HOC(1)

NAME

General Commands Manual HOC(1)

hoc — (high-order calculator) [interactive floating-point language]

SYNOPSIS

hoc[—author] [—copyright] [-Dname] [-Dname=numbe} [—-Dname="string”]

[-Dname=symbo] [=?][—help] [—Ixyz] [-no-banner] [—-no-cd] [—no-dl] [—no-environ-
ment]

[-no-help-file] [—no-load] [—no-logfile] [—no-readline] [—no-save] [—no-site-file]

[—no-translation-file] [—no-user-file] [—quick] [—secure] [—silent] [—trace-file-opening]

[-Uname] [—version][——][file ...]

hoc can be built in up to three floating-point precisions, corresponding to the C/C++ datdldgbedou-

ble, andlong double These are conventionally distinguished by suffixes indicating the number of bits in
the floating-point systenhoc32 hoc64 (same a$oc), hoc8Q andhoc128 Support for precisions other

than 64-bitdoubleis deficient, or nonexistent, in C/C++ implementations on several operating systems, so
somehoc precisions may be unavailable on your system.

On some platformdyoc can be built with decimal floating-point arithmetic, in which case it is available un-
der the namebhocd32 hocd64 andhocd128 The 32-bit, 64-bit, and 128-bit storage formats provide 7,
16, and 34 decimal digits of precision, respectively.

OPTIONS

7.0.11

hoc options can be prefixed with either one or two hyphens, and can be abbreviated to any unique prefix.
Thus,-a, —author, and—-auth are equivalent.

To avoid confusion with options, if a filename begins with a hyphen, it must be disguised by a leading abso-
lute or relative directory pathname, e.gmp/-foo.hocor ./-foo.hoc Alternatively, terminate the option
processing with the special argument

—author Display an author credit, and software distribution information, on the standard error
unit, stderr, and then terminate with a success return code. Sometimes an exe-
cutable program is separated from its documentation and source code; this option
provides a way to recover from that.

—copyright Display copyright information on the standard error wstierr, and then terminate
with a success return code.

—-Dname Define the numeric variableameto have the value 1.
—-Dname=number Define the numeric variableameto have the valuaumber

If = is changed to :=, the assignment is perman@mecannot then subsequently
be redefined.

—-Dname="string” Define the string variableameto have the valutstring” .

If = is changed to :=, the assignment is perman@mecannot then subsequently
be redefined.

Because command shells on some operating systems interpret quotation marks, it is
usually necessary to protect them. On UNIX-like systems;ti3aame="string”’

or if the value contains no characters that are significant to the command shell,
—Dname="string”

—-Dname=symbol Define the numeric or string variablfameto have the value of that cfymbo]
which must be an existing named constant or variable.

If = is changed to :=, the assignment is perman@mecannot then subsequently
be redefined.

—help or-? Display a help message stderr, giving a brief usage description, and then termi-
nate with a success return code.

—Ixyz Load the interface to run-time library xyz. This is a convenient shorthand that is
equivalent to issuing the commalodd("libxyz.hoc") at startup.

10-May-2011 1

HOC(1)

7.0.11

—no-banner

—no-cd

—no-d|

—no-environment
—no-help-file

—no-load

—no-lodfile

—no-readline

—no-save

—no-site-file
—no-translation-file
—no-user-file

—quick

—Secure

-silent

General Commands Manual HOC(1)

Suppress any welcome banners normally printed by dynamically-loaded library
code.

This option can also be set via thec system variable BANNER__ _, but it must
be set in an initialization file before code in that file to print the welcome banner is
reached.

Disable the change-directory functiond(dir), and the print-working-directory
function, pwd().

This option is a security feature: it takes effect aafter all initialization files have
been processed.

Disable the dynamic-linking feature. This option is a security feature: it takes effect
only after all initialization files have been processed.

Disable the environment access functigretenv()andputenv().
Suppress loading of system-widdec help files at startup.

Disable theload() function. It will continue to be recognized, but when invoked,
will simply print a warning that it has been disabled.

This option is a security feature: it takes effect aafter all initialization files have
been processed.

Disable thdogfile(), logon(), andlogoff() functions. They will continue to be rec-
ognized, but when invoked, will simply print a warning that they have been disabled.

This option is a security feature: it takes effect aafter all initialization files have
been processed.

Suppress use of the GN#¥adlinelibrary: command completion, editing and recall
are then not available.

On some systems, it may be necessary to use this optionhebénused in inter-
national mode (see tHETERNATIONALIZATION section below) in order to get
accented letters displayed properly.

Disable thesave()function. It will continue to be recognized, but when invoked,
will simply print a warning that it has been disabled.

This option is a security feature: it takes effect aafter all initialization files have
been processed.

Suppress loading of the system-wide non-help startup files.
Suppress loading of the system-wide message translation files.
Suppress loading of the user-specific startup file.

Suppress loading of all startup files: this option is equivalerhtshelp-file —no-
site-file —no-translation-file —no-user-file

Enable all security features: this option is equivalentrio-cd —no-dl —no-envi-
ronment —no-load —no-logfile —no-saveand in addition, makes it impossible to
trace file openings by setting the DEBUG_OPEN___system variable to a non-
zero value.

Suppress printing of prompts for interactive inphibc never prompts when it is
reading noninteractive files.

Thehoc system variable VERBOSE___can also be set to zero at run time to turn
off prompts; setting it to nonzero turns them back on.

The hoc system variable PROMPT__ contains the prompt string: it can be rede-
fined at any time.

10-May-2011 2

HOC(1)

General Commands Manual HOC(1)

—trace-file-opening Set thehoc variable _ DEBUG_OPEN_ _to a nonzero value to trace input file
opening attempts.

