Madelyn, Julia, London, Mayela

Rotation and Reflection Matrices:

Identity matrix
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Reflection over $y = x \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
Rotation by 90* $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$
Rotation by 180* $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$
Rotation by p* $\begin{bmatrix} cosp & -sinp \\ sinp & cosp \end{bmatrix}$
Reflect over p/2 $\begin{bmatrix} cosp & sinp \\ sinp & -cosp \end{bmatrix}$

Determinant>0 then it is a rotation

Determinant<0 then it is a reflection

Reflection*Reflection= Identity Matrix

All Transformations preserve length, and rotation preserves the angle between vectors. Reflection flips the angle between vectors, making it negative if measured the same way.