For n^{x} where the base n is a natural number, the exponent x tells us how many times n will be multiplied by itself.

A function that grows exponentially grows at an increasing slope and goes towards infinity faster than any other polynomial function. $y=e^{\wedge} x$

The base of an exponential determines whether the number will increase or decrease
When base $0<b<1$ it decreases
When $\mathrm{b}>1$ it increases

Exponential rules

Product $a^{x} * a^{y}=a^{x+y}$

$$
a^{x} * b^{x}=(a * b)^{x}
$$

Quotient $a^{n} / a^{m}=a^{n-m}$

$$
a^{n} / b^{n}=(a / b)^{n}
$$

$\underline{\text { Power }}\left(b^{n}\right)^{m}=b^{n^{*} m}$

$$
b^{n^{m}}=b^{\left(n^{m}\right)}
$$

Negative $b^{-n}=1 / b^{n}$
$\underline{\text { Derivative }}\left(x^{n}\right)^{\prime}=n x^{n-1}$

$$
\left(b^{x}\right)^{\prime}=\ln (b) * b^{x}
$$

$\underline{\text { Integral }} \int x^{n} d x=\frac{x^{n+1}}{n+1}+c$

Definition: $\ln (x)=\int_{1}^{x} 1 / t d t$
Observations:
$\ln (1)=0$
$\ln (\mathrm{x})<0$ if $\mathrm{o}<\mathrm{x}<1$
$\ln (\mathrm{x})>0$ if $1<\mathrm{x}$
$\mathrm{x}<0$, doesn't work
$\ln (x y)=\int_{1}^{x y} 1 / t d t$
$\ln (x)+\ln (x y)=\int_{1}^{x} 1 / t d t+\int_{1}^{x y} 1 / t d t$
We let the first term be $\ln (x)$ and use u substitution for the second term and let $u=t / x$ We get $\ln (x y)=\ln (x)+\ln (y)$

Definition: $e^{\wedge} y$ is the inverse function of $\ln (x)$
$\ln (\mathrm{x})=\mathrm{y}$
$x=e^{\wedge} y$

Properties of $\mathrm{e}^{\wedge} \mathrm{y}$
$\mathrm{e}^{\wedge} 0=1$
$\ln (\mathrm{e})=1$
$\mathrm{e}=\mathrm{e}^{\wedge} 1$
$\ln \left(e^{\wedge} y\right)^{\prime}=y^{\prime}$
$1 / e^{y} *\left(e^{y}\right)^{\prime}=1 ;\left(e^{y}\right)^{\prime}=e^{y}$

From before, we know $\ln (x y)=\ln (x)+\ln (y)$
We want to show that $e^{x+y}=e^{x} e^{y}$
$\ln \left(e^{x}\right)+\ln \left(e^{y}\right)=\ln \left(e^{x} e^{y}\right)$
$x+y=\ln \left(e^{x+y}\right)$

