Madelyn, Julia, London, Mayela

Rotation and Reflection Matrices:

Identity matrix $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

Reflection over $\mathrm{y}=\mathrm{x}\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
Rotation by $90^{*}\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$
Rotation by $180 *\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$

Rotation by $\mathrm{p}^{*}\left[\begin{array}{cc}\cos p & -\sin p \\ \sin p & \cos p\end{array}\right]$
Reflect over $\mathrm{p} / 2\left[\begin{array}{cc}\cos p & \sin p \\ \sin p & -\cos p\end{array}\right]$

Determinant>0 then it is a rotation

Determinant <0 then it is a reflection

Reflection*Reflection= Identity Matrix

All Transformations preserve length, and rotation preserves the angle between vectors. Reflection flips the angle between vectors, making it negative if measured the same way.

