Euclid’s Algorithm with Enhancement

Given natural numbers m and n,

Definition. The greatest common divisor of m and n, denoted
\[\text{gcd}(mn, n) \]
is the largest natural number d such that $d|m$ and $d|n$.

Example. If $m|n$, then m is itself the gcd of m and n.

Definition. m and n are relatively prime if \[\text{gcd}(m, n) = 1. \]

Note. If p is a prime number, then every natural number less than p is relatively prime to p. More generally, if n is any natural number, then either $p|n$ or else p and n are relatively prime.

Euclid’s Algorithm is the following efficient method for finding $\text{gcd}(m, n)$.

1. **Initialize.** Set $x := m$ and $y := n$ (x and y will be variables).
2. **Check.** If $x|y$, then return the value x. Otherwise.
3. **Reset.** Solve $y = xq + r$ and reset $y := x$ and $x := r$.
4. **Repeat.** Go back to 2.

Remark. The algorithm return the gcd because at every stage,
\[\text{gcd}(m, n) = \text{gcd}(x, y) \]

The Enhanced Algorithm also solves the equation:
\[am + bn = \text{gcd}(m, n) \]
with integers a and b. The trick is to keep track of two equations:
\[x = am + bn \text{ and } y = cm + dn \]
at every stage of the algorithm. We will do this with a 2×2 matrix
\[
A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}
\]
that is updated at each stage. At the end, we read off:
\[\text{gcd}(m, n) = x = am + bn \] from the top row of the matrix.
Enhanced Euclid. Given natural numbers m and n:

1. **Initialize.** Set $x := m$, $y := n$ and:
 $$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

2. **Check.** If $x | y$, return $x = am + bn$ from the matrix A. Otherwise:

3. **Reset.** Solve $y = xq + r$ and reset $y := x$, $x := r$ and:
 $$A := \begin{bmatrix} -q & 1 \\ 1 & 0 \end{bmatrix} \cdot A$$

4. **Repeat.** Go back to 2.

Example. Solve $a(23) + b(43) = 1$.

Set $x = 23$, $y = 43$ and $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.

Solve $43 = 23(1) + 20$.

Reset $x = 20$, $y = 23$ and $A = \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix}$.

Solve $23 = 20(1) + 3$.

Reset $x = 3$, $y = 20$ and $A = \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}$.

Solve $20 = 3(6) + 2$.

Reset $x = 2$, $y = 3$ and $A = \begin{bmatrix} -6 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} -13 & 7 \\ 2 & -1 \end{bmatrix}$.

Solve $3 = 2(1) + 1$.

Reset $x = 1$, $y = 2$ and $A = \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} -13 & 7 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} 15 & -8 \\ -13 & 7 \end{bmatrix}$.

Since 1 divides 2, return:

$$1 = (15)(23) + (-8)(43)$$

Application. Consider the multiplication tables mod 7 and mod 6.

<table>
<thead>
<tr>
<th>$\cdot 7$</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>6</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
Note that mod 7, every row has exactly one 1 and no zeroes. This is because 7 is a prime, and:

Application. If \(\gcd(m, n) = 1 \), then the equation:

\[
am + bn = 1
\]

solves:

\[
am \equiv 1 \pmod{n}
\]

which means that \(a \) and \(m \) are **reciprocals** in arithmetic mod \(n \).

Example. Since \((15)(23) + (-8)(43) = 1\), we have:

\[
(15)(23) \equiv 1 \pmod{43}
\]

so 15 and 23 are reciprocals mod 43.

Corollary. If \(p \) is a prime, then mod \(p \) every number in \(\{0, 1, ..., p-1\} \) other than 0 has a reciprocal.

Corollary. If \(p \) is a prime and \(a \neq 0 \), then every “linear equation”

\[
ax \equiv b \pmod{p}
\]

has a solution.

Proof. Multiply both sides by the reciprocal of \(a \).

Proposition. If \(p \) is a prime, and \(a \neq 0 \) then the solution to:

\[
ax \equiv b \pmod{p}
\]

is unique.

Proof. Suppose \(ax_1 \equiv b \) and \(ax_2 \equiv b \). Then:

\[
a(x_1 - x_2) \equiv 0 \pmod{p}
\]

Multiplying both sides by the reciprocal of \(a \), we get \(x_1 - x_2 \equiv 0 \pmod{p} \), which says that \(x_1 \) and \(x_2 \) are the same numbers mod \(p \).
Homework. Solve the following with integers a and b (using Euclid).

1. $45a + 57b = 3$.
2. $48a + 58b = 2$.
3. $49a + 60b = 1$.

Solve the following linear equations.

4. $49a \equiv 1 \pmod{60}$.
5. $49a \equiv 11 \pmod{60}$.
6. $48a \equiv 20 \pmod{58}$.

7. If $3a \equiv b \pmod{6}$ has a solution (mod 6) and $b \neq 0$, then how many different solutions does it have?

8. Same as 7. for $2a \equiv b \pmod{6}$ and $4a \equiv b \pmod{6}$.

9. If $\gcd(m, n) = d$ and $b \neq 0$, and if $am \equiv b \pmod{n}$ has a solution, then how many different solutions does it have?

10. Find a pair (a, b) of numbers mod 60 that simultaneously solve:

 $8a + 3b \equiv 1 \pmod{60}$ and $5a + 8b \equiv 1 \pmod{60}$

Hint: The inverse of a 2×2 matrix is given by:

$$
\begin{bmatrix}
a & b \\
c & d
\end{bmatrix}^{-1} = \frac{1}{ad-bc} \begin{bmatrix}
d & -b \\
-c & a
\end{bmatrix}
$$

Is this the *only* solution?