruences to include reflections followed by translations.

Similarities are like congruences, except instead of fixing lengths of line
segments, all segments are magnified by a fixed scaling factor α 6= 0.
This is accomplished by multiplying the rotation matrix by a scaling
matrix:

S

([
x
y

])
=

[
α 0
0 α

] [
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
x
y

]
+

[
x0
y0

]
A similarity that fixes the origin might be called a rotation with scaling:

S

([
x
y

])
=

[
α 0
0 α

] [
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
x
y

]



4

Since a composition of similarities will scale lengths by the product
of the α’s, it follows that similarities with a fixed scaling factor are not
a group (unless they are congruences). The similarities of all possible
(positive) scaling factors do, however, form a group.

General Linear Transformations scale areas, rather than lengths:

A

([
x
y

])
=

[
a b
c d

] [
x
y

]
has an area scaling factor equal to the absolute value of the determinant∣∣∣∣det

[
a b
c d

]∣∣∣∣ = |ad− bc|

(the sign of the determinant determines whether or not orientation is
preserved by the transformation). Thus, it is in particular required
that the determinant not be zero. These form a group. It is important
to keep in mind that a linear transformation may not preserve angles,
so circles may turn into ellipses, angles of triangles may change, etc.

A general linear transformation followed by a translation is an Affine
(General) Linear Transformation:

F

([
x
y

])
=

[
a b
c d

] [
x
y

]
+

[
x0
y0

]
These are, for now, our most general transformations of the plane.

As a model for all the other claims we’ve made, let’s prove:

Proposition. The set of Affine Linear Transformations is a group.

Proof. Given two affine linear transformations:

F

([
x
y

])
=

[
a1 b1
c1 d1

] [
x
y

]
+

[
x1
y1

]
and

G

([
x
y

])
=

[
a2 b2
c2 d2

] [
x
y

]
+

[
x2
y2

]
The composition:

G ◦ F
([

x
y

])
=

[
a2 b2
c2 d2

]
·
([

a1 b1
c1 d1

] [
x
y

]
+

[
x1
y1

])
+

[
x2
y2

]
=

([
a2 b2
c2 d2

]
·
[
a1 b1
c1 d1

])[
x
y

]
+

([
a2 b2
c2 d2

] [
x1
y1

]
+

[
x2
y2

])
is again an affine linear transformation, and the inverse of F is:

F−1
([

x
y

])
=

[
a1 b1
c1 d1

]−1 [
x
y

]
−
[
a1 b1
c1 d1

]−1 [
x1
y1

]
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Examples of interesting general linear transformations:[
1 s
0 1

] [
x
y

]
=

[
x+ sy
y

]
is a shear. It fixes points on the x-axis, and fixes the y-coordinates of
any point, but it shoves the points of a given y-coordinate to the right
(or left) by the fixed multiple s of the y-coordinate.

A distortion has different scaling factors in the x and y directions:[
u 0
0 v

] [
x
y

]
=

[
ux
vy

]
It is not hard to see that every linear transformation with positive

determinant (preserving orientation) can be decomposed into a rotation
followed by a shear followed by a distortion.

The Projective Plane is a way of “completing” the plane with points
at infinity. Projective transformations of the projective plane will be
an even larger group of transformations that will be our most general
transformations. We will introduce both the projective line and the
projective plane simultaneously (to contrast them). The astute reader
will notice that there is a pattern here that can be extended to give
projective spaces of all dimensions.

Definition. (i) The projective line RP1 is the set of all the lines
through the origin in the plane R2.

(ii) The projective plane RP2 is the set of all the lines through the
origin in space R3.

First Remark. Every line through the origin intersects the unit sphere
in exactly two points. The unit sphere in the plane is more commonly
referred to as the unit circle:

S1 := {(x, y) |x2 + y2 = 1}
whereas in three space it is what we usually think of as a sphere:

S2 := {(x, y, z) | x2 + y2 + z2 = 1}
The fact that every line meets the sphere in two (antipodal) points

means that there are surjective maps:

a1 : S1 → RP1 and a2 : S2 → RP2

with the property that the inverse image of any point consists of the
two “poles” of the intersection of the line with the sphere. These maps
make RP1 and RP2 into “topological manifolds.”
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The topological manifold RP1 is easy to describe. It is also a circle. In
fact, the circle is the only connected, one-dimensional closed manifold.
In this case, walking along RP1 is just the same as walking along the
unit circle, except that you return to the start after π radians, rather
than after 2π radians. Interestingly, the manifold RP2 is not a sphere,
as we will see.

Second Remark: Ratios give coordinates of points of RP1 and RP2.

For RP1, these are ordinary ratios:

(x : y) 6= (0 : 0) with (x : y) = (αx : αy) for all α 6= 0

Recall that ratios are almost like fractions, except that ratios (x : 0)
are allowed, while fractions are not allowed a 0 in the denominator.
Only the ratio (0 : 0) is not permitted.

In the case of RP2, the ratios are “triple” ratios:

(x : y : z) 6= (0 : 0 : 0) with (x : y : z) = (αx : αy : αz)

Special Ratios. The ratios

(x : 1) and (1 : y)

determine two embeddings of the real line in RP1;

f : R→ RP1; f(x) = (x : 1) and g : R→ RP1; g(y) = (1 : y)

since two ratios (x : 1) and (x′ : 1) are different if x 6= x′. These two
embeddings cover RP1, with each one missing a different point.

Similarly, the ratios:

(x : y : 1), (x : 1 : z) and (1 : y : z)

determine three embeddings of R2 that cover the projective plane:

f(x, y) = (x : y : 1), g(x, z) = (x : 1 : z) and h(y, z) = (1 : y : z)

though each of these embeddings misses a copy of RP1. For example:

(∗) RP2 = {(x : y : 1)} ∪ {(x : y : 0)}
and the latter set is identified in the obvious way with RP1.