-Uname Undefine the variableame

-version Display the program version number and release dattdenr, and then terminate
with a success return code.

- Terminate option processing (POSIX standard). All remaining command-line argu-
ments are interpreted as input filenames, even if they look like options.

DESCRIPTION

hocinterprets a simple language for floating-point arithmetic, at about the level of Basic, with C-like syntax
and functions. However, unlike Basttoc has particularly rich support for floating-point arithmetic, and

its facilities are certainly better than that standardly provided by most programming languages, such as C,
C++, and Fortran.

hoc recognizes the three popular line-ending conventions in text files: line feed (LF) (UNIX), carriage re-
turn (CR) (Apple MacOS), and CR LF (PC DOS, Microsoft Windows, and several older systems). It also
ignores one or more Ctl-Z characters at end of file, a horrid relic of some legacy desktop operating systems.
Thus, its input files should not require line-terminator translation when they are moved between systems.

To get a flavor of what typicdloc code looks like, visit th&.hoc and*.rc files in thehoc installation
directory tree: see tH&lITIALIZATION FILES section below for their location.

The namedfiles are read and interpreted in order. If file is given or if file is —, hoc interprets the stan-
dard input.

See thdNPUT FILE SEARCH PATH section below for details on hdwoc finds input files.

hoc input consists ofexpressionsand statements Expressions are evaluated and their results printed.
Statements, typically assignments and function or procedure definitions, produce no output unless they ex-
plicitly call print .

Word completion

Whenhoc has been built with the GNkgadlinelibrary, word completion can be used to save typing effort.
It is normally requested by an ESCape character following a prefix of a what'snsymbol tablehoc
will respond with an audible beep, and a list of words that match that prefix, or if only one word matches, it
will silently complete the word:

hoc> c<ESCape>

cbrt ceil copysign cos cosd cosh

hoc> co<ESCape>

copysign cos cosd cosh

hoc> cop<ESCape>

hoc> copysign
The character used to request completion can be changed: $HéTiA¢ IZATION FILES section be-
low.

Command history and editing

7.0.11

Whenhoc has been built with the GNigadlinelibrary, convenient command history and editing support is
available, much like it is in the UNIX¥ash(1), ksh(1) andtcsh(1) shells, and in a few GNU programs, like
thebc(1) andgeniuq1) calculators. The default history and editing modenscg1)-style; you can also
getvi(1)-style by suitable customizations: seelthETIALIZATION FILES section below.

In the default modeC-p (hold the Control key down while typing p) moves up in the history @Gsh

moves downC-b moves backward in the current ling;f moves forwardC-d deletes forwardDELete
deletes backward;-a moves to the beginning of the lin@;e moves to the end of the lin€;l repaints the
screen, reprinting the current line at the top, RETurnresubmits the line for execution.

For more details, consult theNU Readline Librarymanual, available online in thiafo system. In
emacgl); typeC-h i mreadlingo get there.

10-May-2011 3

HOC(1)

General Commands Manual HOC(1)

Numbers

7.0.11

All numbers inhoc are stored as double-precision floating-point values

On systems with IEEE 754 arithmetic, such numbers are capable of representing integers of up to 53 bits
exactly, excluding the sign bit. This is an integer range of —(2**532**53, or —9,007,199,254,740,992
...9,007,199,254,740,992.

Some systems may hakiec variants nametioc32 hoc64 hoc8Q or hoc128 in which casehoc’s default
precision is indicated by the program name: 32-bit, 64-bit, 80-bit, or 128itandhoc64are identical
on all systems with IEEE 754 arithmetic.

Forhoc32 on systems with IEEE 754 arithmetic, numbers are capable of representing integers up to 24 bits
exactly, excluding the sign bit. This is an integer range of —(2**24)2**24, or -16,777,216 ...
+16,777,216.

Forhoc8Q on systems with IEEE 754 arithmetic, numbers are capable of representing integers up to 64 bits
exactly, excluding the sign bit. This is an integer range of -—(2**64) 2**64, or
-18,446,744,073,709,551,616. +18,446,744,073,709,551,616.

Forhoc128 on systems with IEEE 754 arithmetic, numbers are capable of representing integers up to 112
bits exactly, excluding the sign bit. This is an integer range of —(2**112) 2**112, or
-5,192,296,858,534,827,628,530,496,329,220,096-5,192,296,858,534,827,628,530,496,329,220,096.

Numbers may be signed, and may optionally contain a decimal point, a power-of-ten exponent, and a preci-
sion suffix. The exponent consists of an exponent letter, ode Bf e, E, g, or Q (supported by one or

more of Ada, C, C++, Fortran, Java, and Pascal), followed by an optionally-signed integer. The precision
suffix (used by C, C++, and Java) is onefofF, |, or L. The suffix doesot affect the precision of the
constant foroc: it is recognized only to simplify incorporation intmc programs of numbers from pro-

grams in other languages, and their output.

The hexadecimal integer number format recognized by C, C++, and Java is supported. It cabwsists of
0X, followed by one or more hexadecimal digiis§ A-F a—f), optionally followed by a precision or type
suffix, one ofl, Il, llu, lu, u, ul, or ull (lettercase ignored, except that the suffix must be in a single letter-
case). For exampl®x10Q 0X100LL 0X100LLU 0x100y and0x100ulall represent the decimal number
256. Unlike in languages with integer data types, hexadecimal integer values dontain a sign bit: the
32-bit value0x80000000s decimal2,147,483,648n hoc, not-2,147,483,64&s it would be in C, C++, or
Java.

