
5

5 Number representation

IEEE 754 encoding of the four binary floating-point types stored in 32, 64, 80, and
128 bits uses three fields: a 1-bit sign, an e-bit exponent (e = 8,11,15,15), and an s-bit
significand (s = 24,53,64,113). The four significand sizes can hold 7, 15, 19, and 34
decimal digits, respectively. Unlike some historical floating-point designs, all stored
bits are used in the IEEE 754 formats. The figures on page 6 show the storage layout.

Ignoring the 80-bit temporary real format, the exponent and significand sizes are,
by design, large enough that double-length products can be computed exactly, and
without overflow, in the next longer format, if available.

Except for zero and subnormals, the significand of a finite number is normalized
so that the high-order bit is always 1, and that bit is hidden (not stored) in the 32-, 64-,
and 128-bit formats. The binary point of normal numbers follows the leading bit, so
the significand always lies in [1,2).1

The stored exponent field must be reduced by a bias of 127, 1024, 16 383, and
16 383 to obtain the true power-of-two. The smallest stored exponent, 0, indicates a
subnormal number, which has no hidden bit, and may have leading zeros, reducing its
precision until the smallest subnormal, with only a single bit of precision, is reached.
Coonen [6] describes the mathematical reasons for requiring subnormals, including
gradual, rather than abrupt, underflow to zero, but some deficient floating-point
hardware does not support subnormals.

Evaluation of subnormals requires special handling, because the actual exponent
of subnormals must be adjusted upward by one, and because no hidden bit must be
supplied. Here is an experiment in hoc32, using the ftoh() function (floating-point
to host representation) to reveal what is actually stored in memory:

hoc32> for (k = -1; k < 25; ++k) \
{

x = MINSUBNORMAL * 2**k
printf("%3d %d %a %s\n", k, issubnormal(x), \

hexfp(x), ftoh(x))
}

-1 0 0x0.000000p+0 00000000
0 1 0x1.000000p-149 00000001
1 1 0x1.000000p-148 00000002
2 1 0x1.000000p-147 00000004
3 1 0x1.000000p-146 00000008
4 1 0x1.000000p-145 00000010
...

20 1 0x1.000000p-129 00100000
21 1 0x1.000000p-128 00200000
22 1 0x1.000000p-127 00400000

1In this document, we use the common notation of closed (bracketed) and open (parenthesized) in-
tervals: [a,b] means any value x such that a ≤ x ≤ b; [a,b) means a ≤ x < b; (a,b] means a < x ≤ b; and
(a,b) means a < x < b. In mathematics, Infinity (∞) would normally not occur in a closed interval, but on
computers with IEEE 754 arithmetic, it can.

28 August 2021 13:34 Version 0.40.123

6 5 Number representation

sign biased
exponent

1.

significand

1 08 23

32 bits

Figure 1: IEEE 754 32-bit binary format. The shaded box indicates the hidden (not
stored) bit that is 1 for normal numbers, and 0 for subnormals. The binary point
follows the hidden bit.

sign biased
exponent

1.

significand

1 011 52

64 bits

Figure 2: IEEE 754 64-bit binary format. The shaded box indicates the hidden (not
stored) bit that is 1 for normal numbers, and 0 for subnormals. The binary point
follows the hidden bit. The significand is not to scale.

sign biased
exponent

1.

significand

1 15 64

80 bits

Figure 3: IEEE 754 80-bit binary format. There is no hidden bit. The binary point
follows the first stored significand bit, which is 1 for normal numbers, and 0 for
subnormals. The significand is not to scale. Depending on the CPU architecture, the
actual storage format may be 10, 12, or 16 bytes (80, 96, or 128 bits).

sign biased
exponent

1.

significand

1 015 112

128 bits

Figure 4: IEEE 754 128-bit binary format. The shaded box indicates the hidden (not
stored) bit that is 1 for normal numbers, and 0 for subnormals. The binary point
follows the hidden bit. The significand is not to scale.

28 August 2021 13:34 Version 0.40.123

7

23 0 0x1.000000p-126 00800000
24 0 0x1.000000p-125 01000000

The first output line shows an underflow to an exact zero, which is stored as all-
bits-zero in the IEEE 754 binary formats. Results from k = 0 to k = 22 are subnormals,
and the last column shows the hexadecimal representation of the four stored bytes.
We can easily decode the first nine bits (sign + 8-bit exponent) as all zeros, but at
k = 23, where we have the smallest normal number, the stored biased exponent is 1.
Thus, to construct a correct value from the product of the subnormal significand and
its power-of-two, we need to treat its stored biased exponent, 0, as 1.

