You may use the following consequence of Euclid’s algorithm. Mention it if and when you do so.

Fundamental Theorem. If \(a \) and \(b \) are natural numbers, then there are integers \(x \) and \(y \) that solve the equation:

\[
ax + by = \gcd(a, b)
\]
1. Give precise definitions of each of the following (4 points each)

(a) The greatest common divisor of natural numbers a and b

The greatest common divisor of a and b is the largest integer d with the property that $d|a$ and $d|b$.

(b) A group (G, \cdot)

This is a set with a binary operation satisfying the following:

(i) Associativity. For all $a, b, c \in G$, $(ab)c = a(bc)$.

(ii) Unit. There is an $e \in G$ such that $ae = ea = a$ for all $a \in G$.

(iii) Inverses. For all $a \in G$, there is a $b \in G$ such that $ab = ba = e$.

(c) The order of an element $g \in G$ of a group

The order of g, denoted $o(g)$, is the smallest positive integer n such that $g^n = e$, or, if there is no such n, then the order of g is infinity.

(d) The group $((\mathbb{Z}/n\mathbb{Z})^\times, \cdot)$ for a given natural number $n > 1$

This is the group of integers (mod n) that are relatively prime to n, with multiplication (mod n) as the binary operation.

(e) The Euler ϕ function $\phi(n)$

This is the order of the group in (d), or, equivalently, the number of integers between 0 and n that are relatively prime to n.
2. Suppose a, b are natural numbers that satisfy the equation:

$$24a - 23b = 1$$

(a) (5 points) Explain carefully why a and b are relatively prime.

Suppose $d | a$ and $d | b$. Then $d | (24a - 23b)$. In other words, every common divisor of a and b divides 1, so the greatest common divisor divides 1. Thus the greatest common divisor of a and b is 1.

Now let $a = 139$ and $b = 145$ (these satisfy the equation!)

(b) (5 points) Find a natural number $n \leq 138$ such that:

$$n = b^{-1} \text{ in the group } (\mathbb{Z}/139\mathbb{Z})^\times$$

It is immediate from the equation:

$$24 \cdot 139 - (23)(145) = 1$$

that $b^{-1} \equiv -23 \pmod{139}$. But this is not a natural number. To get a natural number, just add 139. This gives:

$$-23 + 139 = 116$$

(c) (10 points) Find an integer k with the property that:

$$k \equiv 2 \pmod{139} \text{ and } k \equiv 3 \pmod{145}$$

“Going backwards” in the Chinese Remainder Theorem gives us an answer of:

$$axt + bys$$

when we seek a number that is congruent to $s \pmod{a}$ and $t \pmod{b}$. In this case, that is:

$$(139)(24)(3) + (145)(-23)(2) = 3338$$
3. (20 points)

(a) (10 points) Suppose a, b, n are natural numbers such that:
\[\gcd(a, b) = 1, \ a|n \text{ and } b|n \]
Prove that $ab|n$.

Here we must use the Fundamental Theorem:
\[ax + by = 1 \]
from the first page of the exam. Suppose $a|n$ and $b|n$. Then:
\[n = axn + byn \]
(multiplying the previous equation by n). But $ab|(axn)$ because $b|n$ and $ab|(byn)$ because $a|n$, so:
\[ab|n \text{ because } n = axn + byn \]

(b) (10 points) Carefully state the Chinese Remainder Theorem, and explain how (a) is used to prove it.

The Chinese Remainder Theorem says that if $\gcd(a, b) = 1$, then:
\[\mathbb{Z}/ab\mathbb{Z} \rightarrow \mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z} \]
is a bijection, from which it follows that the map on the multiplicative groups is also a bijection.

Since both sets have ab elements, if suffices to prove that the map is an injection. That is, it suffices to show that:
\[x \equiv y \pmod{a} \text{ and } x \equiv y \pmod{b} \text{ imply that } x \equiv y \pmod{ab} \]
In other words, if $a|(y - x)$ and $b|(y - x)$, we need to know that $ab|(y - x)$. But this is precisely what we just proved in (a).
4. (a) (5 points) Compute the following values of the Euler \(\phi \) function:

\[
\phi(15) = 8 \quad \phi(16) = 8 \quad \phi(36) = 12 \quad \phi(37) = 36 \quad \phi(91) = 72
\]

(b) (15 points) Fill out the following table, listing all the elements \(a \in (\mathbb{Z}/15\mathbb{Z})^\times \), their inverses, and their orders.

<table>
<thead>
<tr>
<th>(a)</th>
<th>(a^{-1})</th>
<th>(o(a))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>13</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>2</td>
</tr>
</tbody>
</table>
5. (a) (5 points) Carefully state Lagrange’s Theorem.

If G is a finite group and $g \in G$, then $o(g) || |G|$.

(b) (5 points) Carefully state Fermat’s Little Theorem.

If p is a prime and p does not divide a, then:

$$a^{p-1} \equiv 1 \pmod{p}$$

(c) (5 points) Carefully state Euler’s Theorem.

If a and n are relatively primes, then:

$$a^{\phi(n)} \equiv 1 \pmod{n}$$

where $\phi(n)$ is the Euler phi function of n.

(d) (5 points) $10^3 = 999 + 1$ and $999 = 27 \cdot 37$

Explain why this implies that 27 is not a prime number, but that
this does not tell us whether or not 37 is prime (in fact, 37 is prime).

Suppose 27 were a prime number. Then by Lagrange’s theorem, the
element $10 \in (\mathbb{Z}/27\mathbb{Z})^\times$ must have order dividing $26 = 27 - 1$ (which
would be the order of the group). But the order of 10 is 3 since:

$$10^3 \equiv 1 \pmod{27}$$

and 3 does not divide 26, so it follows that 27 is not prime!

On the other hand, 3 does divide $37 - 1 = 36$, which is consistent
with Lagrange’s theorem applied to $10 \in (\mathbb{Z}/37\mathbb{Z})^\times$. This is not enough
to conclude that 37 is a prime, however.