A hexadecimal floating-point number format, introduced in the latest ISO C Stafs@/tEC 9899:1999
(E) Programming languages —, @sually known by its short nam€99, is also supported, and imple-
mented by portable private codehinc. This format consists of an optional sign, tieror 0X, followed
by one or more hexadecimal digits containing at most one hexadecimal point, followeddurad bi-
nary (power-of-two) exponent consisting pfor P followed by an optionally-signed decimal integer. If
present, the exponent may optionally be followed by a precision suffix letter: dndof, or L. Thus,
—0x1.00000p8-0x100, —0x100000p-12f —0x10p+4L, —0x1p+8, —0x1p00008 and-0x1p8 all represent
the decimal numbet256.

The hexadecimal format, although awkward for humans, has the advantage of guaranteeing exact input/out-
put conversions on all platforms with binary floating-point arithmetic,rewconsequently uses this for-
mat in files created by ttsave()command.

Numbers in arbitrary bases from 2 to 36 are supported in a style suggested by Ada:
[optional-sign]base@.digits@[optional-exponent][optional-type-suffix]
[optional-sign]base@digits. @ [optional-exponent][optional-type-suffix]
[optional-sign]base@digits.digits@[optional-exponent][optional-type-suffix]
[optional-sign]base@digits@[optional-exponent][optional-type-suffix]

(Ada usest instead of@, but # starts a comment ihoc). Digits are represented b9 A-Z a-z), and

lettercase is not significant. The base and exponent are always in decimal, and the exponent is the power of

the base by which the number is to be multiplied. For example, these values are equd@ent:
2@110001011@4@12023@ 8@613@ 10@.395@e310@3.95@d210@39.5@ql10@39.5@qlF

10-May-2011 4

HOC(1) General Commands Manual HOC(1)

10@39.5@qllL16@18b@ 25@Tk@ 36 @AZ@ 36@az@ 36@az000@e-3and36@0.az@e2

Following the practice in Ada, to impve program readability, all numbers ioc may optionally be writ-
ten with any digit pair separated by a single underscore. These assignments produce identical results:
pi_0 =PI * 10**4931
pi_1 = 3.14159265358979323846264338327950280+4931
pi_3=3.141 592_653_589 793 238_462_643 383_279_502_8q+4 931
pi_5=3.14159_26535_89793_23846_26433_83279_50289+4931

Strings
String constants are delimited by quotation matks.(."), and may not span multiple lines, unless the
embedded line breaks are each prefixed with a backslash, which is removed, leaving the newline in the
string.

All characters in 1.. 255 are representable in strings; as in C and C++, character 0 (ASCIl NUL) is re-
served as a string terminator.

In string constants, nonprintable characters may be represented by the usual escape sequences defined in
Standard C and Standard C++, plus one extensin (

\\ backslash: ASCII decimal 92.

\" guotation mark: ASCII decimal 34.

\a alert or bell (ASCII BEL: decimal 7).

\b backspace (ASCII BS: decimal 8).

\e escape (ASCII ESC: decimal 27).

\f formfeed (ASCII FF or NP: decimal 12).
\n newline (ASCII LF or NL: decimal 10).
\r carriage return (ASCII CR: decimal 13).
\t horizontal tab (ASCII HT: decimal 9).

\v vertical tab (ASCII VT: decimal 11).

\o \oo \ooo octal character numben € 0-7) in one to three digits.

\xh. .. hexadecimal characten € 0-9A-F or 0-9a-f) in one or more digits.
Backslash followed by any other character than those listed is simply disc&deztiuces tav.

Variables
Variable names consist of an initial letter or underscore, followed by any number of letters, underscores, or
digits. Lettercase isignificant Letters are considered to BeZ, a-z, and any characters in the range 160
... 255 of an 8-bit character set. Use of characters in the latter range is normally not recommended, be-
cause they are often difficult, or impossible, to generate on some computer keyboards. Nevertheless, it does
permit non-English words to be spelled correctly; seéNA&ERNATIONALIZATION section below.

Underscore () by itself is a reserved variable containing the value of thenlastericexpression evalu-
ated. Double underscore () is a reserved variable containing the value of thediastg expression eval-
uated. They cannot be assigned to by user code.

Predefined numeric constants and variables
Certain immutable named constants are already initialized:

BASE The base of the host floating-point number system. On all modern CPU
designs, this is 2.

CATALAN Catalan’s constant: sum((—1)**i/(2*i+1)**2, i = 0..infinity) = approxi-
mately 0.915965594177219015054603514932. ..

CLASS_ xxx One of eleven possible return values from ¢tess(x)function; see the

sectionDESCRIPTIONS OF BUILT-IN FUNCTIONS AND PRO-
CEDURES below for details.

7.0.11 10-May-2011 5

HOC(1)

7.0.11

DEG
E

EBIAS

EBITS

EMAX

EMIN
FE_ALL_EXCEPT

FE_DBLPREC

FE_DIVBYZERO

FE_DOWNWARD

FE_FLTPREC

FE_INEXACT

FE_INVALID

FE_LDBLPREC

FE_OVERFLOW

FE_TONEAREST

FE_TOWARDZERO

FE_UNDERFLOW

FE_UPWARD

GAMMA

General Commands Manual HOC(1)

180/PI, degrees per radian.

Base of natural logarithms.

Floating-point exponent bias.

Number of bits in the floating-point exponent.

Unbiased exponent of the largest finite normal number.
Unbiased exponent of the smallest finite normal number.

Bitwise logical OR of all of the floating-point exception flag€ (DI-
VBYZERO, FE_INEXACT, FE_INVALID , FE_OVERFLOW, and
FE_UNDERFLOW).

Floating-point control flag fofesetprec()to select 64-bit format com-
putation in 80-bit registers on Intel IA-32 platforms, and also ttB80
on AMDG64 systems.