The largest stored exponent field is reserved for Infinity and quiet and signaling
NaNs. The stored significand is zero for Infinity, and nonzero for either type of NaN.
Quiet and signaling NaNs are further distinguished by a specific significand bit (all
vendors have chosen the highest stored fraction bit), but some CPU designs, notably
the Intel x86, support only a single kind of NaN, treated as a quiet NaN. However,
CPU designs differ in whether a 1-bit in the distinguishing position means quiet or
signaling. The remaining significand bits can be used to store a user-defined payload,
but until IEEE 754-2019, whether payloads are preserved in numerical operations
was not specified, and designs differed in behavior.

In general, NaNs propagate in numerical operations, and with rare exceptions,
software for computing a function f (x) should generate a run-time NaN when x is a
NaN, in order to set sticky exception flags, and return the input NaN, preserving the
payload. When a numerical operator takes two operands, and both are NaNs, either
of them may be returned.

We can see the implementation-dependent propagation of payloads in this exper-
iment with hoc64:

hoc64> __INDENT__ = "\t"
hoc64> q = qnan("0xbeadface"); s = snan("0xcafefeed"); n = 0/0
hoc64> ftoh(q); ftoh(s); ftoh(n)

7ff80000_beadface
7ff00000_cafefeed
fff80000_00000000

hoc64> ftoh(q + s); ftoh(q - s); ftoh(q * s); ftoh(q / s)
7ff80000_cafefeed
7ff80000_beadface
7ff80000_cafefeed
7ff80000_beadface

hoc64> ftoh(q + n); ftoh(q - n); ftoh(q * n); ftoh(q / n)
fff80000_00000000
7ff80000_beadface
fff80000_00000000
7ff80000_beadface

The sign of a NaN is not significant, and CPU designs again differ on whether
a generated NaN has a 0 sign bit (positive) or a 1 sign bit (negative). In hoc, NaNs
returned from qnan() and snan() always have a 0 sign bit. Those that come from

28 August 2021 13:34 Version 0.40.123

8 6 Arithmetic exceptions

numerical operations have a hardware-dependent sign bit. Our examples are from
an AMD64 (x86_64) CPU that always sets the sign bit of NaNs to 1. On that system, a
floating-point stored value with all-bits-one means a quiet NaN with a negative sign.

NaNs have one other important property that was intended by the IEEE 754
designers to produce a fast and simple test for them: a NaN is unequal to anything,
including itself. Thus, software in any programming language should be able use the
equivalent of this pseudocode to report a NaN:

if (x != x)
print "x is a NaN"

Unfortunately, overzealous optimizations by compiler writers insufficiently skilled in
IEEE 754 floating-point arithmetic mean that such tests can fail. That is why math
libraries should supply a function to make such tests immune to compiler vagaries:

if (isnan(x))
print "x is a NaN"

The encoding for Infinity and NaNs in IEEE 754 binary floating-point formats
means that all bits must be examined to distinguish between them. By contrast, in
the IEEE 754 decimal format, the encoding was changed so that a particular single bit
indicates which of the two is meant.

For a library that supports fixed-point arithmetic, we need to store a large array
of coefficients, so there is little extra overhead in encoding the sign, Infinity, and
NaN types in separate byte-sized fields. Importantly, that makes tests for them fast,
because the coefficients can be completely ignored, and such tests are needed on
every numerical operation.

6 Arithmetic exceptions

The IEEE 754 Standards require separate sets of exception flags for binary and decimal
floating-point arithmetic, and for compatibility, a fixed-point arithmetic library must
also supply a similar set of flags.

IEEE 754 exception flags are implemented as sticky bits inside a special CPU regis-
ter (not stored in DRAM (dynamic random-access memory)): they are all zero when a
program begins execution, are set by floating-point operations during execution, and
never cleared, except by user request. Thus, a program can interrogate and report the
flag status at the end of a computation, or program execution, as a retrospective on
the run.

The sticky exception flags record minimal information. There is no provenance
of where, or when, or why, the exceptions happened. There is only a single set of
flags for the CPU and all of its cores and threads, so it is impossible to tell which of
many threads in the current job got an exception. Because CPU registers, including
exception flags, are saved and restored by the operating system kernel across context
switches, other processes cannot affect your job’s flags.Add exception flags to fx_t?

