Math 4030-001/Foundations of Algebra/Fall 2017
Ruler/Compass at the Foundations: Constructible Numbers
Definition 13.1 (a) A complex number r is algebraic if p(r) = 0 for
some p(x) € Q[z]. Otherwise r is transcendental.

(b) Let A C C be the set of algebraic numbers.
(c) Given r € A, there is a unique prime polynomial of the form:
f(@) =2+ ca 2™+ 4+ cp € Q[7]

with r as a root. This is the minimal polynomial of r.
2
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(b) 7, e are transcendental (this isn’t easy to prove!).

Examples. (a) All rational numbers, i, /2, cos(2*) are algebraic.

Remark. If r € A and v € Qlr], then we saw in the previous section
that v € A, since the vectors 1,v,v?, .... € Q[r] are linearly dependent.

Proposition 13.2. The set of algebraic numbers A C C is a field.

Proof. Let r € A. Then —r,1/r € Q[r] are also algebraic by the
previous remark (or else one can easily find their minimal polynomials).
Let s € A be another algebraic number. It suffices to show that both
r+ s and r - s are algebraic numbers to conclude that A is a field. To
do this, we make a tower of number fields.

Let F' = Q[r] and consider F'[z], the commutative ring of polynomials
with coefficients in F'. One such polynomial is the minimal polynomial
f(z) € Q[z] of s € A. This may not be prime in F[z], but it will have
a prime factor g(z) with g(s) = 0. We can then create a new field:

Fls]
with basis 1, s, ..., s¢ and scalar field F. If w € F[s], then:
W= vy + 115 + V95?4 ... + v.8°

and each v; = co; + c1;7 + - - ¢ ;v € Q[r]. Together, we get:

e d
w= Z Z cijr's’

j=1 i=1

so the vectors w; ; = r's’ span F|[s] with rational coefficients.

It follows that w = r+s and u = rs € F[s] are vectors in a field that

is also a vector space with a finite basis and scalar field Q. But then

as in the remark above, we may conclude that w and w are algebraic

numbers since the vectors 1,w,w?,... and the vectors 1,u,u?, ... are

eventually linearly dependent!
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Example. Let r = V2 and s = /3. Then:
V2++3 € F[V3] for F =Q[V?2]

and since 1,v/2, /3,6 are a basis for F[\/§] as a vector space with
rational coefficients, it follows that:

L(r+s),(r+s) (r+9)7° (r+s)" € FIV3]
must be linearly dependent, and indeed:
1—10(r+s)°+(r+s)'=0
as we saw in the previous section. Similarly,
1, (rs), (rs)?, (rs)?, (rs)*
must be linearly dependent, and indeed 6 — (rs)? = 0.

We turn next to the constructible numbers. These are all the
complex numbers that can be constructed in a finite number of steps
with a straightedge and compass and a plane that is blank except for
two marked points 0 and 1. A construction is either:

(i) Drawing a line through two marked points, or

(ii) Drawing a circle centered at a marked point with radius equal to
the distance between two marked points.

The intersection points of the constructed lines and circles are new
marked points that can be used for subsequent constructions.

Getting Started. There are three choices for the first construction:
(a) The (real axis) line through 0 and 1.
(b) The unit circle centered at 0.
(¢) The unit circle centered at 1.

Draw (a)-(c). This generates four new marked points:

1 V3.1 V3,
-+ —=1, - ——1

2 + 2 2 2
that can be used for subsequent constructions.

_172a

Question. Which numbers can be constructed and which cannot?
Proposition 13.3. Every integer can be constructed.

Proof. Suppose n can be constructed. Then the intersection points
of the unit circle centered at n with the real axis can be constructed.
This includes n+ 1. Similarly, if —n is constructed, then —n —1 can be

constructed. Therefore, by induction, all integers can be constructed.
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Construction 1. Constructing a perpendicular line. If points p,q € C
and the line L through them have been constructed, then the line L+
perpendicular to L at the point p can be constructed.

