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6. Representations. We discuss the category of representations of a group G.

Definition 6.1. A representation is an action of a group G on a vector space.
In other words a representation is a homomorphism

ρ : G→ Aut(V ) to the group of symmetries of V in the category VecF

That is, each ρ(g) : V → V is a symmetry of the vector space V satisfying:

ρ(g1g2)(v) = ρ(g1) ◦ ρ(g2)(v) and ρ(1G) = 1V is the identity symmetry

When V = Fn, these symmetries are expressed as n× n matrices.

Example 1. A representation of G = {±1} consists of ρ(1) = idV and ρ(−1) = σ
where σ ∈ Aut(V ) is any symmetry such that σ ◦ σ = idV . For example

(a) ρ(1) = I2 and ρ(−1) = I2 is a “trivial” representation of G on R2.

(b) ρ(1) = I2 and ρ(−1) = −I2 is also a representation of G on R2, as well as

(c) ρ(1) = I2 and any reflection across a line through the origin:

ρ(−1) =

[
cos(θ) sin(θ)
sin(θ) − cos(θ)

]
Remarks. (i) Instead of writing ρ(g)(v), one writes gv when ρ is understood.

(ii) As in the example above, when a group G is given in terms of generators
and relations, then a representation ρ is specified by choosing symmetries ρ(g) for
each generator so that the group relations hold among the chosen symmetries.

Example 2. Transpositions g1 = (1 2) and g2 = (2 3) generate S3 with relations:

g21 = id, g22 = id and (g1g2)3 = id

Letting

ρ(g1) =

[
−1 1

0 1

]
and ρ(g2) =

[
1 0
1 −1

]
we check that: [

−1 1
0 1

]2
= I2 =

[
1 0
1 −1

]2
and [

−1 1
0 1

] [
1 0
1 −1

]
=

[
0 −1
1 −1

]
satisfies

[
0 −1
1 −1

]3
= I2

so this determines a two-dimensional representation of S3. For example,

ρ((1 2 3)) = ρ((1 2)(2 3)) =

[
0 −1
1 −1

]
and

ρ((1 3)) = ρ((1 2)(2 3)(1 2)) =

[
0 −1
1 −1

]
·
[
−1 1

0 1

]
=

[
0 −1
−1 0

]
Example 3. A pair of one-dimensional representations of Sn:

(a) The trivial representation ρtr(σ) = 1 for all σ ∈ Sn and

(b) The sign representation ρsgn(σ) = sgn(σ) for all σ ∈ Sn.
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Definition 6.2. Given representations of G on vector spaces V and W , then

f : V →W ∈ hom(V,W )

is G-linear if f(gv) = gf(v) for all g ∈ G and v ∈ V .

This determines the category GRepF of G-representations with fixed scalar field F :

• The objects of GRepF are G-representations on vector spaces over F .

• The morphisms of GRepF are G-linear maps of vector spaces over F ..

Definition 6.3. Given a representation ρ of G on V ,

(i) A subspace U ⊂ V is invariant if gu ∈ u for all u ∈ U .

(ii) ρ is irreducible if the only invariant subspaces of V are {0} and V .

The Basic Problem. To classify the irreducible representations of a group G.

Examples. (a) In Examples (1a) and (1b), every subspace U ⊂ R2 is invariant.

(b) In Example (1c), there are two invariant subspaces: the line y = tan(θ)x of
vectors with eigenvalue 1 and the perpendicular line y = − cot(θ)x of vectors with
eigenvalue −1 for the given reflection matrix.

(c) The permutation representation of Sn on Fn given by:

ρper(σ)(ei) = eσ(i)

has invariant one-dimensional and n− 1-dimensional subspaces:

U1 = 〈e1 + · · ·+ en〉 and

Un−1 = 〈e1 − e2, ...., en−1 − en〉
The former is clearly invariant, and latter is invariant because of “telescoping”:

ρper(σ)(ei − ei+1) = eσ(i) − eσ(i+1)

and each ej − ek = (ej − ej+1) + (ej+1 − ej+2) + · · ·+ (ek−1 − ek) ∈ Un+1.

Remark. An invariant subspace U ⊂ V is itself a representation of G. Thus,
for example, the two invariant lines for the reflection in Example (1c) are the
representations: ρtr and ρsgn, respective, of the group C2 = S2 (from Example 3).
One can check that Example 2 is the representation U2 ⊂ F 3 for the group S3.

Definition 6.4. A character of G is a one-dimensional complex representation:

χ : G→ C∗ = Aut(C1)

Examples include the representations ρtr and ρsgn of Sn and the n characters:

χm : Cn → C∗; χm(x) = ζm for ζ = e
2πi
n

(including the trivial character χ0) of the cyclic group Cn = {1, x, x2, ..., xn−1}.
Note. Characters, being one-dimensional, are irreducible complex representations.