Trapping instruction exceptions was a traditional way of handling run-time errors
on computer architectures designed before the late 1980s. However, most modern

28 August 2021 13:34 Version 0.40.123

9

CPUs have up to several hundred instructions in an instruction pipeline, so even a
single-threaded process cannot reliably identify the particular instruction that caused
an exception. Thus, run-time exception handling through traps is impractical, and
sticky flags provide a reasonable alternative.

At the hardware level, the flag register in the CPU is a single resource that must be
contended for by all instruction units and all threads, and thus, can limit performance.
In addition, it can sometimes be a source of the infamous TOCTOU (time-of-check to
time-of-use) bug in parallel programming. Checking a bit flag and then taking one of
two actions based on it may be incorrect if the flag changes between the check and
the branch.

The ISO C Standards define five exception flags for binary floating-point arith-
metic:

FE_DIVBYZERO division by zero was attempted;

FE_INEXACT a computed result required rounding;

FE_INVALID a NaN was input to, or produced by, one of the five basic arithmetic
operations;

FE_OVERFLOW an Infinity (such as 1/0), or a value too large to represent as a finite
machine number, was produced and replaced by an Infinity of the same sign;

FE_UNDERFLOW a computed value too small to represent as a normal number was
returned as a subnormal number, or zero, and in addition, the result is inexact.

The C math libraries on some systems provide access to an additional exception
flag with nonstandard names that the author’s MathCW library [1] maps to the com-
mon name FE_SUBNORMAL, meaning that an operand of a floating-point instruction
is in the subnormal region of nonzero values, and thus, has lower than normal preci-
sion. Sometimes, calculations that wander too frequently into the subnormals risk
returning results with fewer significant digits than could be obtained by rescaling
numbers to stay in the range of normal numbers.

A composite flag, FE_ALL_EXCEPT, stands for the logical OR of the five standard
flags. Its primary use is for clearing all sticky flags, and testing whether any sticky flag
is set.

The flags are set and tested with the functions fegetenv(), fegetexceptflag(),
feholdexcept(), feraiseexcept(), fesetenv(), fesetexceptflag(), fetest-
except(), and feupdateenv(). The get/set or clear/test exception-flag pairs
suffice for most applications.

A fixed-point arithmetic library should have counterparts of all of the five standard
flags, except that the inexact flag would only be set when a number outside the fixed-
point range is generated. There is no equivalent of FE_SUBNORMAL in fixed-point
arithmetic, because all such numbers have the same storage format and potential
precision. However, conversion of a floating-point subnormal to a fixed-point value
sets the subnormal flag.

The specific values of the FE_* macros are CPU and implementation dependent,
so user code should never use their particular numeric values, but only their symbolic
names.

28 August 2021 13:34 Version 0.40.123

10 7 Investigations of underflow

Our library uses similar names for the exception flags, but the prefix FE is changed
to FX, and only three functions are provided for access to the fixed-point sticky flags
hidden inside the library. Their prototypes look like this:

int fxclearexcept (int excepts);
/* clear specified exception flags */

int fxraiseexcept (int excepts);
/* raise specified exception flags */

int fxtestexcept (int excepts);
/* test specified exception flags */

Their integer argument is the bitwise-OR of one or more of the FX_* exception flags
defined in fx.h.

All three return a negative value on failure. The first two return zero on success,
and the third returns the bitwise-OR of the selected flags on success.

Two additional exception flags are defined. FX_FORMATUNKNOWN is set by fxfmt()
if it encounters an unrecognized format descriptor. FX_STRINGOVERFLOW is set by
conversion functions described starting in Section 16 on page 32 to indicate that a
user-supplied output string was too small.

The four conversion functions from floating-point to fixed-point arithmetic all
set the FX_SUBNORMAL flag if they receive a subnormal floating-point value.

The special value FX_ALL_EXCEPT is the logical OR of all defined fixed-point
exception flags.

For convenience, you can also get a character string with a list of currently set
exception flags:

char * fxshowflags (char s[], size_t maxs);

7 Investigations of underflow

The conditions under which the underflow exception is raised are subtle, and aston-
ishingly hard to find clearly documented in CPU instruction set manuals, so we write
code for a numerical experiment in hoc32:

printf("u i s e x y x*y\n")

for (e = 1/2; (1 + e) != 1; e /= 2) \
{

x = 1 + e
y = (1 - e) * MINNORMAL
feclearexcept(FE_UNDERFLOW | FE_INEXACT)
z = x * y
u = (fetestexcept(FE_UNDERFLOW) != 0)
i = (fetestexcept(FE_INEXACT) != 0)
s = issubnormal(z)
printf("%d %d %d %.1a %.6a %.6a %a\n", u, i, s, e, x, y, z)

}

28 August 2021 13:34 Version 0.40.123

11

The exact product is x y = (1−e)(1+e)MINNORMAL, and the two parenthesized terms
reduce to 1−e2. Thus, in infinite precision, the product x y is always too small to be a
normal number.