All these embeddings may be realized geometrically.

In the case of RP1, a line through the origin in R2 intersects the line
y = 1 at a point (x, 1) (unless it is the x-axis). Similarly, it intersects
x = 1 at a point (1, y) unless it is the y-axis. In the case of RP2, the
lines through the origin intersect the planes z = 1, y = 1 and x = 1,
respectively in points (x, y, 1), (x, 1, z) and (1, y, z) unless the lines are
contained in the xy-plane, xz-plane and yz-plane, respectively.
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Focusing on the union (∗) above, we may consider the closure

S ⊂ RP2

of a subset S ⊂ R2 by adding points from the RP1 “at infinity.”

Example: (a) The closure of the line y = mx+ b is the single point:

(x : mx : 0) = (1 : m : 0)

at infinity. This is because the projective coordinates of the “finite”
points of the line (with the exception of the y-intercept) are:

(x : mx+ b : 1) = (1 : m+ b/x : 1/x)

and the limit as x → ±∞ is the point (1 : m : 0). This means that
following the line in one direction to infinity will “flip” to the opposite
end of the line. The closure of the line is a copy of RP1!

(b) Consider the region bounded above by:

max{y = −x, y = 1, y = x}
and bounded below by

min{y = x, y = −1, y = −x}
The points to add to this bow-tie shaped region to obtain its closure

in RP2 is an interval of points at infinity:

{(1 : m : 0) | − 1 ≤ m ≤ 1}
If you were to walk along the positive x-axis (growing linearly taller

and moving exponentially faster in proportion to your distance from
the origin), you would reach infinity on the right and then flip up-
side down as you return from infinity on the left. This means that
the closure of the bow-tie is a copy of the Möbius strip, which is a
“one-sided” surface that cannot be embedded in a sphere. Moreover,
the complementary region to the bow-tie closure is a topological disk,
realizing the projective plane as a “capped” Möbius strip (the edge of
the Möbius strip is a circle!) which cannot be placed into R3. Thus
RP2, unlike RP1, is not another sphere, but rather a (non-orientable)
surface of a different topological type.

Finally, we consider the projective linear transformations. As with
general linear transformations, these are matrices, but of size one larger
than the dimension of the projective space:

Projective Transformations of RP1 are 2× 2 Invertible Matrices:

A : RP1 → RP1; A

([
x
y

])
=

[
a b
c d

]
·
[
x
y

]
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This is well-defined because matrix multiplication takes lines through
the origin to lines through the origin. It is different from a general
linear transformation of the plane because the vectors of the matrix
multiplication are ratios:[

α 0
0 α

] [
a b
c d

] [
x
y

]
=

[
a b
c d

] [
αx
αy

]
=

[
a b
c d

] [
x
y

]
So scaled transformations are the same projective transformations.

Recall that an affine linear transformation of the real line is:

F (x) = ax+ b

where b is the translation, and a is the scaling factor. Consider the
projective transformation of the projective line:

F

([
x
y

])
=

[
a b
0 1

] [
x
y

]
For points of R (with coordinates (x : 1)) this is the same as F :

F

([
x
1

])
=

[
a b
0 1

] [
x
1

]
=

[
ax+ b

1

]
and the additional point at infinity is fixed:

F

([
1
0

])
=

[
a b
0 1

] [
1
0

]
=

[
a
0

]
=

[
1
0

]
In other words, the affine transformations of the line are a subgroup

of the projective transformations of the projective line. This is also
the case with the projective plane, except that something interesting
happens there at infinity:

Projective Transformations of RP2 are 3× 3 Invertible Matrices:

A : RP2 → RP2; A

 x
y
z

 =

 a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

 ·
 x
y
z


As with the projective line, a matrix and a scalar multiple of it

define the same projective linear transformation, and also as with the
projective line, an affine linear transformation:

F

([
x
y

])
=

[
a1 b1
c1 d1

] [
x
y

]
+

[
x1
y1

]
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can be extended to the projective linear transformation of RP2:

F

 x
y
z

 =

 a1 b1 x1
c1 d1 y1
0 0 1

 ·
 x
y
z


This transformation is just F on the points of R2:

F

 x
y
1

 =

 a1 b1 x1
c1 d1 y1
0 0 1

 ·
 x
y
1

 =

 a1x+ b1y + x1
c1x+ d1y + y1

1


but interestingly, unlike the previous case, this extended transformation
moves around the points at infinity via a projective transformation of
the projective line of points at infinity:

F

 x
y
0

 =

 a1 b1 x1
c1 d1 y1
0 0 1

 ·
 x
y
0

 =

 a1x+ b1y
c1x+ d1y

0


Permutations are another important group of transformations.

In the projective line case, these are:

r =

[
0 1
1 0

]
and e =

[
1 0
0 1

]
with r2 = e

The transformation r switches the x and y coordinates, hence:

r

([
x
1

])
=

([
1
x

])
so in particular, r switches the two embeddings of R in RP1.

In the projective plane case, there are six permutations:

e =

 1 0 0
0 1 0
0 0 1

 , c =

 0 0 1
1 0 0
0 1 0

 , c2 =

 0 1 0
0 0 1
1 0 0



rxy =

 0 1 0
1 0 0
0 0 1

 , rxz =

 0 0 1
0 1 0
1 0 0

 , ryz =

 1 0 0
0 0 1
0 1 0


which permute the three embeddings of R2 in the projective plane.

An Application. We will use the permutation transformations to
“swing points in from infinity.” In other words, given a subset S ⊂ RP2,
we may apply permutation transformations to S to move points at
infinity into the plane R2, and then examine them.


