Name:______________________________

Math 4400
Third Midterm Examination Answer Key
November 30, 2012

Please indicate your reasoning and show all work on this exam paper.

Relax and good luck!

<table>
<thead>
<tr>
<th>Problem</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>
1. Give precise definitions of each of the following (5 points each)

 (a) The Legendre symbol.

 The symbol:
 \[\left(\frac{a}{p} \right) \]
 is defined when \(p \) is a prime and \(a \) is an integer relatively prime to \(p \). It is 1 if \(a \) is square (mod \(p \)) and \(-1\) otherwise.

 (b) A Gaussian integer.

 A Gaussian integer is a complex number of the form \(a + bi \) where \(a, b \) are (ordinary) integers.

 (c) An indecomposable Gaussian integer.

 A Gaussian integer \(a + bi \) is indecomposable if \(a + bi \) is not a unit, and its only factors are units or the product of \(a + bi \) with units.

 (d) Pell’s Equation.

 Pell’s equation is any equation of the form:
 \[x^2 - Dy^2 = 1 \]
 where \(D \) is a natural number which is not a perfect square.
2.

(a) (10 points) State and prove Euler’s criterion for computing the Legendre symbol.

Euler’s Criterion states that the Legendre symbol satisfies:

$$\left(\frac{a}{p} \right) = a^{\frac{p-1}{2}} \pmod{p}$$

whenever \(p \) is an odd prime.

Proof. Let \(g \in (\mathbb{Z}/p\mathbb{Z})^\times \) be a primitive element. Then the squares mod \(p \) are the **even** powers of \(g \) and (because there are an equal number of squares and non-squares), the non-squares are the **odd** powers of \(g \).

Let \(a \) be a square. Then for some \(k \),

$$a \equiv g^{2k} \pmod{p}, \quad \text{so} \quad a^{\frac{p-1}{2}} \equiv g^{k(p-1)} \equiv 1 \pmod{p}$$

by Fermat’s Little Theorem.

On the other hand, it follows from the fact that \(g \) is primitive (and Fermat’s Little Theorem) that \(g^{\frac{p-1}{2}} \equiv -1 \pmod{p} \), so if \(a \) is **not** a square, then there is some \(k \) such that:

$$a \equiv g^{2k+1} \pmod{p}, \quad \text{so} \quad a^{\frac{p-1}{2}} \equiv g^{k(p-1)+\frac{p-1}{2}} \equiv -1 \pmod{p}$$

which proves Euler’s criterion.

(b) (10 points) For an odd prime \(p \), prove that:

$$\left(\frac{-1}{p} \right) = \begin{cases} 1 & \text{if } p \equiv 1 \pmod{4} \\ -1 & \text{if } p \equiv 3 \pmod{4} \end{cases}$$

By Euler’s criterion:

$$\left(\frac{-1}{p} \right) \equiv (-1)^{\frac{p-1}{2}} = \begin{cases} 1 & \text{if } p \equiv 1 \pmod{4} \\ -1 & \text{if } p \equiv 3 \pmod{4} \end{cases}$$
3. In the ring of Gaussian integers, find the following:

 (a) (10 points) A factorization of:
 \[12 + 12i \]
 as a product of indecomposable Gaussian integers.

 First of all,
 \[12 + 12i = 12(1 + i) \]
 and \(1 + i \) is indecomposable. Next, we factor 12:
 \[12 = 2^2 \cdot 3 \]
 and 3 is indecomposable. Finally, we factor 2:
 \[2 = (-i)(1 + i)^2 \]
 so putting it all together, we have:
 \[12 + 12i = (-i)^2 \cdot 3 \cdot (1 + i)^5 = -3(1 + i)^5 \]

 (b) (10 points)
 \[\gcd(8 + i, 7 + 4i) \]

 We begin by computing norms:
 \[N(8 + i) = 64 + 1 = 65, \quad N(7 + 4i) = 49 + 16 = 65 \]
 and since 65 = 5 \cdot 13, it follows that any indecomposable common factor must have norm 5 or norm 13. These are:
 \(1 + 2i, \ 1 − 2i, \ 2 + 3i, \ 2 − 3i \)

 We start by trying to divide each by \(1 + 2i \):
 \[\frac{8 + i}{1 + 2i} = \frac{(8 + i)(1 − 2i)}{5} = \frac{10 − 15i}{5} = 2 − 3i \]
 It works! Thus the factorization of \(8 + i \) is \(8 + i = (1 + 2i)(2 − 3i) \).