Here is the program output on an AMD64 (x86_64) CPU, with empty lines inserted
around the line where behavior changes.

u i s e x y x*y
0 0 1 0x1.0p-01 0x1.800000p+0 0x1.000000p-127 0x1.800000p-127
0 0 1 0x1.0p-02 0x1.400000p+0 0x1.800000p-127 0x1.e00000p-127
0 0 1 0x1.0p-03 0x1.200000p+0 0x1.c00000p-127 0x1.f80000p-127
0 0 1 0x1.0p-04 0x1.100000p+0 0x1.e00000p-127 0x1.fe0000p-127
0 0 1 0x1.0p-05 0x1.080000p+0 0x1.f00000p-127 0x1.ff8000p-127
0 0 1 0x1.0p-06 0x1.040000p+0 0x1.f80000p-127 0x1.ffe000p-127
0 0 1 0x1.0p-07 0x1.020000p+0 0x1.fc0000p-127 0x1.fff800p-127
0 0 1 0x1.0p-08 0x1.010000p+0 0x1.fe0000p-127 0x1.fffe00p-127
0 0 1 0x1.0p-09 0x1.008000p+0 0x1.ff0000p-127 0x1.ffff80p-127
0 0 1 0x1.0p-10 0x1.004000p+0 0x1.ff8000p-127 0x1.ffffe0p-127
0 0 1 0x1.0p-11 0x1.002000p+0 0x1.ffc000p-127 0x1.fffff8p-127

1 1 0 0x1.0p-12 0x1.001000p+0 0x1.ffe000p-127 0x1.000000p-126

0 1 0 0x1.0p-13 0x1.000800p+0 0x1.fff000p-127 0x1.000000p-126
0 1 0 0x1.0p-14 0x1.000400p+0 0x1.fff800p-127 0x1.000000p-126
0 1 0 0x1.0p-15 0x1.000200p+0 0x1.fffc00p-127 0x1.000000p-126
0 1 0 0x1.0p-16 0x1.000100p+0 0x1.fffe00p-127 0x1.000000p-126
0 1 0 0x1.0p-17 0x1.000080p+0 0x1.ffff00p-127 0x1.000000p-126
0 1 0 0x1.0p-18 0x1.000040p+0 0x1.ffff80p-127 0x1.000000p-126
0 1 0 0x1.0p-19 0x1.000020p+0 0x1.ffffc0p-127 0x1.000000p-126
0 1 0 0x1.0p-20 0x1.000010p+0 0x1.ffffe0p-127 0x1.000000p-126
0 1 0 0x1.0p-21 0x1.000008p+0 0x1.fffff0p-127 0x1.000000p-126
0 1 0 0x1.0p-22 0x1.000004p+0 0x1.fffff8p-127 0x1.000000p-126
0 1 0 0x1.0p-23 0x1.000002p+0 0x1.fffffcp-127 0x1.000000p-126

The first three output columns show the underflow and inexact flags, and whether
the rounded product is subnormal.

In the first 11 lines, x y rounds to a subnormal value, but the sum of the nonzero
leading bits in the factors does not exceed 23, so the product fits exactly in the 24
available bits. Thus, the underflow flag is not set.

In line 12, the factors have 13 and 12 bits, respectively, and the product has 25 bits,
so 1 bit is lost in the rounding operation, producing an inexact result. The underflow
flag is set because both conditions — tiny and inexact — hold.

In lines 13 to 23, the exact products need 27 to 47 bits, so the inexact exception
is set. However, this processor detects underflow after rounding, and we investigate
shortly why the underflow flag is not set.

Output of the same program on a SPARC64 CPU differs in that the underflow
column is 1 in lines 12 to 23: that CPU detects underflow before rounding.

28 August 2021 13:34 Version 0.40.123

12 7 Investigations of underflow

Table 1: Results causing tininess on HPPA. The value m is the minimum normal
number, p is number of bits in the significand, and the computed value v is the
higher-precision result before rounding.

Rounding mode Range

FE_TONEAREST −(1−2−(p+1))m < v <+(1−2−(p+1))m

FE_TOWARDZERO −m < v <+m

FE_UPWARD −m < v ≤+(1−2−p)m

FE_DOWNWARD −(1−2−p)m ≤ v <+m

Both underflow-detection behaviors are permitted by the IEEE 754 Standards for
binary arithmetic. However, for decimal arithmetic, the Standards require underflow
detection before rounding.

