Name:_____

Math 4400 First Midterm Examination September 21, 2012 ANSWER KEY

Please indicate your reasoning and show all work on this exam paper.

Relax and good luck!

Problem	Points	Score
1	20	20
2	20	20
3	20	20
4	20	20
5	20	20
Total	100	100

You may use the following consequence of Euclid's algorithm. Mention it if and when you do so.

Fundamental Theorem. If a and b are natural numbers, then there are integers x and y that solve the equation:

 $ax + by = \gcd(a, b)$

- **1.** Give precise definitions of each of the following (4 points each)
 - (a) The greatest common divisor of natural numbers a and b

The greatest common divisor of a and b is the largest integer d with the property that d|a and d|b.

(b) A group (G, \cdot)

This is a set with a binary operation satisfying the following:

(i) Associativity. For all $a, b, c \in G$, (ab)c = a(bc).

- (ii) Unit. There is an $e \in G$ such that ae = ea = a for all $a \in G$.
- (iii) Inverses. For all $a \in G$, there is a $b \in G$ such that ab = ba = e.
- (c) The order of an element $g \in G$ of a group

The order of g, denoted o(g), is the smallest positive integer n such that $g^n = e$, or, if there is no such n, then the order of g is infinity.

(d) The group $((\mathbb{Z}/n\mathbb{Z})^{\times}, \cdot)$ for a given natural number n > 1

This is the group of integers $(\mod n)$ that are relatively prime to n, with multiplication $(\mod n)$ as the binary operation.

(e) The Euler ϕ function $\phi(n)$

This is the order of the group in (d), or, equivalently, the number of integers between 0 and n that are relatively prime to n.

2. Suppose a, b are natural numbers that satisfy the equation:

24a - 23b = 1

(a) (5 points) Explain carefully why a and b are relatively prime.

Suppose d|a and d|b. Then d|(24a - 23b). In other words, every common divisor of a and b divides 1, so the greatest common divisor divides 1. Thus the greatest common divisor of a and b is 1.

Now let a = 139 and b = 145 (these satisfy the equation!)

(b) (5 points) Find a natural number $n \leq 138$ such that:

 $n = b^{-1}$ in the group $(\mathbb{Z}/139\mathbb{Z})^{\times}$

It is immediate from the equation:

$$24 \cdot 139 - (23)(145) = 1$$

that $b^{-1} \equiv -23 \pmod{139}$. But this is not a **natural number**. To get a natural number, just add 139. This gives:

$$-23 + 139 = 116$$

(c) (10 points) Find an integer k with the property that:

 $k \equiv 2 \pmod{139}$ and $k \equiv 3 \pmod{145}$

"Going backwards" in the Chinese Remainder Theorem gives us an answer of:

axt + bys

when we seek a number that is congruent to $s \pmod{a}$ and $t \pmod{b}$. In this case, that is:

$$(139)(24)(3) + (145)(-23)(2) = 3338$$

3. (20 points)

(a) (10 points) Suppose a, b, n are natural numbers such that:

gcd(a, b) = 1, a|n and b|n

Prove that ab|n.

Here we must use the Fundamental Theorem:

$$ax + by = 1$$

from the first page of the exam. Suppose a|n and b|n. Then:

n = axn + byn

(multiplying the previous equation by n). But ab|(axn) because b|n and ab|(byn) because a|n, so:

$$ab|n$$
 because $n = axn + byn$

(b) (10 points) Carefully state the Chinese Remainder Theorem, and explain how (a) is used to prove it.

The Chinese Remainder Theorem says that if gcd(a, b) = 1, then:

 $\mathbb{Z}/ab\mathbb{Z} \to \mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z}$

is a bijection, from which it follows that the map on the multiplicative groups is also a bijection.

Since both sets have *ab* elements, if suffices to prove that the map is an **injection**. That is, it suffices to show that:

 $x \equiv y \pmod{a}$ and $x \equiv y \pmod{b}$ imply that $x \equiv y \pmod{ab}$

In other words, if a|(y-x) and b|(y-x), we need to know that ab|(y-x). But this is precisely what we just proved in (a).

4

4. (a) (5 points) Compute the following values of the Euler ϕ function:

$$\phi(15) = 8 \quad \phi(16) = 8 \ \phi(36) = 12 \ \phi(37) = 36 \ \phi(91) = 72$$

(b) (15 points) Fill out the following table, listing all the elements $a \in (\mathbb{Z}/15\mathbb{Z})^{\times}$, their inverses, and their orders.

a	a^{-1}	o(a)
1	1	1
2	8	4
4	4	2
7	13	4
8	2	4
11	11	2
13	7	4
14	14	2

- 5. (a) (5 points) Carefully state Lagrange's Theorem.
 - If G is a finite group and $g \in G$, then o(g)||G|.
 - (b) (5 points) Carefully state Fermat's Little Theorem.
 - If p is a prime and p does not divide a, then:

 $a^{p-1} \equiv 1 \pmod{p}$

(c) (5 points) Carefully state Euler's Theorem.

If a and n are relatively primes, then:

 $a^{\phi(n)} \equiv 1 \pmod{n}$

where $\phi(n)$ is the Euler phi function of n.

(d) (5 points) $10^3 = 999 + 1$ and $999 = 27 \cdot 37$

Explain why this implies that 27 is not a prime number, but that this does not tell us whether or not 37 is prime (in fact, 37 is prime).

Suppose 27 were a prime number. Then by Lagrange's theorem, the element $10 \in (\mathbb{Z}/27\mathbb{Z})^{\times}$ must have order dividing 26 = 27 - 1 (which would be the order of the group). But the order of 10 is 3 since:

$$10^3 \equiv 1 \pmod{27}$$

and 3 does not divide 26, so it follows that 27 is not prime!

On the other hand, 3 does divide 37 - 1 = 36, which is consistent with Lagrange's theorem applied to $10 \in (\mathbb{Z}/37\mathbb{Z})^{\times}$. This is not enough to conclude that 37 is a prime, however.