Infinite decimal expansions of rational number
Terminating decimal- if you multiply it by a multiple of ten you get a whole number
Repeating decimal - is a decimal number with a digit, or group of digits, that repeat on and on, without end
Every fraction repeats

Notice that we have repeating decimals made up of the same digits. When you do $1 / 7$ you're going through every possible remainder and shifting the decimal result according to the first remainder.

1/11=. 0909
$2 / 11=.1818$
There are only two possible remainders when going through long division in either case so the repeating decimal has a repeating block of two digits.

All rational numbers will repeat!
Observe the rational number $5 / 13$. Because it can be written in the form p / q, where q does not equal zero, we know this will repeat eventually
5/13=0.3846153
$6 / 13=0.461538$
When we increase the numerator and keep the same denominator, the repeating decimal will shift over beginning with that remainder

$$
\begin{gathered}
\varnothing(14)=\{1,2,3,4,5,6,7,8,9,10,11,2,13\} \\
\varnothing(2.7)=\varnothing(2) \cdot \varnothing(7)=6 \\
11 \quad 11 \\
1 \\
\varnothing(27)=\varnothing\left(3^{3}\right)=3^{3}-3^{2}=18
\end{gathered}
$$

Euler's theorem to find the length of a repeating block
If we have a number n
$\phi(n)=$ number of remainders that are relatively prime to n

These wil satisfy $\operatorname{gcd}(r, n)=1$
The number of relatively prime numbers will be the repeating block length $\phi(14)=\{1,2,3,4,5,6,7,8,9,10,11,12,13,14\}$, here there are 6 numbers relatively prime to 14 so the repeating block of a fraction with denominator 14 will be 6 digits long

Fermat's little theorem says the length of the repeating block will be 10^{p-1} when p is a prime When $p=7$, repeat after 6 places
$p=11$, repeat after 10 places

$$
\begin{aligned}
& 10 \equiv_{13}-3=10
\end{aligned}
$$

$$
\begin{aligned}
& 10^{2} \equiv 9 \equiv(-3)^{2} \\
& 10^{3}=9(-3)=-77 \equiv_{13^{-1}} \equiv_{13} 12 \\
& 10^{4}=13^{9^{2}}=3 \\
& 10^{5} \equiv_{13} 3-3=-9 \bar{E}_{13} 4 \\
& 106 \text { : }-9-3 \sum_{13} 1 \\
& 107 \overline{13}_{13} 10 \\
& 13 \sqrt{10} 7692430 \\
& 100=7.13+9 \\
& 1000=76 \cdot 13+12 \\
& \text { ect. }
\end{aligned}
$$