The Construction. Centering a compass at p with radius |¢ — p|,
draw the circle passing through ¢ = p+ (¢ — p) and r = p — (¢ — p)
on the line L. Draw two more circles centered at ¢ and r respectively
with radius 2|q — p|. These circles intersect at points s and ¢. The line
through s and t is the desired perpendicular line L+ through p. 0

Proposition 13.4. Every ordered pair of integers can be constructed.

Proof. Draw the y-axis using Construction 1. Every ordered pair
(0,b), b € Z can be constructed by the argument in Proposition 13.3.
Given (a,0) and (0, b) draw the perpendiculars to the z-axis and y-axis,
respectively, through these points. These are the lines z = a and y = b.
Their intersection is the point (a,b).

Corollary 13.5. Every rational number can be constructed.

Proof. Given the rational number r = [%} € Q, construct the
ordered pair (a,b) € Z x 7Z using Proposition 13.4 and then construct
the line through (0,0) and (a,b) and mark the intersection of this line
with the line y = 1, which is also constructed using Proposition 13.4.
This is the point (r,1). Now draw the circle centered at 0 with radius
r = |(r,1) — (0,1)]. The intersection of this circle with the z-axis are

the rational numbers r and —r.

Next, we move on to prove that the set of all complex numbers that
can be constructed is a field.

Construction 2. Translating a constructible vector. If z and z, are
constructible numbers and v is the vector from zy to z, then v may be
translated to start at any other constructible number w and used to
construct the new complex number w 4+ v = w + (2 — 2p).

The Construction. First we construct the line through w parallel
to the vector v. To do this, draw the line L through z and z;. Set the
compass at w and draw a circle of radius |w — z|. This will meet L at
points z and 2’ (if it only meets at z, which is extremely unlikely, then
the line through z and w is perpendicular to L). Recenter the compass
at z and draw the circle of radius |w — z|, then do the same thing at
Z'. The two circles will meet at w and another point w’. The line L’
through w and w’ will be perpendicular to L. Now use Construction 1
to draw the line L” perpendicular to L’ passing through w. This is the

desired line through w parallel to the vector v.



Now center the compass at w and draw the circle with radius |z — zo|.
This meets the line L” at two points: w + v and w — v. O

Proposition 13.6. If complex numbers w and z can be constructed,
then the numbers —z and w + z can be constructed.

Proof. To construct —z, draw the line L through 0 and z, center
the compass at 0 and draw the circle of radius |z|. This meets L at z
and also at —z. To construct w + z, use Construction 2 to translate
the vector pointing from 0 to w, making it start at z. The tip of the
translated vector is the complex number w + z. O

In order to move to multiplication, we need to use similar triangles.

Proposition 13.7. If positive real numbers r and s can be constructed,
then rs can be constructed.

Proof. Use Construction 1 to draw the vertical lines x = 1,2 = r
through 1 and r, respectively. Place the compass at (1,0) and draw
the circle with radius s to mark the point (1, s). Draw the line through
0 and (1, s). The intersection of this line with the vertical line z = r is
the point (r,7s). The difference between this point and the point (r,0)
is rs, which can now be marked on the real line. 0

Proposition 13.8. If a positive real number r can be constructed,
then 1/r can be constructed.

Proof. Draw the vertical lines x = 1 and x = r as before. Mark
the point (r, 1) with a unit circle centered at (r,0), and draw the line
through 0 and (r,1). The intersection of this line with the vertical line
x =1 is the point (1,1/r). O

Recall that the product of complex numbers in polar coordinates is:

(r;0) - (s;9) = (rs;0 +¢)
For this reason, we need the following:

Construction 3. Transporting a constructible angle. If L and L’ are
two constructed lines meeting at p at an angle ¢ and if L” is a third line
with marked point ¢ € L”, then a fourth line L” may be constructed
that meets L” at ¢ with the same angle .