Floating-point exception mask representing a divide-by-zero condition.
It serves as an argumentfexrlearexcept() feraiseexcept(,) andfetes-
texcept() and may be part of the return valuderhiseexcept()

Floating-point rounding control flag that requests rounding downward to
—infinity with fesetround() and may be a return value from
fegetround().

Floating-point control flag fofesetprec()to select 32-bit format com-
putation in 80-bit registers on Intel IA-32 platforms, and also ttB80
on AMDG64 systems.

Floating-point exception mask representing an inexact-operation condi-
tion. It serves as an argumentféezlearexcept() feraiseexcept(,) and
fetestexcept()and may be part of the return valuderhiseexcept()

Floating-point exception mask representing an invalid-operand (NaN)
condition. It serves as an argumentdolearexcept() feraiseexcept()
and fetestexcept() and may be part of the return valuefefaiseex-

cept().
Floating-point control flag fofesetprec()to select 80-bit format com-

putation in 80-bit registers on Intel IA-32 platforms, and also ttB80
on AMDG64 systems.

Floating-point exception mask representing an overflow condition. It
serves as an argumentfézlearexcept() feraiseexcept()andfetestex-
cept(), and may be part of the return valuderhiseexcept()

Floating-point rounding control flag that requests rounding to the nearest
value (in the case of a tie, to the nearest even value)fegétround()
and may be a return value frdegetround().

Floating-point rounding control flag that requests rounding toward zero
with fesetround() and may be a return value frdegetround().

Floating-point exception mask representing an underflow condition. It
serves as an argumentfézlearexcept() feraiseexcept()andfetestex-
cept(), and may be part of the return valuderhiseexcept()

Floating-point rounding control flag that requests rounding upward to
+infinity with fesetround() and may be a return value from
fegetround().

Euler’s constant:
limit(sum(1/i,i=1. . .n)-In(n), n - infinity) = approximately

10-May-2011 6

HOC(1)

INF orInf or Infinity
MAXINT

General Commands Manual HOC(1)
0.577215664901532860606512090082. . .

Imaginary unit (square root of minus one) in complex arithmetic (de-
scribed in a later section).

IEEE-754 floating-point infinity

Largest positive integer exactly representable as a floating-point number
in this implementation dfioc.

MAXNORMAL Largest finite normalized floating-point number.

MAXSUBNORMAL Largest (in absolute value) subnormal floating-point number. If your
computer system does not support subnormal numbers, this is identical
to MINNORMAL .

MINNORMAL Smallest (in absolute value) nonzero normalized floating-point number.

MINSUBNORMAL

Smallest (in absolute value) subnormal floating-point number. If your
computer system does not support subnormal numbers, this is identical
to MINNORMAL .

NAN or NaN IEEE-754 floating-point not-a-number

P Floating-point precision: the number of bits in the significand.

PHI golden ratio: (1 + sqrt(5))/2 = approximately
1.61803398874989484820458683436. . .

Pl ratio of the circumference of a circle to its diameter, approximately
3.14159265358979323846264338327. . .

PREC maximum number of significant digits in output, initially 17 on most

QNAN or QNaN
SNAN or SNaN

systems (the precise value is computed dynamically, from Matula’s 1968
result: ceil(N/log_b(10) + 1) for a host floating-point system witN
baseb digits). PREC = 0Ogives shortest ‘exact’ values.

IEEE-754 floating-point quiet not-a-number
IEEE-754 floating-point signaling not-a-number

More information on the floating-point constants is available iFFtHRATING-POINT ARITHMETIC
section below.

Predefined system constants and variables
hoc also provides a number of system constants and variables, adopting the C/C++ convention that names
beginning with two underscores are reserved for the implementation:

[immutable number] Value of the last numeric expression
printed (initialized to 0.0 on startup).

[immutable string] Value of the last string expression printed
(initialized to an empty string on startup).

__BANNER_ _ [reassignable number] Nonzero (true) if printing of welcome
banners is permitted. It can be changed by-the-banner

option.

__CONVFMT_ _ Default output format for numbers converted to strings in ex-

pressions and igprintf statement argument lists.

__CPU_LIMIT_ [immutable number] Current limit on CPU use, in seconds. It
is normally infinite, but can be reset by ttulimit() func-

tion.

__DATE_ _ [constant string] Date of the start of job execution, in the
form "Dec 16 2001" . The day number has a leading

space if only one digit is needed, so that the string always has

7.0.11 10-May-2011 7

HOC(1)

7.0.11

General Commands Manual HOC(1)

__FILE_ _

__FILE_ _[n]

__GID__

HI

__HOCRC_ _

__IEEE_754__

__INDENT__

__LINE_ _

LO

__ MAX xxx_ _

_ _NATIVE_xxx_

__OFMT__

__PACKAGE_BUGREPORT__

OFS

__PACKAGE_DATE_ _
__PACKAGE_NAME_ _
__PACKAGE_STRING_ _
__PACKAGE_VERSION_ _
__PAGE_ _

__PID__

constant width.

[constant string] Name of the current input file. This is
"/dev/stdin" whenhoc is reading from the standard in-
put.

[constant string] Name of theth input file in the current job.
This provides a history of exactly what files have been read.
Becauséhoc does not yet support arrays, the only way to dis-
play these is with thevhere()andwho() functions.

[constant number] Group numeric identifier code.

On operating systems that do not support the concept of
group and user identifiers, it is set to zero.

High part of a pair-precision or interval number.

[constant string] Pathless filename of the optidmad user
startup file; it is stored in the user’s home directory.

[constant number] Nonzero (true) if the host system supports
IEEE 754 arithmetic.

String used to prefixioc output. It is normally empty, but
can be reset to, e.g., spaces or tabs to better distinguish input
from output.

[constant number] Number of the current input line in the file
named by FILE .

