
The Pythagorean Theorem and Other Trig Identities  

 

● The Pythagorean Theorem: Given a right triangle, we have 

the following relation: 𝑎2 + 𝑏2 = 𝑐2 where 𝑎 and 𝑏 are two 

legs of the right triangle and 𝑐 is the hypotenuse (the 

segment directly across from the 90° angle).  

● The Pythagorean Theorem has several proofs, although 

each proof is mostly a rearrangement of the last.  

 

 

 

 

 

 

1. Traditional Proof: 

 

                                                  

● In this proof, we have four congruent 

triangles placed together. We want to know 

if the inside figure is a square. 

○  Angles 𝛽 + 𝛼 + 𝛾 = 180° since they 

form a straight line.  

○ Also, 𝛽 + 𝛾 = 90° since they are the 

other two angles in a right triangle, 

they must add to 90°.  
● Area of the entire figure is (𝑎 + 𝑏)(𝑎 + 𝑏)  = 𝑎2 + 2𝑎𝑏 + 𝑏2 

● Area of the inner square plus the four 

triangles: 𝑐2 + 4(12 𝑎𝑏) = 𝑐2 + 2𝑎𝑏 

● These two areas are equal:  

○ 𝑎2 + 2𝑎𝑏 + 𝑏2 = 𝑐2 + 2𝑎𝑏 

■ 𝑎2 + 𝑏2 = 𝑐2 

 

 

 

 

 

 

 

 

 

 

2. Garfield’s Proof:  



● Let the figure to the left be a 

trapezoid formed by two 

congruent triangles put 

together. Then the area of 

the trapezoid is
12 (𝑎 + 𝑏)(𝑎 +𝑏) 

● The area of the parts forming 

the trapezoid is 
12 𝑐2 + 2(12)𝑎𝑏 

● Since these two areas are 

equal, we can say that 

○ 
12 (𝑎 + 𝑏)(𝑎 + 𝑏) =12 𝑐2 + 2(12)𝑎𝑏 

○ 
12 𝑎2 + 𝑎𝑏 + 12 𝑏2 = 12 𝑐2 + 𝑎𝑏 

○ 
12 𝑎2 + 12 𝑏2 =  12 𝑐2 

○ 𝑎2 + 𝑏2 =  𝑐2 

 

 

3. One final proof:  

 

 

 

        

● The area of the middle tilted square is 𝑐2.  
● The area of the small white square is (𝑏 − 𝑎)2.  
● The area of the triangles surrounding the 

small white square is 4(12)𝑎𝑏.  

● The area of the middle titled square is equal 

to the area of the white square plus the 

areas of the four triangles.  

○ 𝑐2 =  (𝑏 − 𝑎)2 + 4(12)𝑎𝑏 

○ 𝑐2 =  𝑏2 − 2𝑎𝑏 + 𝑎2 + 2𝑎𝑏 

○ 𝑐2 = 𝑎2 + 𝑏2 

 

 

 

 

 

 



Trigonometry Identities 

 

Given a triangle abc with sides shown below, we can find the 

value of specific trig functions: 𝑠𝑖𝑛𝜃 = 𝑏𝑐  𝑐𝑜𝑠𝜃 = 𝑎𝑐 𝑡𝑎𝑛𝜃 = 𝑏𝑎 𝑐𝑠𝑐𝜃 = 𝑐𝑏 𝑠𝑒𝑐𝜃 = 𝑐𝑎 𝑐𝑜𝑡𝜃 = 𝑎𝑏 

We can use these identities to show that: 𝑠𝑖𝑛2𝜃 + 𝑐𝑜𝑠2𝜃 = 1  ⇒ 𝑏2𝑐2 + 𝑎2𝑐2 = 1⇒ 𝑏2 + 𝑎2 = 𝑐2 𝑠𝑒𝑐2𝜃 − 𝑡𝑎𝑛2𝜃 = 1 ⇒ 𝑐2𝑎2 − 𝑏2𝑎2 = 1⇒ 𝑐2 − 𝑏2 = 𝑎2 𝑐𝑠𝑐2𝜃 − 𝑐𝑜𝑡2𝜃 = 1 ⇒ 𝑐2𝑏2 − 𝑎2𝑏2 = 1⇒ 𝑐2−𝑎2 = 𝑏2 

  

 

The Unit Circle and Triangles on it 

 

If we assume our hypotenuse is a radius of the unit circle, we 

know its length will be 1. Then, we know that using the 

Pythagorean theorem: 

  𝑎2 + 𝑏2 = 1 

Since both of our angles adjacent to the hypotenuse are the same, 

our two side lengths, 𝑎 and 𝑏 must be the same. So: 

  𝑎2 + 𝑎2 = 1 ⇒ 2𝑎2 = 1 ⇒ 𝑎2 = 1/2 ⇒ 𝑎 = 1√2 

 

 

If we again let our hypotenuse by the radius of the unit circle, we 

know its length will be 1. And, if we were to reflect our triangle over 

the side opposite our 60𝑜, we find that we create an isosceles 

triangle, with three 60𝑜 angles. As such, we know all of our sides 

must be 1. So the base of one triangle will be 
12. Then, using the 

Pythagorean theorem, we find our missing side length is equal to: 

     √12 − (12)2 = √32  

 

 

 

 

 



Proof that 𝑠𝑖𝑛(𝑥 ± 𝑦) = 𝑠𝑖𝑛𝑥𝑐𝑜𝑠𝑦 ± 𝑐𝑜𝑠𝑥𝑠𝑖𝑛𝑦 

 

