Michael Niedermeyer Cassandra Schultz Rebekah Washburn

Scribe Notes (10/3): Functions and their Power Series Expansions

A power series is a polynomial with an infinite number of terms. A Taylor series is the value of a function at some point f(a), that we can write as an infinite series. Each term in a Taylor series will be related to the function's derivatives, $f^{(n)}(x)$. A Maclaurin series is a Taylor series that is centered at 0. An example of a Maclaurin series is $e^x = \Sigma \frac{x^n}{n!} = 1 + x + \frac{x^2}{2} + \frac{x^3}{2!} + \dots$

<u>Maclaurin Series General Form</u>: $f(x) = f(0) + f'(0) \cdot x + \frac{f''(0)}{2!} \cdot x^2 + \frac{f'''(0)}{3!} \cdot x^3 + \dots$

Functions	Maclaurin Series	Expanded Form	Notes
Geometric Series: $\frac{1}{1-x}$	$\sum_{n=0}^{\infty} x^n$	$1 + x + x^2 + x^3 +$	This series converges when x is small.
e ^x	$\sum_{n=0}^{\infty} \frac{x^n}{n!}$	$1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$	
ln(1 + x)	$\sum_{n=0}^{\infty} \left(-1\right)^{n-1} \frac{x^n}{n}$	$x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots$	We can find this from the Geometric Series.

Examples of Common Maclaurin Series

How do we know that $ln(1 + x) = \sum_{n=0}^{\infty} (-1)^{n-1} \frac{x^n}{n}$? We know that the derivative of ln(1 + x) is equal to $\frac{1}{1+x} = \frac{1}{1-(-x)} = 1 - x + x^2 - \dots$ So, to find ln(1 + x), we need to integrate $\frac{1}{1+x}$, which gives us $ln(1 + x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots$ Now that we know $ln(1 + x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots$, we can see that $ln(1 + 1) = 1 - \frac{1^2}{2} + \frac{1^3}{3} - \dots$ converges. In fact, this series converges on the interval (-1,1].

We also know that $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$. So, if we look at $f(x) = \frac{1}{1+x^2} = \frac{1}{1-(-x^2)}$, we see that $\sum_{n=0}^{\infty} ((-x)^2)^n = 1 - x^2 + x^4 - x^6 + ... = \frac{1}{1+x^2}$, which is the derivative of arctan(x). If we integrate this series, we find $arctan(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + ...$ When x=1, $arctan(1) = 1 - \frac{1^3}{3} + \frac{1^5}{5} - \frac{1^7}{7} + ... = \frac{\pi}{4}$.

Finding a Radius of Convergence

<u>Ratio Test Theorem</u>: Let $P(x) = \sum_{n=0}^{\infty} c_n x^n$ be a power series. Then, P(x) converges at x if $\lim n \to \infty \left| x(\frac{c_{n+1}}{c_n}) \right| < 1.$

Example: Does e^x converge?

We know that the Maclaurin series expansion for e^x is $\frac{x^n}{n!}$. Using the Ratio test:

$$\lim n \to \infty \left| \frac{x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^n} \right|$$

= $\lim n \to \infty \left| \frac{x^{n+1}}{(n+1)n!} \cdot \frac{n!}{x^n} \right|$
= $\lim n \to \infty \left| \frac{(x^n)(x)}{n+1} \cdot \frac{1}{x^n} \right|$
= $\lim n \to \infty \left| \frac{x}{n+1} \right|$
= $x \cdot \lim n \to \infty \left| \frac{1}{n+1} \right|$
= $x \cdot 0$
= 0

Since 0 < 1, e^x converges for any x.

Maclaurin Series for *sin*(*x*)

In order to look at the Maclaurin series for sinx, we need to take derivatives. We know that for e^{cx} , $(e^{cx})' = c \cdot e^{cx}$ and $(e^{cx})'' = c^2 e^{cx}$. When we look at the derivatives of sin(x) when x=0, we see a pattern:

$$sin(0) = sin(0) = 0$$

(d/dt)sin(0) = cos(0) = 1

$$(d/dt)^{2}sin(0) = -sin(0) = 0$$

 $(d/dt)^{3}sin(0) = -cos(0) = -1$
 $= 0 \rightarrow \rightarrow$ continues on 0,1,0,-1,0...

So $sin(x) = x - (x^3)/(3!) + (x^5)/5! -$ and $cos(x) = 1 - (x^2)/(2!) + (x^4)/(4!) -$ Adding cos(x) and isin(x) together will give us $cos(x) + isin(x) = 1 + ix + (ix)^2/(2!) + (ix)^3/(3!) + ... = e^{ix}$. So we get the following important equation:

 $\bigstar \qquad e^{it} = \cos(t) + \sin(t))$

Interesting Equations

In the 1600s, someone noticed that

 $(\pi/4) = \arctan(1) = 4\arctan(1/5) - \arctan(1/239)$. Before that, Archimedes would use polygons to get the approximate solution of π . As with Taylor polynomials, the more polygons Archimedes used to approximate π , the closer he got to its exact value.

Another equation that a mathematician claimed came to him in a dream is the following:

 $(1/\pi) = (2\sqrt{2})/9801 \cdot \sum_{n=0}^{\infty} [(4n!)(1103 + 26390n)]/[(n!)^4 \cdot (396)^{4n}].$