Low part of a pair-precision or interval number.

[immutable number] One of several numeric constants that
report current sizes of internal storage aredsimthat grow

as needed. See thRIPLEMENTATION LIMITS section
below for details.

[immutable number] One of several dozen numeric constants
that when nonzero indicate that featwsex (usually a func-

tion name) is provided by the native C library. A zero value
means thahoc provides its own implementation.

Default output format for numbers printed print and
println statement argument lists.

Output field separator printed between itemspoht and
println statement argument lists. It is normally a single
blank.

[constant string] Where to report bugs.

[constant string] Date of last modification of the software.
[constant string] Program name.

[constant string] Program name and version number.
[constant string] Program version number.

Page number in the current input file. It is reset to 1 at the
start of each new input file, and is incremented each time a
formfeed character (decimal 12, octal 14, hexadecimal Oc) is
encountered outside of quoted character strings.

[constant number] Numeric process identifier.

10-May-2011 8

HOC(1) General Commands Manual HOC(1)

On operating systems that do not support such a concept, it is

set to zero.

__PPID_ _ [constant number] Numeric process identifier of parent
process.
On operating systems that do not support such a concept, it is
set to zero.

__PROMPT_ _ [reassignable string] Current prompt string. Prompting is
controlled by the setting of VERBOSE___(see below).
For example,

__PROMPT_ = "\n\e[7mInput:\e[Om "

will produce a blank line followed by a prompt in inverse
video in terminal emulators, such agerm(l) and DEC
VT100, that follow the ANSI X3.64-1979 or ISO 6429-1983
terminal standards.

If __PROMPT__ contains the two-character format string

%d, that string will be replaced by the prompt count: for ex-

ample, this silly setting
__PROMPT_="\e[4;5;34;43m[%d]\e[Om: "

will display the count digits in blue, and underlined, on a yel-
low background, in anxterm(1) window that supports text

color attributes. [Rulircolors -p for more information
on color settings.]

__READLINE_ _ [constant number] Nonzero (true) if the GMéadlinelibrary
is in use.

__STDC _VERSION_ [constant number] Nonzero lifoc was compiled with a C99

compiler. If it has the six-digit form YYYYMM, it reflects
the year and month of the ISO C Standard to which the com-
piler claims conformance.

__SYSHOCDIR_ _ [constant string] Name of the installation directory in which
hoc startup files are stored.

__SYSHOCHLPBASE_ [constant string] Pathless filename of the top-level startup
help file.

__SYSHOCHLP_ _ [constant string] Pathname of the top-level startup help file.

__SYSHOCPATH_ _ [constant string] System directory search path that is substi-

tuted for an empty component in thEOCPATH environ-
ment variable input file directory search list.

__SYSHOCRCBASE_ _ [constant string] Pathless filename of the top-level startup
help file.

__SYSHOCRC_ _ [constant string] Full filename of the top-level startup file.

__SYSHOCXLTBASE_ [constant string] Pathless filename of the top-level translation
file.

__SYSHOCXLT_ _ [constant string] Full filename of the top-level translation file.

__TIME_ _ [constant string] Local time-of-day (24-hour clock) of the

start of job execution, in the usual hours, minutes, seconds
form "14:57:23"

UID [constant number] User numeric identifier code.

7.0.11 10-May-2011 9

HOC(1)

General Commands Manual HOC(1)

__VERBOSE_ _

Numeric expressions
Numeric expressions are formed with these C-like operators, listed by decreasing precedence.

7.0.11

%

| - 4+ --

* 1 %
+ -
<< >>

> >= < <= <>

= 4= -= *= [= Qp= **= &=

On operating systems that do not support the concept of
group and user identifiers, it is set to zero.

[reassignable number] Nonzero (true)hidc should prompt
for input from interactive files. The actual prompt string is
controlled by the _ PROMPT__variable.

[NB: A bug in the GNUreadlinelibrary (version 4.2a) makes
this variable ineffective; it works correctly with theno-
readline option. The bug has been reported to tadline
maintainers.]

Exponentiation.

Logical negation, arithmetic negation, increment-by-one, decre-
ment-by-one. As in C and C++, the latter two may be apjtieed
fore a variable (acting first before taking the value)after (taking

the current value first, then acting).

Multiply, divide, modulus.
Add, subtract.
Left and right unsigned integer bitwise shift.

Greater than, greater than or equal to, less than, less than or equal
to, and less than or greater than.

The <> operator isnot the same ak=; they differ when one of the
operands is a NaN. Because NaNs are unordered, NaN <> NaN is
0 (false), whereas NaN != NaN is 1 (true).

Equal to, and not equal to.
Bitwise and.

Bitwise exclusive or.
Bitwise or.

Logical and. Both operands aaéwaysevaluated, unlike in C and
C++, where the second is evaluated only if the first is nonzero
(true).

Logical or. Both operands amdwaysevaluated, unlike in C and
C++, where the second is evaluated only if the first is zero (false).

= |: =
Assignment, assign the left-hand side the (sum, difference, prod-
uct, dividend, modulus, power, bitwise and, bitwise exclusive or,
bitwise or) of its current value and the right-hand side, and perma-

nent assignment.

The operator= is a one-time-onlyassignment operator, used for
defining permanent constants that cannot be redefined in the same
hoc session with a different value.

As in C and C++, assignment is a right-associative expression
whose value is the left-hand side. This meansxhat y = z

= 3isinterpreted ag = (y = (z = 3)) . Thatis,3 is as-
signed toz, then that result is assignedytpand finally, that result

is assigned tx, so all three variables are assigned the v&lue
Similarly, sqrt(x = 4) assigns the valuel to x before

10-May-2011 10

HOC(1) General Commands Manual HOC(1)

computing and returning its square root.