 Let us say we have a triangle with one 90𝑜 angle, one angle 𝛽 and sides 1, 𝑠𝑖𝑛𝛽, and 𝑐𝑜𝑠𝛽, as drawn below: 

 Then by drawing a rectangle around the triangle, we find the following:  

 

 

Since we have a rectangle, with four 90𝑜 

angles, we find the two following statements to 

be facts: 

 𝑠𝑖𝑛(𝛽 + 𝛼) = 𝑠𝑖𝑛(𝛽)𝑐𝑜𝑠(𝛼)+ 𝑠𝑖𝑛(𝛼)𝑐𝑜𝑠(𝛽) 

 𝑐𝑜𝑠(𝛼)𝑐𝑜𝑠(𝛽) = 𝑐𝑜𝑠(𝛽 + 𝛼)+ 𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛽) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

Law of Sines and Cosines 

 

1. Law of Sines: 
𝑠𝑖𝑛 𝛼𝑎 = 𝑠𝑖𝑛 𝛽𝑏 = 𝑠𝑖𝑛 𝛾𝑐  

Proof: 

 

Since 𝑠𝑖𝑛(𝑥) = 𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒ℎ𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒, we can see that 𝑠𝑖𝑛(𝛼) = ℎ𝑏 and 𝑠𝑖𝑛(𝛽) = ℎ𝑎. 

Solving for h in both equations, we get ℎ = 𝑏𝑠𝑖𝑛(𝛼) and ℎ = 𝑎𝑠𝑖𝑛(𝛽). 
Therefore, we can rewrite this as 𝑏𝑠𝑖𝑛(𝛼) = 𝑎𝑠𝑖𝑛(𝛽) 

Dividing both sides by b, we get 𝑠𝑖𝑛(𝛼) = 𝑎𝑠𝑖𝑛(𝛽)𝑏 . 

Dividing both sides by a, we get 
𝑠𝑖𝑛(𝛼)𝑎 = 𝑠𝑖𝑛(𝛽)𝑏 . 

We can use a similar argument to prove 
𝑠𝑖𝑛(𝛽)𝑏 = 𝑠𝑖𝑛(𝛾)𝑐 . 

 

2. Law of Cosines: 𝑎2 = 𝑏2 + 𝑐2 − 2𝑏𝑐 ∗ 𝑐𝑜𝑠(𝛼) 

Proof: 

 
 

Since 𝑠𝑖𝑛(𝑥) = 𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒ℎ𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒, we can see that 𝑠𝑖𝑛(𝛼) = ℎ𝑏 and 𝑐𝑜𝑠(𝛼) = 𝑟𝑏. 

Solving for h and r, respectively, we get ℎ = 𝑏𝑠𝑖𝑛(𝛼) and 𝑟 = 𝑏𝑐𝑜𝑠(𝛼). 

By Pythagorean Theorem, we can see that 𝑎2 = ℎ2 + (𝑐 − 𝑟)2. 

Using our values of h and r in this equation we get, 𝑎2 = (𝑏𝑠𝑖𝑛(𝛼))2 + (𝑐 − 𝑏𝑐𝑜𝑠(𝛼))2. 

Simplifying we get, 𝑎2 = 𝑏2𝑠𝑖𝑛2(𝛼) + 𝑐2 + 𝑏2𝑐𝑜𝑠2(𝛼) − 2𝑏𝑐 ∗ 𝑐𝑜𝑠(𝛼). 
         𝑎2 = 𝑏2(𝑠𝑖𝑛2(𝛼) + 𝑐𝑜𝑠2(𝛼)) + 𝑐2 − 2𝑏𝑐 ∗ 𝑐𝑜𝑠(𝛼) 



         𝑎2 = 𝑏2 + 𝑐2 − 2𝑏𝑐 ∗ 𝑐𝑜𝑠(𝛼) 

 

 

Logarithms 

The logarithm function is defined as 𝑙𝑛(𝑥) =  ∫𝑥1 1𝑡 𝑑𝑡. So 𝑙𝑛(𝑡) will be the area under 

curve of the function 
1𝑥 starting from when 𝑥 = 1 and ending at 𝑥 = 𝑡. We can see this in the 

drawing below:   

 

So we see that 𝑙𝑛(1) = 0. And 𝑙𝑛(𝑥) < 0 if 0 < 𝑥 < 1. How might we solve 𝑙𝑛(𝑥𝑦) = ∫𝑥𝑦1 1𝑡 𝑑𝑡, where 𝑥, 𝑦 ≥ 1? Well, we can split up our definite integral into two different definite 

integrals. So 𝑙𝑛(𝑥𝑦) =  ∫𝑥1 1𝑡 𝑑𝑡 + ∫𝑥𝑦𝑥 1𝑡 𝑑𝑡. Then ,we know what the value of ∫𝑥1 1𝑡 𝑑𝑡 is, as 

we can see in our drawing. And, if we substitute in 𝑢 = 𝑡𝑥, Then we find 𝑙𝑛(𝑥𝑦) = 𝑙𝑛(𝑥) +∫𝑦1 1𝑢𝑥 𝑑(𝑢𝑥) = 𝑙𝑛(𝑥) + ∫𝑦1 1𝑢 𝑑𝑢 = 𝑙𝑛(𝑥) + 𝑙𝑛(𝑦). And we can see this in the drawing below:  

Though students are introduced to the function 𝑒𝑥 before they see logarithms, we define 𝑒𝑥 to be the inverse function of 𝑙𝑛(𝑥).  