 Similarly,
 \[\frac{7 + 4i}{1 + 2i} = \frac{(7 + 4i)(1 − 2i)}{5} = \frac{15 − 10i}{5} = 3 − 2i \]
 which also works! The factorization of \(7 + 4i \) is \(7 + 4i = (1 + 2i)(3 − 2i) \).

 Since \(1 + 2i \) is a common factor, and \(2 − 3i \) and \(3 − 2i \) are not associated indecomposables (one is not a unit times the other), it follows that the \(\gcd \) is: \(1 + 2i \)
4. (a) (5 points) Fill in the blanks. If \(p \) is an odd prime, then:
\[
\left(\frac{2}{p} \right) = \begin{cases}
1 & \text{if } p \equiv 1 \text{ or } 7 \pmod{8} \\
-1 & \text{if } p \equiv 3 \text{ or } 5 \pmod{8}
\end{cases}
\]

(b) (5 points) Carefully state the Quadratic Reciprocity Theorem.

If \(p \) and \(q \) are two different odd primes, then:
\[
\left(\frac{p}{q} \right) = \left(\frac{q}{p} \right) \text{ unless } p \equiv q \equiv 3 \pmod{4}
\]
in which case:
\[
\left(\frac{p}{q} \right) = -\left(\frac{q}{p} \right)
\]

(c) (10 points) Compute the following two Legendre symbols (show your work!).
\[
\left(\frac{50}{101} \right) \quad \left(\frac{51}{101} \right)
\]

Using (a) above:
\[
\left(\frac{50}{101} \right) = \left(\frac{2}{101} \right) \cdot \left(\frac{25}{101} \right) = \left(\frac{2}{101} \right) = -1
\]
because \(101 \equiv 5 \pmod{8} \).

Using (b) above:
\[
\left(\frac{51}{101} \right) = \left(\frac{3}{101} \right) \left(\frac{17}{101} \right) = \left(\frac{101}{3} \right) \left(\frac{101}{17} \right) = \left(\frac{2}{3} \right) \left(\frac{-1}{17} \right) = -1 \cdot 1 = -1
\]

We conclude that neither 50 nor 51 is a square mod 101.
5. Let p be an odd prime.

 (a) (10 points) Prove that if p is a sum of two perfect squares, then

 $p \equiv 1 \pmod{4}$.

 If $p = a^2 + b^2$, then:

 $a^2 \equiv -b^2 \pmod{p} \implies (ab^{-1})^2 \equiv 1 \pmod{p}$

 where b^{-1} is the multiplicative inverse of b in $(\mathbb{Z}/p\mathbb{Z})^\times$, so:

 $$\left(\frac{-1}{p}\right) = 1 \implies p \equiv 1 \pmod{4}$$

 (b) (10 points) Sketch the proof of the converse to (a). If

 $p \equiv 1 \pmod{4}$,

 then p is the sum of two perfect squares.

 From $p \equiv 1 \pmod{4}$, we conclude that -1 is a square mod p, so:

 $a^2 \equiv -1 \pmod{p}$

 for some a, which then solves the equation:

 $a^2 + 1 = mp$

 for some $m \geq 1$. If $m = 1$, we are done. Otherwise, Fermat’s method
 of infinite descent allows us to find a pair of integers (u, v), such that:

 $u^2 + v^2 = rp$

 where $r < m/2$, which we can invoke until we arrive at $r = 1$.