Expression lists irprint -like statements, and in argument lists, are evaluated in fti¢b-right order.
Thus, the output of expressions with side effects, such as
n=3
print ++n, n++
is predictable: that example prints
4 4
and leaves set to 5.

String expressions
String expressions support only the relational operatorsg < <= == =) and the simple assignment
operators £ :=), plus concatenation, which is indicated by two successive string expressions, without any
specific operator, following the practice in C, C++, amdk(1). These two assignments are equivalent:

s = "hello" ", " ‘"wor" "Id"
s = "hello, world"
Numbers in string expressions are converted to strings according to the current precision R&izble,
k = 123
PREC =4
s = "abc" k "def" PI
println s

abc123def3.142
Several string functions listed below augment string expressions.

Built-in functions and procedures
Longer documentation of the built-in functions and procedures is relegated to the later BE&SIGRIP-
TIONS OF BUILT-IN FUNCTIONS AND PROCEDURES .

These numeric built-in functions take zero argumefggetprec fegetround, getgid, getpgrp, getpid,
getppid, getrandseed getuid, irand, irandlog2period, irandmax, irandmin, rand, randl, rand2,
rand3, rand4, second shan andsystime

These numeric built-in functions take one numeric argunadag:acos acosh anorm_lower, anorm_up-
per, asin, asinh, atan, atanh, bitcom, cbrt, ceil, class cos cosd cosh cpulimit, double, erf, erfc, exp,
expm1, exponent factorial, fesetpreg fesetround, fetestexcept floor, gamma, ilogb, int, irandoffset,
isfinite, isinf, isnan, isnormal, isqnan, issnan issubnormal, isunicodedigit, isunicodeletter, JO, J1, Ig,
lgamma, In, log, log10, log1p, log2, macheps nint, number, psi, psiln, randl, rint , rsqrt, setrandseed
significand, sin, sind, single sinh, sleep sqgrt, tan, tand, tanh, trunc, YO, Y1, andY1.

These numeric built-in functions take one string argunteof; ichar, andlength.

These numeric built-in functions take two numeric argumeattm?2, bitand, bitclear, bitget, bitlshift ,
bitor, bitrshift , bitset, bitxor, cbrt2, chisq, chisq_percentile copysign errbits, fmod, gcd, hypot,
igamma, igammag, Jn, Icm, Idexp, logb, macheps? max, min, nearest nextafter, randint, randlab, re-
mainder, scalb, sqrt2, unordered, andYn.

These string built-in functions take zero argumeloigoff, logon, now, andpwd.

These string built-in functions take one argumemiropos cd, char, eval, ftoh, geteny hexfp, hexint,
load, logfile, msg_translate printenv, protect, set_locale string, tolower, toupper, andwho.

These numeric built-in functions take two argumeimgex andmatch.

These numeric built-in functions take three argumdhitgetfield, fma, andfma2.

These numeric built-in functions take four argumeatkl2, bitsetfield, div2, mul2, andsub2
These string built-in functions take zero argumeststinput, logoff, logon, now, andpwd.

These string built-in functions take one string argumaindrrt, apropos, atoutf8, binstr, cd, decstr, eval,
exit, expandeny geteny, hexstr, load, logfile, msg_translate octstr, printenv, protect, symstr, tolower,
toupper, unistr, utf8toa, what, where, andwho.

7.0.11 10-May-2011 11

HOC(1) General Commands Manual HOC(1)

These string built-in functions take one numeric argumenhex, char, feclearexcept feraiseexcept
ftoh, hexfp, hexint, itoutf8, andstring.

These string built-in functions take two string argumemdpless putenv, andsave
This string built-in function takes one string and one numeric argusteftime .
This string built-in function takes one string and two numeric argumsuibstr.

These numeric functions take one symbol argunaefined delete isconst isfunc, isnum, isproc, isstr,
andisvar.

These symbol functions take one string argunmgminum andsymstr.
These startup file procedures take no argumentsor, dirs, help, help_xxx, news popd, andxd.

The help system (described later) documents each of these functions, and any additional ones provided by
startup files. Most have the same names as they do in C, C++, and Fortran, so many will already be famil-
iar to users who have learned any of those programming languages.

Built-in functions and procedures d@ramutable they cannot be redefined by the usehdat code. User-

defined variables, functions, and procedures can be redefined at any time to objects of the same type. Vari-
ables can be redefined to be functions or procedures. However, the reverse does not hold: once a hame has
been used as a function or procedure, it can only be redefined to be a new function or procedure.

The procedurabort(message)rints messageimmediately terminates evaluation, and returns to the top-
level interpreter, discarding and clearing the function/procedure call stack. It is equivalent to a similar in-
ternal function thahoc uses to recover from catastrophic errors. Use it sparingly!

The functionread(x) reads a value into the variabte The value must be either a number, or a quoted
string, or an existing variable or named constant. The return value is 1 on success, or 0 on end-of-file; the
function aborts for any other error condition.

The functionwho(pattern) produces a lengthy report of all of the named constants and variables with their
current values, plus the names of all built-in functions and procedures, and all user-defined functions and
procedures. Only those names which match the argument gtitbeyn, are included.

To print all symbols, useho(“*”) . The return value is always an empty string.

Symbols with three or more leading underscores are for internal usecbgnd are thus considerédd-
den They can only be shown by a suitapkgtern argument tavho(). Hidden symbols are used for lo-
cale translations of embedded strings. Se¢éNAERNATIONALIZATION section below for further de-
tails.

Statements
Control flow statements are-else while, andfor, with braces for grouping.

The break statement exits from the body ofa or while loop, skipping evaluation of any post-bofty -
loop expression. Execution resumes with the statement that follows the loop body.

