Newton's Method

Formula: $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$

Newton's method is a series of steps to approximate roots of a polynomial.

Start with x_0 . Plot $(x_0, f(x_0))$ on the graph. Find the tangent line at x_0 , and draw it on your graph. Let x_1 be the intersection of the x-axis and the tangent line. Plot $(x_1, f(x_1))$ and repeat the same steps- giving the result of x_2 . Keep going until the desired answer is derived. This is typically when the result is stable to the ten-thousandth (4th) decimal place.

Looking at the graph above, we are going to guess what the positive root of $f(x) = x^2 - 2$ would be $\Rightarrow x_0 = 1$. Then, we will find what f'(x) is $\Rightarrow f'(x) = 2x$.

$$\frac{Guess}{x_0 = 1}$$

$$f(x) = x^2 - 2$$

$$f'(x) = 2x$$

Starting with our guess in the left column of the table, we plug in x_0 into $f(x_n)$ in the second column. This gives us $f(x_n) = 1$. Then, in the third column, we plug x_0 into $f'(x_n)$ giving us $f'(x_n) = 2$. Going to the second row of our first column, we will use our original equation $-x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$ where n = 0 – to find x_1 . We repeat the process to find x_2, x_3, \ldots until we find a number that matches the actual root $-\sqrt{2} = 1.41421...$ up to three decimals.

x_n	$f(x_n)$	$f'(x_n)$
$x_0 = l$	$f(x_0) = (1)^2 - 2 = 1$	$f'(x_0) = 2(1) = 2$
$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 1 - (-\frac{1}{2}) = \frac{3}{2}$	$f(x_1) = (\frac{3}{2})^2 - 2 = \frac{1}{4}$	$f'(x_1) = 2(\frac{3}{2}) = 3$
$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = \frac{3}{2} - (\frac{\frac{1}{4}}{3}) = \frac{17}{12}$	$f(x_2) = (\frac{17}{12})^2 - 2 = \frac{1}{144}$	$f'(x_2) = 2(\frac{17}{12}) = \frac{34}{12}$
$x_3 = x_2 - \frac{f(x_2)}{f'(x_2)} = \frac{17}{12} - \left(\frac{\frac{1}{144}}{\frac{34}{12}}\right) = 1.4142$		

We can see that x_3 matches our original root up to 3 decimals.

$$\frac{Guess}{x_0 = 3.5}$$

$$f(x_n) = -x^2 + 9$$

$$f'(x_n) = -2x$$

x _n	$f(x_n)$	$f'(x_n)$
$x_0 = \frac{7}{2}$	$f(x_0) = -(\frac{7}{2})^2 + 9 = -\frac{13}{4}$	$f'(x_0) = -2(\frac{7}{2}) = -7$
$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = \frac{7}{2} - \left(\frac{-\frac{13}{4}}{-7}\right) = \frac{85}{28}$	$f(x_1) = -(\frac{85}{28})^2 + 9 = -0.2155$	$f'(x_1) = -2(\frac{85}{28}) = -\frac{170}{28}$
$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = \frac{85}{28} - \left(\frac{-0.2155}{-\frac{170}{28}}\right) = 3.0002$		

 $\frac{Guess}{x_0 = 0}$ $f(x) = x^2 + x - 1$ f'(x) = 2x + 1

x_n	$f(x_n)$	$f'(x_n)$
$x_0 = 0$	$f(x_0) = (0)^2 + 0 - 1 = -1$	$f'(x_0) = 2(0) + 1 = 1$
$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 0 - (\frac{-1}{l}) = 1$	$f(x_1) = (1)^2 + 1 - 1 = 1$	$f'(x_1) = 2(1) + 1 = 3$
$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 1 - (\frac{1}{3}) = \frac{2}{3}$	$f(x_2) = (\frac{2}{3})^2 + \frac{2}{3} - 1 = \frac{1}{9}$	$f'(x_2) = 2(\frac{2}{3}) + 1 = \frac{7}{3}$
$x_3 = x_2 - \frac{f(x_2)}{f'(x_2)} = \frac{2}{3} - (\frac{\frac{1}{9}}{\frac{7}{3}}) = \frac{13}{21}$	$f(x_3) = (\frac{13}{21})^2 + \frac{13}{21} - 1 = \frac{1}{441}$	$f'(x_3) = 2(\frac{13}{21}) + 1 = \frac{47}{21}$
$x_4 = x_3 - \frac{f(x_3)}{f'(x_3)} = \frac{13}{21} - \left(\frac{\frac{1}{441}}{\frac{47}{21}}\right) = 0.6180$		

In this example, we see a connection between Newton's Method and The Fibonacci Numbers. The value for $x_1 = \frac{1}{1}$ which is the first Fibonacci Number divided by the second, $x_2 = \frac{2}{3}$ is the third Fibonacci Number divided by the fourth, and $x_3 = \frac{13}{21}$ is the seventh number divided by the eighth. So, we see a pattern which helps us predict what x_n will be. Each subsequent x_n is a division of two consecutive Fibonacci Numbers, which numbers increase by powers of 2 as n increases.

$$\frac{1}{1}, \frac{2}{3}, \frac{13}{21}, \frac{610}{987}, \dots \text{ corresponds to } \frac{1st}{2nd}, \frac{3rd}{4th}, \frac{7th}{8th}, \frac{15th}{16th}, \dots +2^{1} +2^{2} +2^{3} +\dots$$

$$\frac{Guess}{x_0 = 2}$$

$$f(x) = x^2 + f'(x) = 2x$$

1

x_n	$f(x_n)$	$f'(x_n)$
$x_0 = 2$	$f(x_0) = (2)^2 + 1 = 5$	$f'(x_0) = 2(2) = 4$
$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 2 - (\frac{5}{4}) = \frac{3}{4}$	$f(x_1) = (\frac{3}{4})^2 + 1 = \frac{25}{16}$	$f'(x_1) = 2(\frac{3}{4}) = \frac{3}{2}$
$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = \frac{3}{4} - (\frac{\frac{25}{16}}{\frac{3}{2}}) = -\frac{7}{24}$	$f(x_2) = \left(-\frac{7}{24}\right)^2 + 1 = \frac{625}{576}$	$f'(x_2) = 2(-\frac{7}{24}) = -\frac{7}{12}$
$x_3 = x_2 - \frac{f(x_2)}{f'(x_2)} = -\frac{7}{24} - \left(-\frac{\frac{625}{576}}{\frac{7}{12}}\right) = -2.1518$		

We see that when we have no real root for a given polynomial, Newton's Method produces values that bounce back and forth in a chaotic manner. For Newton's Method to work as it's meant to, we need the root to exist and for our guess to be close to the actual root.