The Construction. Draw the unit circle centered at p. This meets
L and L’ at points z and z’. The unit circle centered at ¢ similarly
meets L” at a point 2”. The circle centered at z” with radius |z — 2/|
now meets the unit circle at a point 2", and the line through 2 and ¢
is the desired line. 0



Remark. Since circles and lines meet at two points, some choices are
made in this construction. The reader should perform this construction
(and all the others!) to see how these choices are made.

Corollary 13.9. If complex numbers z and w are constructible, then
zw is constructible.

Proof. If z = (r;0) and w = (s;9) (and neither is zero), then
the real numbers r = |z| and s = |w| are constructible, and so rs is
constructible. Moreover, the angle between the x-axis and the line L’
through 0 and w be transported by Construction 3 to the origin and
the line L” through 0 and z. Intersecting the line L” with the circle
centered at 0 with radius rs results in the numbers zw and —zw. [

Corollary 13.10. If z is constructible, then 1/z is constructible.
Proof. Exercise.

This completes the proof that the constructible numbers are a field!
We next study this field, with an eye toward understanding which
numbers are constructible and which are not.

Proposition 13.11. If > 0 is constructible, then /7 is constructible.

Proof. First of all, notice that /2 + 1 may be constructed as the
length of the segment between 0 and the constructible point (r, 1). Now
intersect the circle with radius r + 1 with the line x = /72 4+ 1 and
draw the line through this point and the origin. This results in a right
triangle with hypotenuse r + 1 and horizontal side length v/r2 + 1. By
the Pythagorean theorem, the vertical side length s is given by:

(r*+1)+s*=(r+1)% sos=v2r

But /2 is constructible, so it can be inverted (Proposition 13.8.) and
multiplied by s (Proposition 13.7.) to construct the real number /7.
O

Once again, there is a partner angle construction.
Construction 4. Bisecting a constructible angle.

Proof. If constructible lines L and L' meet in a (marked) point p,
draw the unit circle centered at p and mark the intersection points ¢
(with L) and ¢’ (with L'). Now draw the circles centered at ¢ and at
¢ with radius |q — ¢/|. These will intersect in two points, and the line
through these two points bisects the angle between L and L'. U

Corollary 13.12. If z is constructible, then +4/z are constructible.



Proof. If z = (r;0), take the square root of r (Proposition 13.11)
and bisect the angle 6 using Construction 4 to obtain \/z = (1/r; g)
Example. Since ¢ is constructible by Proposition 13.2, we may repeat
Corollary 13.2 to construct an infinite sequence of complex numbers:

Vi = cos (Z) + sin <%> 7, Vi = cos (g) + sin (g) Ty eeeny 2%,

Next, we think about towers of fields associated to constructions.

The Floors of the Tower. Let z; = (aq,b1),...,2, = (an,b,) be a
set of points in the plane and F' C R be a field that contains all the
coordinates ap, ..., a,, by, ..., b, of the points. Let L, L’ be lines through
pairs of the points and let C', C” be circles centered at one of the points
with radius equal to the distance between two of the points. That is,
L, L' C,C" are the lines and circles that may be constructed. Then:

(a) The coordinates of the intersection point of L and L’ are in F.

(b) The coordinates of the intersection points of L and C' are in

F[VA] for some A € F

(c) The coordinates of the intersection points of C' and C” are in
F[VA] for some A’ € F
For (a), the line through (a;, b;) and (a;, b;) has equation:
x(b; — b;) —y(a; — aj) = bja; — a;b;

This is an equation of the form Ax + By = C all of whose constants
A, B, C are in the field F'. It follows by row reduction that the common
solution to two such equations is (z,y) = (a,b) with a,b € F.

The equation of the circle of radius |z;—z] = \/(a; — a;)> + (b; — b;)?

centered at the point (ag, by) is:
(CL’ — CLk)Q + (y — bk)Q = (aj — CLZ‘)2 + (bj — bz)2
This is an equation of the form (z —a)?+ (y—b)*> = D with a,b, D € F.
We may substitute y = (C' — Ax)/B into this equation to get:
(x —a)’+ ((C — Ax)/B —b)> =D
which is a quadratic polynomial in z, with solution of the form:
—ctdvVA
2e

with ¢,d,e, A € F. In other words, z € F[v/A] (and then y is, too).