The continue statement exits from the current iteration of the body foir aor while loop. Execution re-
sumes with evaluation of any post-bddy-loop expression, and the conditional test that governs execution
of the next iteration.

break andcontinue are illegal outside loop bodies.
Newline or semicolon ends a statement. Backslash-newline is equivalent to a space.

Functions and procedures are introduced by the wiardsandproc, followed by the function/procedure
name, a parenthesized list of arguments, and the function/procedure body, which may be either a single
statement, or a braced statement group.

Thereturn statement is used to return a value from a function.

Variables inside the body atecal by default: they are known only within the body, even if they have the
same names as variables elsewhere.

Variables listed in global statement are visible outside the body.

7.0.11 10-May-2011 12

HOC(1)

7.0.11

General Commands Manual HOC(1)

Arguments are passed by value, so it is impossible for the body to modify their values in the caller.

Here is an example to demonstrate these features:
proc show(x) \

{
global last_x, last_xsq
println x
last x = x
last_xsq = x**2
y =X
X = 999999999

}

X =5

show(x)

5

last_x

5

last_xsq

25

y

0

X

5

Built-in named constants are always globally visible, and thus need not be listegloimahstatement;
however, some people prefer to do so as a matter of documentation.

A global statement may appear only inside the body of a function or procedure, and must occur before any
executable statements.

In older versions ofioc, function/procedure statement argument lists were empty, and within the body, nu-
meric arguments were referred to®ds $2, etc., and string arguments $$1, $3$2, etc., and all other vari-

ables were global. This practice is now deprecated, though still recognized, and the default visibility has
changed from global to local.

The statemenprint prints a list of expressions that may include string constants sublelksn” Dt
doesnot print a final newline: the last expression must end with one if a newline is required.

The statementrintin works likeprint , but always supplies a following newline.

The list items printed byprint andprintln are separated by the current value ofOFS__(output field
separator), normally a single space.

The printf statement is similar tprint, but its initial argument must be a format string conforming to a
large subset of the syntax supported by Standargrif (1) statement. List item separation is controlled
entirely by the format; OFS_ _is not used unless the format is exhausted. Data type length modifiers (
[, I, L) are ignored, and (dynamic field width) omp (pointer) format descriptors are illegal. Otherwise,
the% (literal percent) A (uppercase hexadecimal floating-poittflowercase hexadecimal floating-point),

¢ (character)d (decimal integer)E (uppercase exponential floating-poirg)lowercase exponential float-
ing-point), F (uppercase fixed decimaly, (fixed decimal),G (uppercase generalized floating-poirg),
(lowercase generalized floating-pointfdecimal integer)p (octal integer)s (string),u (unsigned integer),

X (lowercase hexadecimal integer), akd(uppercase hexadecimal integer) format descriptors, with op-
tional sign, field-width, and number-of-digits modifiers are recognized. In brief, each format descriptor is
required to match this regular expressi{%]|[-+0 #]?[0-9]*([.][0-9]*)*[AacdEeFfGgiosuXx]) .

Thesprintf statement is similar tprintf , except that its result is returned as a string value, instead of being
printed.

Numeric format items are extended to support a digit-group size given after the width, precision, and expo-
nent-digit-count fields%w.p.e.g[AadEeFfGgiu] For example%15...3drequests digits in groups of 3 sep-
arated by an underscore in a field of width 15. As a temporary implementation limitation, any zero-fill

10-May-2011 13

HOC(1) General Commands Manual HOC(1)

modifier is ignored when digit grouping is requested.

In addition, floating-point output in Ada-like based numbers is supported for any base from 2 to 36, with
digits [0-9a-z], using a format of the forow.p.e.g.b@with w the width, p the precisiong the digit-

group sizeg the exponent-digit count, ardthe base. Omitted specifiers assume reasonable defauits (
p=g=e=0,b=10), and zero values fax ande imply minimum width. For exampl&615.10..3.2@
formats 2**(-24) as 2@1.000_000_000_O@e-24.

The C-language format modifiets —, #, 0, andspaceare supported if....@formats, just as they are in
other numeric format$6+015.3@specifies a mandatory sign, and leading zero fill in a 15-character field
with 3 digits after the point.

INPUT FILE SEARCH PATH
Unless input filenames specified on the command line, lmabl(filename function calls, contain a sys-
tem-dependent absolute filenarheg looks for them in a search path defined by the environment variable
HOCPATH . This is an ordered list of file system directories in which to look for files. The list is colon-
separated on UNIX-like systems, and semicolon-separated on systems, like Apple MacOS and Microsoft
Windows, where colons are used in pathnames.

Environment variables of the forBNAME and ${NAME} embedded irfilenameare expanded before be-
ginning the path search.

For user convenience, and portability across file systems, an empty component in the directory path list
stands for a default system path that includes several directories wherbaathee installed. Thudhoc
assumes a defalHOCPATH value, if one is not already defined, .of meaning the current directory, fol-

lowed by the default system path.

As a further user convenience, if an attempt to open a file fails, and the filename does nohe@zndhe
open is retried with that ending, allowing omissiomof's recommended file extension.

FLOATING-POINT ARITHMETIC
All arithmetic inhocis done in double-precision floating point (C/C++ tylmeible).

On most modern systems, this arithmetic conforms closely (or loosely) to théERBY54 Standard for
Binary Floating-Point Arithmetic This arithmetic system has numerous advantages over older designs, and
has helped enormously to ingwe the environment for, and portability and reliability of, numerical soft-
ware.

