Infinite Series

Definitions:
1. Sequence: a list of numbers, in order, that follow a pattern
2. \(f: \mathbb{N} \rightarrow \mathbb{R} \)
 - A function that inputs natural numbers and maps them to real numbers
3. Series: the sum of the sequence

Examples of Infinite Series:
1. 1, 2, 3, …
 Natural Numbers
2. \(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots \)
 Zeno’s Paradox
3. 1, 1, 2, 3, 5, 8, …
 Fibonacci Sequence
4. 1, -1, 1, -1, 1, …
 Alternating Yoyo (class name)
5. \(\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots \)
 Harmonic Series
6. \(\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots \)
 Alternating Harmonic Series

Arithmetic Series:
\[f(n) = f(n - 1) + d \quad \text{Recursive} \]
\[f(n) = f(0) + dn \quad \text{Explicit} \]
where \(d \) is the common difference

Geometric Series:
\[f(n) = f(n - 1) \times r \quad \text{Recursive} \]
\[f(n) = f(0) \times r^n \quad \text{Explicit} \]
where \(r \) is the common ratio

Examples of Arithmetic and Geometric Series:
1. Explicit Arithmetic
 \[f(n) = 5 + 2n \]
 \{5, 7, 9, …\}
2. Explicit Geometric
 \[f(n) = 5 \times 2^n \]
 \{5, 10, 20, …\}
Derivation of Geometric Series:

\[S_n = 1 + r + r^2 + \ldots + r^n \]
\[rS_n = r + r^2 + r^3 + \ldots + r^{n+1} \]
\[(1 - r)S_n = (1 + r + r^2 + \ldots + r^n) + (r + r^2 + r^3 + \ldots + r^{n+1}) \]
\[(1 - r)S_n = 1 - r^{n+1} \]
\[S_n = \frac{1 - r^{n+1}}{1 - r} \quad \text{where } -1 < r < 1 \text{ as } n \to \infty \]

We know that \(r^{n+1} \to 0 \) as \(n \to \infty \). Therefore,
\[S_n = \frac{1}{1 - r} \]
\[S_n = \frac{1 - 0}{1 - r} = \frac{1}{1 - r} \]

Example of Geometric Series:

1. When \(r = \frac{1}{3} \), the series looks like
\[1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \ldots + \frac{1}{3^n} \]
Therefore,
\[S_n = \frac{1}{1 - \frac{1}{3}} = \frac{3}{2} \]

2. When \(r = \frac{2}{3} \), the series looks like
\[1 + \frac{2}{3} + \frac{4}{9} + \frac{8}{27} + \ldots \]
Therefore,
\[S_n = \frac{1}{1 - \frac{2}{3}} = \frac{3}{1} = 3 \]

The Comparison Test:
If you have two positive sequences \(a_n \) and \(b_n \), and sequence \(a_n \) has terms smaller than \(b_n \) and \(\sum b_n \) converges then \(\sum a_n \) converges.
If you have two positive sequences \(a_n \) and \(b_n \), and sequence \(b_n \) has terms larger than \(a_n \) and \(\sum b_n \) diverges then \(\sum a_n \) diverges.

Definition of an Alternating Series:
\[(-1)^n \times \text{positive series} \]
Example of the Comparison Test:
\[a_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} \]
\[b_n = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} \]
\[= 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \]
We know that \(\sum b_n \) diverges and \(b_n \) has larger terms than \(a_n \), therefore, \(\sum a_n \) diverges.

Solving Series in Physics:
Physicians will tell you the following,
\[S = 1 + 2 + 3+ \ldots = -\frac{1}{12} \]
Here is the proof behind it. Given
\[S_1 = 1 - 1 + 1 - 1+ \ldots \]
\[S_2 = 1 - 2 + 3 - 4+ \ldots \]
We can add \(S_1 + S_1 \)
\[S_1 + S_1 = 1 - 1 + 1 - 1+ \ldots \]
\[+ \quad 1 - 1 + 1- \ldots \]
\[\hline \]
\[1 + 0 + 0 + 0+ \ldots \]
We can see that
\[S_1 + S_1 = 1 + 0 + 0 + 0+ \ldots \]
\[2 S_1 = 1 \]
\[S_1 = \frac{1}{2} \]
We can add \(S_2 + S_2 \)
\[S_2 + S_2 = 1 - 2 + 3 - 4+ \ldots \]
\[+ \quad 1 - 2 + 3- \ldots \]
\[\hline \]
\[1 - 1 + 1 - 1 + \ldots \]
We can see that
\[S_2 + S_2 = 1 - 1 + 1 - 1+ \ldots = S_1 \]
\[2 S_2 = S_1 \]
\[S_2 = \frac{1}{4} \]

Now we can subtract \(S - S_2 \)
\[S - S_2 = 1 + 2 + 3 + 4+ \ldots \]
\[-1 + 2 - 3 + 4- \ldots \]
\[\hline \]
\[0 + 4 + 0 + 8+ \ldots \]
We can see that
\[S - S_2 = 4S \]
\[S - \frac{l}{4} = 4S \]
\[-\frac{l}{4} = 3S \]
\[S = -\frac{l}{12} \]