Math 4400
Second Midterm Examination
Answer Key
October 26, 2012

Please indicate your reasoning and show all work on this exam paper.

Relax and good luck!

<table>
<thead>
<tr>
<th>Problem</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>
1. Give precise definitions of each of the following (5 points each)

(a) Field.
A field is a set F with two binary operations $+, \cdot$, such that:

$(F, +)$ is a commutative group with additive identity 0.
$(F - \{0\} = F^\times, \cdot)$ is a commutative group with multiplicative id 1.
Addition and multiplication satisfy the distributive law.

(b) Perfect number.
A perfect number is a natural number n that is the sum of all its proper divisors, i.e. n is perfect if:

$$n = \sum_{d|n, d<n} d$$

(c) Mersenne prime.
An integer of the form:

$$M_l = 2^l - 1$$

is a Mersenne number. If it is prime, it is a Mersenne prime. It is true, but not needed for the definition, that a necessary (but not sufficient) condition for M_l to be prime is that l itself be prime.

(d) Primitive element in $(\mathbb{Z}/p\mathbb{Z})^\times$.
A primitive dth root of 1 in a field is an element $a \in F^\times$ with the property that $a^d = 1$ but $a^e \neq 1$ for any $e < d$. In this case, a primitive element in $(\mathbb{Z}/p\mathbb{Z})^\times$ is a primitive $p-1$st root of 1. It can also be defined as an element $a \in (\mathbb{Z}/p\mathbb{Z})^\times$ with the property that every element of $(\mathbb{Z}/p\mathbb{Z})^\times$ is a (unique) power of a.
2. Solve the following two equations:

(a) (10 points)

\[5x \equiv 7 \pmod{22} \]

From Euclid’s algorithm applied to (5, 22), we obtain:
\[22 = 4 \cdot 5 + 2, \quad 5 = 2 \cdot 2 + 1 \]
and
\[2 = 22 - 4 \cdot 5, \quad 1 = 5 - 2 \cdot 2 = 5 - 2(22 - 4 \cdot 5) \]
giving the equation:
\[9 \cdot 5 - 2 \cdot 22 = 1 \]
so \(9 \equiv 5^{-1} \pmod{22}\). Thus we solve the equation by:
\[x \equiv 9(5x) \equiv 9 \cdot 7 \equiv 19 \pmod{22} \]

(b) (10 points)

\[x^5 \equiv 7 \pmod{23} \]

From the previous problem(!) we have \(9 \equiv 5^{-1} \pmod{22}\). Thus:
\[x \equiv (x^5)^9 \equiv 7^9 \pmod{23} \]
and we compute \(7^9\) by successive squaring:
\[7^1 = 7, \quad 7^2 \equiv 3, \quad 7^4 \equiv 9, \quad 7^8 \equiv 81 \equiv 12 \]
and then:
\[7^9 \equiv 12 \cdot 7 \equiv 15 \pmod{23} \]
3. State the following theorems precisely (10 points each):

(a) Dirichlet’s Theorem on Primes in Arithmetic Progressions.

If a and d are natural numbers, and $\gcd(a, d) = 1$, then there are infinitely many primes in the arithmetic progression:

$$a, a + d, a + 2d, a + 3d, \cdots$$

(b) The Lucas-Lehmer Test for Primeness of $M_l = 2^l - 1$.

Let l be an odd prime number. Define a sequence of integers by:

$$s_1 = 4, \quad s_{n+1} = s_n^2 - 2 \text{ for } n \geq 1$$

Then $M_l = 2^l - 1$ is prime if and only if $M_l | s_{l-1}$.
4. (a) (5 points) How many primitive elements are there in $(\mathbb{Z}/19\mathbb{Z})^\times$?

There are:

$$\phi(18) = \phi(2) \cdot \phi(9) = 6$$

primitive elements in $(\mathbb{Z}/19\mathbb{Z})^\times$.

(b) (15 points) Find all of the primitive elements in $(\mathbb{Z}/19\mathbb{Z})^\times$.

(Hint: To get you started, 2 is a primitive element.)

We use the known primitive element 2 to make a table:

<table>
<thead>
<tr>
<th>2^i</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>13</th>
<th>7</th>
<th>14</th>
<th>9</th>
<th>18</th>
<th>17</th>
<th>15</th>
<th>11</th>
<th>3</th>
<th>6</th>
<th>12</th>
<th>5</th>
<th>10</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>13</td>
<td>7</td>
<td>14</td>
<td>9</td>
<td>18</td>
<td>17</td>
<td>15</td>
<td>11</td>
<td>3</td>
<td>6</td>
<td>12</td>
<td>5</td>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>

The primitive elements are the powers 2^i with $\gcd(i, 18) = 1$, i.e.

$$2^1 \equiv 2, \quad 2^5 \equiv 13, \quad 2^7 \equiv 14, \quad 2^{11} \equiv 15, \quad 2^{13} \equiv 3, \quad 2^{17} \equiv 10$$

Checking against (a), we see that there are indeed six of these.
5. (a) (10 points) Verify that:

\[28 = \sum_{d|28} \phi(d) \]

The divisors of 28 are 1, 2, 4, 7, 14, 28. We compute:
\(\phi(1) = 1, \ \phi(2) = 1, \ \phi(4) = 2, \ \phi(7) = 6, \ \phi(14) = 6 \) and \(\phi(28) = 12 \)

Summing them up, we get:

\[1 + 1 + 2 + 6 + 6 + 12 = 28 \]

This verifies the equation.

(b) (10 points) The first three even perfect numbers are:

6, 28 and 496

What is the next one? (You may write it as a product of two numbers.)

The formula for even perfect numbers is:

\[n = 2^{l-1}(2^l - 1) \]

where \(M_l = 2^l - 1 \) is a Mersenne prime. The first few are:

\[l = 2. \quad n = 2 \cdot 3 = 6. \]
\[l = 3. \quad n = 4 \cdot 7 = 28. \]
\[l = 5. \quad n = 16 \cdot 31 = 496. \]

The next one is:

\[l = 7. \quad n = 64 \cdot 127 = 8128. \]