Scribe notes 8/31

Madelyn, Cassandra, Mike

Quadratic formula:

To solve $0 = ax^2 + bx + c$ one can use the equation:

Quadratic Formula

PROOF

ax ² +bx+c=0	/a			
x²+(bx)/a+(c/a) =0	move	move c/a to other side		
x²+(bx)/a= -c/a	Comp	Complete the square		
x ² +(b/a) x+(b/2a) ² = -(c/	a) + $(b/2a)^2$	square 2a		
$(x+(b/2a))^2 = -(c/a) + (b^2)^2$	/4a ²) make	common denominator		
(x+(b/2a)) ² = (b ² -4ac)/4a	a ²	square root both sides		
x+(b/2a) = (+/-)√ (b^2	- 4ac)/4a^2	isolate x		

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

WHEN TEACHING

a: coefficient of x^2

b: coefficient of x

c: constant

Solutions:

RATIONAL ROOTS

Ex. f	$(x) = \lambda x^3$	-3xª-11	x+6			
	factors o	f 2: ±1	,2			
	factors of	6: ± 1,	2, 3,6			
Possible	roots: ±SI	,立, 2,	3,3,6	3		
f(5)=	2(3)3-3	(3) ² - II(3)	10			
-	54 - 2	7 - 33 + 6	= 0			
x-3 a	x ^a +3x -3 x ³ -3x ² -11	<u>1</u> x+6				
- 21	13+6x2					
	-3x2-11x	+6				
	-22	+6				
	+ yx	-6				
		0				
=7	(x-3)(2	x2+3x-2)				
Using	the quad	tratic tor	mula -	3 = 1 32-46	<u>)(-2) = -3</u>	+ V9+16
,				3(2)		4

Can be used to solve for higher degree polynomials here is an example:

Graphics sources:

https://www.rbjlabs.com/wp-content/uploads/2019/01/vertical-parabola-opens-up.png

https://usercontent2.hubstatic.com/14696761_f520.jpg

https://cdn.thinglink.me/api/image/887713586976129025/1024/10/scaletowidth/0/0/1/1/false/true?w ait=true

https://www.rbjlabs.com/wp-content/uploads/2019/02/parabola-1-open.png