Tr =



Since the constants in the equation of a second circle:
(o= aP+(y— V)P =D
are also in F', we may subtract the two equations to get:
(2a' — 2a)x + (a® — ) + (2b — 2by)y + (V¥ =) =D — D’

This is the equation for the line through the intersection points of the
two circles, and by the argument of the previous paragraph it intersects
either of the circles in a point (z,y) with coordinates in F[vA'].

Example. The intersection of the two circles:
2412 =3and (z —1)* 4 (y—2)* =7
is computed as follows:
T = (@-1P%+(y-2)7
= 2220+ 1+y?—4y+4

= (24 y})+5—20— 4y
= 8—2x—4y

This gives the equation of a line:
20+ 4y =1
with which we continue:
3 = 22 +9¢°
= 22+ ((1 - 22)/4)?

_ 5211
= 17 1T+ 15

to get a quadratic polynomial:

202 — 4z — 47 =10
whose roots are the z-coordinates of the intersection of the circles.
43776 14+2V/59

40 10
Solving the linear equation for y, we get

_2F VD9
Y7710

X

Thus in this example, A" = 59.

The Tower. Start with the field /' = Q of rational numbers. By
the result above on the floors of the tower, including the coordinates
of each newly constructed complex number either fails to enlarge the
field F' or else enlarges it to F[A] for some A € F. In the latter case,
F[A] is a new field with basis 1,v/A as a vector space over F.



Now suppose (a,b) are the coordinates of a constructible number.
Then v = a (and b) belong to a field obtained from Q by a finite
number of constructions, enlarging it each time by a square root:

Qc QAL CQVAIWVA) C..CF

Then we have the following:
(i) The dimension of F'is 2", as a vector space with rational scalars.

A basis for this space is given by the vectors:

n

[T(vVA) for e € {0,1}

i=1
(ii) Each v € F is algebraic, with minimal and characteristic polys:
p(x)™ = f(z)
(and the characteristic polynomial necessarily has degree 2").
From this we get the following Theorem on constructible numbers.
Theorem 13.13. (a) Every constructible number is algebraic.
(b) If » € R is constructible and p(z) is its minimal polynomial, then
the degree of p(x) is a power of 2
since the degree of p(z) divides 2".
Looking back over examples of minimal polynomials, we see:
e The cube root of 2 is not constructible, since:
p(z) = #® — 2 has degree 3, which is not a power of 2

This means that a unit cube “cannot be doubled” with a construction
since the sides of the doubled cube would have length /2. More gen-
erally, the nth root of a prime number is only constructible if n is a
power of 2. This

® 2cos (%”) is not constructible, since it has minimal polynomial:

p(z) =2 -3z +1

One can see this with trigonometry, or else by using the fact that
¢ = cos (%’r) + isin (%’r) has minimal polynomial ®y(z) = 2% + 2 + 1

and 2 cos (%ﬂ) = ( + ¢~!. This has the following remarkable corollary.
Corollary. There is no construction that trisects a constructible angle.

Proof. cos (2?”) is constructible and cos (%”) is not!

This was an open question for two thousand years!



Exercises. 12.1. Find the minimal polynomial of V2 4+ 3 + V6.
12.2. If r > 0 is algebraic, show that /r is algebraic for all n.

12.3. Give complete constructions of the following numbers:

12.4. Find the intersection points of the following circles:
Pyt =V, -1+ (y-1)7=1

Hint: It isn’t going to be pretty.

12.5. Prove that the angle 6 = 27” cannot be constructed.

12.6. Prove that the unit cube cannot be “halved” with a construction.
That is, there is no construction for the lengths of the edges of a cube
with volume 1/2.

12.7. Prove that there is no construction to quintisect (divide by 5) a
constructible angle.