The real two-dimensional rotations of Cn corresponding to χm are:

ρm(x) =

[
cos(2πm/n) − sin(2πm/n)
sin(2πm/n) cos(2πm/n)

]
and these are irreducible real representations, since they have no invariant lines.

In contrast, we have the following feature of complex representations:
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Proposition 6.5. If G is an abelian group, then every irreducible complex rep-
resentation of G is one-dimensional, i.e. a character.

Proof. Let ρ : G→ Aut(Cn). We show that the commuting matrices:

ρ(g) = Ag for g ∈ G
all share a common eigenvector. The line spanned by one such eigenvector is then
an invariant subspace for the representation ρ (and a character of the group A).

Select g ∈ G and let v ∈ Cn be an eigenvector of Ag with eigenvalue λ ∈ C.
Select another h ∈ G. Then because Ag and Ah commute, we have:

Ag(Ahv) = Ah(Agv) = Ah(λ · v) = λAh(v)

so Ahv is another eigenvector for Ag with eigenvalue λ. View:

Ah : Vλ → Vλ as a symmetry of the λ-eigenspace of Ag

Then Ah has an eigenvector in Vλ with eigenvalue µ which is a shared eigenvector.
Continue this process to conclude that any finite number of commuting matrices
share an eigenvector. But this also applies to an infinite number of commuting
matrices, reasoning by induction on the dimension of the shared eigenspaces. �

Example. (a) Consider the “cycle” representation of Cn on Cn given by:

ρcyc(x)(ei) = ei+1 for i < n and ρcyc(en) = e1

Then:

Ax =


0 0 · · · 0 1
1 0 · · · 0 0
0 1 · · · 0 0

. . .

0 0 · · · 1 0


has a basis v1, ..., vn of eigenvectors (hence invariant lines for Cn) given by:

vm = e1 + ζme2 + ζ2me3 + · · ·+ ζ(n−1)men (with eigenvalue ζm)

and, in particular, vn = e1 + · · ·+ en. Notice that each of the invariant lines:

(〈vm〉, ρcyc) is a copy of the character χm defined above!

(b) Consider the representation of (C,+, 0) on C2 given by:

ρ(z) =

[
1 z
0 1

]
This has one invariant subspace, the line spanned by the joint eigenvector e1.
Notice that when z 6= 0 in this example, the matrices are not semi-simple.

Definition 6.6. (i) A vector space V is a direct sum:

V = U1 ⊕ · · · ⊕ Un
of subspaces Ui ⊂ V if every vector v ∈ V has a unique expression:

v = u1 + · · ·+ un for vectors ui ∈ Ui
(ii) A representation (V, ρ) is a direct sum

V = U1 ⊕ · · · ⊕ Un
of sub-representations if the Ui are invariant subspaces of V .
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Any subspace U of a vector space V has many “complementary” subspaces W
with V = U ⊕W . Indeed, any basis {u1, ..., um} for U can be extended to a basis
{u1, ..., um, vm+1, ..., vn} for V , and then we may choose W = 〈vm+1, ..., vn〉. When
V = Rn or Cn, however, the dot (or standard Hermitian) inner product gives a
canonical orthogonal complement to U :

Rn : U⊥ = {v ∈ V | u · v = 0 for all u ∈ U}

Cn : U⊥ = {v ∈ V | 〈u, v〉 = 0 for all u ∈ U}
Complements are much rarer for invariant subspaces U of a G-representation.

For example, in the representation of (C,+, 0):

ρ(z) =

[
1 z
0 1

]
there is only one invariant line U = 〈e1〉 which has no invariant complement.

Proposition 6.7. If G is finite and ρ : G→ Aut(Cn) is a complex representation,
every invariant subspace U ⊂ Cn has an invariant complement.

Proof. The idea is to construct a Hermitian inner product on Cn that is G-
invariant by averaging over the group, and then to take the orthogonal complement
with respect to this averaged inner product. Let:

〈u, v〉G =
1

|G|
∑
g∈G
〈gu, gv〉

This is rigged so that:

〈u, v〉G = 〈hu, hv〉G for all h ∈ G
and if v 6= 0, then

〈v, v〉G =
1

|G|
∑
g∈G
|gv|2 > 0

i.e. 〈∗, ∗〉G is positive definite, and also Hermitian, i.e.

