
Scribe Notes: Vectors and Products  

 

Definition: Vectors are objects with both direction and magnitude (length). Vectors are drawn 

as arrows with a tail and head.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example: Draw vector <3,2> on the plane.   

 

 
To draw this vector, we need to think about its components. The “3” tells us that the vector has 

a length of three in the x-direction and “2” represents a length of two in the y-direction.  

 

To calculate the magnitude of any vector, we calculate the distance formula:  

    ||𝑉|| = √𝑥2 + 𝑦2 

This stems directly from the Pythagorean Theorem.  

 Ex. The magnitude of the vector <3,2> above is √32 + 22 = √9 + 4 = √13. 



 

Addition of Vectors:  

 

Say we want to add vectors 𝑎 and 𝑏 as pictured below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vector addition is done “tail to head”. Since vectors are commutative over addition, we can 

move vector 𝑎 so its tail lines up at the head of vector 𝑏. Doing so creates a parallelogram out of 

vectors 𝑎 and 𝑏.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



The Zero Vector:  

 

The zero vector is an interesting case because its magnitude is well defined (which is zero), but 

its direction is not. If we cannot draw a vector of length zero, its direction could be nowhere or 

everywhere!  

 

Dot Product:  

 

The dot product of two vectors is defined as  𝑎 ∙ 𝑏 = 𝑎1𝑏1 + 𝑎2𝑏2+. . . +𝑎𝑛𝑏𝑛 = ∑𝑛𝑖=1 𝑎𝑖𝑏𝑖     where 𝑎 =< 𝑎1, 𝑎2, . . . , 𝑎𝑛 > and    𝑏 =< 𝑏1, 𝑏2, . . . , 𝑏𝑛 >.  

 

Consequently,  

  𝑎 ∙ 𝑎 =  𝑎1𝑎1 + 𝑎2𝑎2+. . . +𝑎𝑛𝑎𝑛 =  ||𝑎||2
 

 

Geometrically, the dot product is the projection of vector 𝑎 onto vector 𝑏.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Then 𝑎 ∙ 𝑏 is represented as  

  𝑎 ∙ 𝑏 = ||𝑎|| ||𝑏|| 𝑐𝑜𝑠𝜃  

 

 

 

 

 

 

 



 

Proof Using Law of Cosines: 𝑎 ∙ 𝑏 = ||𝑎|| ||𝑏|| 𝑐𝑜𝑠𝜃 

 

 

● By the law of cosines:  

○ ||𝑣 − 𝑤||2 = ||𝑤||2 + ||𝑣||2 − 2||𝑣|| ||𝑤||𝑐𝑜𝑠𝜃 

● Also, 

○  ||𝑣 − 𝑤||2 = (𝑣 − 𝑤) ∙ (𝑣 − 𝑤) 

○  ||𝑣 − 𝑤||2 = 𝑣 ∙ 𝑣 − 2(𝑣 ∙ 𝑤) + 𝑤 ∙ 𝑤 

○  ||𝑣 − 𝑤||2 = ||𝑣||2 + ||𝑤||2 − 2(𝑣 ∙ 𝑤) 
● Setting these two equations equal to each other- ||𝑤||2 + ||𝑣||2 − 2||𝑣|| ||𝑤||𝑐𝑜𝑠𝜃 =  ||𝑣||2 + ||𝑤||2 −2(𝑣 ∙ 𝑤) 

● −2||𝑣||||𝑤||𝑐𝑜𝑠𝜃 = −2(𝑣 ∙ 𝑤) 

● ||𝑣||||𝑤||𝑐𝑜𝑠𝜃 = (𝑣 ∙ 𝑤) 

● 𝑣 ∙ 𝑤 = ||𝑣|| ||𝑤||𝑐𝑜𝑠𝜃 

 

The take-away from this formula is that given two vectors, we can find the angle between them.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Cross Product 

 

