1. (10 points) Newton’s Law of Gravitation says that the magnitude \(F \) of the force exerted by a body of mass \(m \) on a body of mass \(M \) is:

\[
F = \frac{GmM}{r^2}
\]

where \(G \) is the gravitational constant and \(r \) is the distance between the two bodies.

(a) Find \(F'(r) \) and explain its meaning.

(b) Suppose the Earth attracts an object with a force that decreases at a rate of 4 N/km when \(r = 10,000 \) km. How would the force of attraction to the same object be changing with \(r \) when \(r = 20,000 \) km? (Note: the numbers are not the same as in the homework problem!)

\[
F'(r) = \frac{-2GmM}{r^3}
\]

\(F'(r) \) is inversely proportional to \(r^3 \), decreasing with \(r \).

\[
-4 \text{ N/km} = \frac{-2GmM}{(10,000)^3} \Rightarrow GmM = 2 \cdot (10,000)^3
\]

\[
F'(20,000) = \frac{-2 \cdot (2 \cdot 10,000^3)}{(20,000)^3} = -\frac{2 \cdot 2}{8} = \frac{-\sqrt{2}}{4}
\]