The same code in both hoc32 and C was run on systems with other CPU archi-
tectures. They demonstrated that AMD64, HPPA, IA-64, MIPS32, MIPS64, RISC-V,
and x86 all detect tininess after rounding. The Alpha, ARM32, ARM64, PowerPC,
S390x, and SPARC64 CPUs all detect tininess before rounding. Because Intel and ARM
processors are used in most of the world’s desktop computers and mobile devices, we
must conclude that both rounding behaviors are in wide use.

The unset underflow flag in lines 13 to 23 is inexplicable from the descriptions
of underflow handling in most CPU architecture manuals, but I eventually found
some crucial details in the HP Precision Architecture and Instruction Set Reference
Manual (April 1989 edition). Table 6-18 on page 6-24 of that book is reproduced here
in Table 1, with slight changes in notation. Figure 5 shows the narrow region [b,m)
where an exact subnormal result fails to set the underflow flag on some CPU designs,
even when the rounded result is inexact. By contrast, processors that detect tininess
before rounding show no such anomalies: the underflow flag is set only when both
conditions required by IEEE 754 are met.

Another anomaly detected by our underflow tests is on the QEMU emulation of

too small0 subnormal normal too big Inf

MINSUBNORMAL MINNORMAL MAXNORMALb

Figure 5: Anomalous rounding behavior. The white regions indicate numbers out-
side the floating-point range. The dotted region [b,m), where b = (1−2−(p+1))m, and
m is the minimum normal number, is closer to the smallest normal number than
the separation between representable numbers, yet is accessible with higher internal
precision. In some CPU designs, results falling in the dotted region do not cause the
underflow flag to be set, even though the stored result is inexact, and is either the
largest subnormal, or the smallest normal.

28 August 2021 13:34 Version 0.40.123

13

M68K: the factors and products agree with the results from other CPU architectures,
but the first two exception bits in the output are always zero. To further check that
surprise, I wrote a small assembly language function to retrieve the floating-point
status register where the IEEE 754 sticky flag bits are recorded: the returned register
value is always zero. This could indicate a flaw in the instruction emulation, but tests
on old, but still-running, machines with real M68K CPUs are needed.

8 Choice of base

Sensible representations of numbers for numerical computation are essentially poly-
nomials in powers of a particular base. Thus, when we write π≈ 3.141592..., we
mean that in base 10

π≈ 3×100 +1×10−1 +4×10−2 +1×10−3 +5×10−4 +9×10−5 +2×10−6 +·· · .

In base 24 = 16, we could equally writeπ≈ 0x3.243f6ap0, requiring 4-bit coefficients
in the sum

π≈ 3×160 +2×16−1 +4×16−2 +3×16−3 +15×16−4 +6×16−5 +10×16−6 +·· · .

In base 28 = 256, we need 8 bits for each coefficient, and we have

π≈ 3×2560 +36×256−1 +63×256−2 +106×256−3 +·· · .

In base 216 = 65536, we have 16-bit coefficients and the expansion

π≈ 3×655360 +9279×65536−1 +27272×65536−2 +·· · .

By contrast, in base 21 = 2, each coefficient requires only a single bit, but we need
many more terms:

π ≈ 1×21 +1×20+
0×2−1 +0×2−2 +1×2−3 +0×2−4+
0×2−5 +1×2−6 +0×2−7 +0×2−8+
0×2−9 +0×2−10 +1×2−11 +1×2−12+
1×2−13 +1×2−14 +1×2−15 +1×2−16+
0×2−17 +1×2−18 +1×2−19 +0×2−20+
1×2−21 +0×2−22 +1×2−23 +0×2−24 +·· · .

The run time of code that implements addition and subtraction in fixed-point
arithmetic is linear in the number of coefficients, but that for division, multiplication,
and square root is proportional to the product of the numbers of coefficients in the
two operands. Thus, fast execution calls for a large base, but other implementation
details determine the practical limit on the size of the base.

We choose an integer type for the coefficients, because the 1999 ISO Standard for
C requires support for arithmetic on signed and unsigned 64-bit integer types, and
most CPU designs since then provide them in hardware. Recall that the significand
sizes on the 32-, 64-, 80-, and 128-bit IEEE 754 binary floating-point types are 24, 53,
64, and 113 bits, respectively.

28 August 2021 13:34 Version 0.40.123