〈u, v〉G = 〈v, u〉G and 〈c1u1 + c2u2, v〉G = c1〈u1, v〉G + c2〈u2, v〉G
It follows that if U is an invariant subspace of Cn, then U⊥ is complementary, when
U⊥ is defined in terms of this G-invariant Hermitian inner product, and

〈u,w〉G = 0 for all u ∈ U ⇒ 〈u, hw〉G = 〈h−1u,w〉G = 0 for all u ∈ U
so U⊥ is also invariant. �

Example. Consider the action of G = {±1} on C2 with:

ρ(1) = I2 and ρ(−1) =

[
−1 1

0 1

]
Then U1 = 〈e1〉 is an invariant subspace, and from:

〈e1, e1〉G =
1

2
(〈e1, e1〉+ 〈−e1,−e1〉) = 1 and

〈e1, e2〉G =
1

2
(〈e1, e2〉+ 〈−e1, e1 + e2〉) = −1

2
we conclude that:

〈e1, e1 + 2e2〉G = 0

i.e. U⊥1 = 〈e1 + 2e2〉 (which is an eigenvector of ρ(−1) with eigenvalue one!)
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Corollary 6.8. Every complex representation (V, ρ) of a finite group G decomposes
as a direct sum of irreducible representations:

V = U1 ⊕ · · · ⊕ Um
Proof. If V is irreducible, then the Corollary is trivially true. Otherwise V has

an invariant subspace U ⊂ V , and then V decomposes as V = U ⊕ U⊥ via the
Proposition. Then we apply the Proposition to U and U⊥ individually and proceed
until we get the desired decomposition. �

Corollary 6.9. If A ∈ Aut(Cn) and Ad = In, then A is semi-simple, i.e. Cn has a
basis of eigenvectors of the matrix A.

Proof. Let G = Cn, and (Cn, ρ) be the representation determined by ρ(x) = A.
Then A has an eigenvector v1 with eigenvalue λ1. Moreover, since:

Amv1 = λm1 v1

it follows that v1 is an eigenvector for all powers of A, and 〈v1〉 is an invariant
subspace of Cn. Let U⊥ ∼= Cn−1 be the complementary invariant subspace from
the Proposition. Then by induction on n, A : U⊥ → U⊥ has a basis v2, ..., vn of
eigenvectors, and so v1, v2, ..., vn is a basis of eigenvectors of Cn. �

Corollary 6.10. If (Cn, ρ) is a representation of a finite group G, then each

ρ(g) = Ag is semi-simple

Proof. Each of these matrices has order d for some d. �

An Irreducible Complex Representation. Let D2n be the dihedral group,
generated by two elements g1 and g2 with relations:

g21 = 1, g22 = 1 and (g1g2)n = 1

We’ve seen in §4 that one representation of D2n is given by the symmetries of the
regular n-gon (with vertices at (cos(2πm/n), sin(2πm/n)) and reflections:

ρ(g1) =

[
cos(2π/n) sin(2π/n)
sin(2π/n) − cos(2π/n)

]
and ρ(g2) =

[
1 0
0 −1

]
with

ρ(g1g2) =

[
cos(2π/n) − sin(2π/n)
sin(2π/n) cos(2π/n)

]
Using the same matrices, we promote this to a representation of D2n on C2.

This complex representation of D2n is irreducible since any invariant line would
be spanned by a common eigenvector for ρ(g1) and ρ(g2), and by virtue of being
reflections across different lines of symmetry, these share no common eigenvectors.
Specifically, the invariant lines for these transformations are (y = tan(2π/n)x) and
(y = − cot(2π/n)) for the matrix ρ(g1) and (x = 0) and (y = 0) for ρ(g2).

Contrast this with the two-dimensional complex representation of the cyclic
group Cn given by the rotation matrix:

ρ(x) =

[
cos(2π/n) − sin(2π/n)
sin(2π/n) cos(2π/n)

]
which has two invariant (complex) lines 〈e1 + ie2〉 and 〈e1 − ie2〉 that correspond
to the two characters χ−1 and χ1, respectively.
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Finally, consider the “pair of” two-dimensional representations of the group S3:

ρ(g1) =

[
−1 1

0 1

]
and ρ(g2) =

[
1 0
1 −1

]
(from Example 2) and:

τ(g1) =

[
− 1

2

√
3
2√

3
2

1
2

]
and τ(g2) =

[
1 0
0 −1

]
viewing S3 as the dihedral group D6 acting on the equilateral triangle.

I claim that these are the same representation of S3, with the different matrix
representations an artifact of the choice of different bases for C2. In other words,
we seek a single “change of basis” matrix B such that:

B−1
[
−1 1

0 1

]
B =

[
− 1

2

√
3
2√

3
2

1
2

]
and

B−1
[

1 0
1 −1

]
B =

[
1 0
0 −1

]
It is easiest to work with the second equation, and to recall that because the

change of basis B converts to a diagonal matrix, then:

B = [v1 v2] where

[
1 0
1 −1

]
v1 = v1 and

[
1 0
1 −1

]
v2 = −v2

i.e. v1 and v2 are eigenvectors with +1 and −1 eigenvalues. A bit of fiddling gives:

v1 = λ1

[
2
1

]
and v2 = λ2

[
0
1

]
for λ1, λ2 ∈ C∗

and then plugging in for B we find that setting λ2/λ1 =
√

3 gives

B−1
[
−1 1

0 1

]
B =

[
− 1

2

√
3
2√

3
2

1
2

]