The cross product of two vectors, in 𝑅3, is an operation that finds a vector orthogonal to both of 

our initial vectors. The resulting vector, 𝑐, is defined to be 𝑎 × 𝑏 = ||𝑎||||𝑏||(𝑠𝑖𝑛𝜃)(𝑛), where 𝑛 is 

the unit vector that is perpendicular to both vector 𝑎 and 𝑏. We can find the magnitude of our 

new vector c without knowing c. ||𝑎 × 𝑏|| is equal to the area of the parallelogram created by 

vectors a and b. So ||𝑎 × 𝑏|| = ||𝑏||𝑠𝑖𝑛𝜃||𝑎||. We can see this when we look back to our first 

equation for the dot product; since n is our unit vector in the direction of c, and ||𝑐|| =||𝑏||𝑠𝑖𝑛𝜃||𝑎||. Our magnitude scales the unit vector to give us 𝑐.  

 

Cross Product Hand Rule 

In order to help students visualize where 𝑎 × 𝑏 will be in relation to 𝑎 and 𝑏, we teach 

them the cross product hand rule; using your right hand, point your fingers in the direction of 

your first vector, a. Then, hold your hand out as if you were about to shake someone’s hand. Let 

your fingers point in the direction of your first vector a. Then, curl your fingers to point in the 

direction of your second vector b. This may require you to move your hand. Then, whatever 

direction your thumb is pointing in will be the direction of 𝑎 × 𝑏.   

 

 

 

 

 

 

 

 

 

 

 



Cross Product as a Matrix 

We can also look at the cross product as the determinant of a matrix. Let 𝑎 =<𝑎𝑥 , 𝑎𝑦, 𝑎𝑧 >, 𝑏 =< 𝑏𝑥 , 𝑏𝑦, 𝑏𝑧 >, and 𝑐 =< 𝑐𝑥,  𝑐𝑦, 𝑐𝑧 >. Then 

 

We can write this as 𝑎 × 𝑏 = (𝑎𝑦𝑏𝑧 − 𝑎𝑧𝑏𝑦)𝑖 − (𝑎𝑥𝑏𝑧 − 𝑎𝑧𝑏𝑥)𝑗 + (𝑎𝑥𝑏𝑦 − 𝑎𝑦𝑏𝑥)𝑘. So 𝑐 =<(𝑎𝑦𝑏𝑧 − 𝑎𝑧𝑏𝑦, 𝑎𝑧𝑏𝑥 − 𝑎𝑥𝑏𝑧, 𝑎𝑥𝑏𝑦 − 𝑎𝑦𝑏𝑥 >.  

Using this other definition of the cross product, we find ||𝑎 × 𝑐|| = 0 and ||𝑐 × 𝑐|| = ||𝑐||2. Thinking back to our earlier definition of the cross product and ||𝑐||, we know ||𝑐|| equals 

the area of the parallelogram with side lengths ||𝑎|| and ||𝑏||. So ||𝑐||2 will be the volume of a 

shape with a length of ||𝑎||, width of ||𝑏||, and height of ||𝑐||.  

As we have seen from our definitions, the cross product only exists in 𝑅3, unlike the dot product. 

We can also see that the dot product is not associative. Given 𝑖 =< 1,0,0 >, 𝑗 =< 0,1,0 >, and 𝑘 =< 0,0,1 >, 𝑖 × (𝑖 × 𝑗) = 𝑖 × 𝑘 = −𝑗 while (𝑖 × 𝑖) × 𝑗 = 0 × 𝑗 = 0.  

 



Applications of the Cross Product 

 

 The cross product is used to help us understand electricity and magnetism. William 

Rowan Hamilton had the idea that it time could be added as a dimension, and as such there 

there would be an equation 𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘, where 𝑎, 𝑏, 𝑐, 𝑑 𝜖 𝑅. And with this new dimension, 𝑖 × 𝑖 = −1, 𝑗 × 𝑗 = −1, 𝑘 × 𝑘 = −1, thus fixing the associativity problem. This is called a 

Hamiltonian, and acts like a complex number. Hamiltonians are used in Maxwell’s equation.  