How floating-point numbers are represented
In IEEE 754 arithmetic, double-precision humbers are represented as 64-bit values, consisting of a sign bit,
an 11-bit biased exponent, and a 53-bit significand. That is a total of 65 bits: the first significand bit is
called ahiddenbit, and is not actually stored. The binary point lies between the hidden bit and the stored
fraction, so that for normal numbers, the significand is at least one, but less than two.

Biased, rather than explicitly signed, exponents are conventional in floating-point architectures. For IEEE
754 64-bit arithmetic, the exponent bias is 1023; that is, the true exponent is 1023 less than the stored bi-
ased value.

The smallest biased exponent (0), and the largest biased exponent{2F12047), are given special in-
terpretation, described below for subnormals, and Infinity and NaN, respectively.

Large normal numbers
With the IEEE 754 64-bit format, the number range is approximately —1.80e+308 .. +1.80e+308, with a
precision of about 15 decimal figures. The exact value of the largest floating-point nungler is
2**(=53)) * 2**1024.

Small normal numbers
The smallestnormalized number that can be represented is about 2.23e-308, or more precisely,
2**(-1022), and its reciprocal is also representable, being almost exactly a quarter of the largest repre-
sentable number.

7.0.11 10-May-2011 14

HOC(1)

General Commands Manual HOC(1)

Smaller subnormal numbers

The IEEE 754 Standard defines a numerically useful feature cmiieldal underflovthat, when the biased
exponent reaches its smallest value (0), relaxes the normalization requirement and drops the hidden bit, per-
mitting small numbers to decrease further down to about 4.94e-324, or more pré¢igell074), but
with loss of precision. Such numbers are caledinormal(formerly, denormalizedl. Not all systems sup-
port such numbers: thgoc functionissubnormal(x) can be used to test whetheis subnormal. The re-
ciprocal of the largest floating-point number is nonzero only if subnormal numbers are supported. Thus,
you could define thikoc function to find out whether your system has subnormals; it returns 1 (true) if that
is the case:

func hassubnormals() \

return (issubnormal(1/(((1 - 2**(-53)) * 2**1023) * 2)))

With a predefined constant, this can also be written as

func hassubnormals() return (issubnormal(1/MAXNORMAL))

Underflow

Numbers below the smallest normalized, or when supported, the smallest subnormal, valuesngigetly
flow to zero.

Machine epsilon

Another significant quantity imny floating-point system is known as tieachine epsilon This is the
smallest positive number that can be added to one, and produce a sum still different frowwcamnevides
a generalization of this, witk replacingonein the last sentencenacheps(x)

In IEEE 754 arithmeticmacheps(1)is about 2.22e-16, or more precisély*(-52). The negative of its
base-10 logarithm is the number of decimal digits that can be represented. An emachaips(x)is
called arlJLP (Unit in theLastPlace). Ifx is an approximation tg, then with the definition
func errbits(x,y) \
{
if (x==y)\
return (0) \
else\
return (ceil(log2(abs((x - y)/y)/macheps(1))))

errbits(x,y) is the number of bits that are in errondnthat is, the base-2 logarithm of the relative error in
ULPs, rounded up to the nearest integer. Incidentally, this function behaves as expected if either of its argu-
ments are NaN (described below), or Infinity of opposite signs, even though there are no tests for those val-
ues: the result is a NaN.

One might reasonably argue fenrbits(x,y) that the case of two Infinity arguments of like sign should also
return a NaN. The current implementation does not include such a test, but doing so would require just one
additional statemenif (isinf(x) && isinf(y)) return (NAN)

macheps(0)is the smallest representable floating-point number, either normalized, or subnormal if sup-
ported. Thus, the test function@ie can be written more simply and portably (because it also works for
non-IEEE 754 systems) as

func hassubnormals() return issubnormal(macheps(0))
but it will run somewhat more slowly, because the current portable implementatimach&ps(x)involves
a loop. Another simple implementation of this function uses predefined constants:

func hassubnormals() return (MINNORMAL > MINSUBNORMAL)

Special values: Infinity and NaN

7.0.11

IEEE 754 also defines two special values: Infinity, and NaN (not-a-number). The latter are expected to be
available in two flavors: quiet and signaling, but some architectures provide only one kind. The distinction
between the two NaNs is rarely significant: the Standard’s intent was that quiet NaNs should be generated
in numerical operations, whereas signaling NaNs could be used to initialize numeric variables, so that their
use before assignment of a normal value could then be trapped.

Both Infinity and NaN are signed, but the sign of a NaN is usually irrelevant, and may not reflect how it was
computed: some architectures only generate negative NaNs, others generate only positive ones, and a few

10-May-2011 15

HOC(1)

General Commands Manual HOC(1)

may preserve the expected sign in the NaN produced.

hoc considers the native NaN to be positive, even if its binary encoding has a negative signcopius,
sign(1.0,NaNYeturns 1.0, andopysign(1.0,-NaNdeturns -1.0 on all systems where NaNs are available.

Signed zero

IEEE 754 has both positive and negative zero, but they compare equal. A positive zero is represented by all
zero bits. A negative zero has a leading one-bit, followed by 63 zero bits.

Negative zero is generated from, e.g.,

0 / —Infinity

sqrt(-0)
In principle, you should be able to get a negative zero in any programming language by simply-@riting
but many compilers will convert this to positive zero. You then have to introduce a variable, assign it a
zero, and negate the variable, possibly hiding the negation in an external function that simply returns its
value, to foil optimizers.

In hoc, however-0 always works correctly.

Signs of humbers

In hoc, you can extract the sign of any valueincluding negative zero, Infinity, and NaN, like this:
copysign(1,x)
The result will be either +1 or —1.

Nonstop computing

Infinity and NaN are intended to providenstop computindpehavior. In contrast, older architectures
tended to abruptly terminate a job that computed a number too large to be stareerilam), or divided

by zero. IEEE 754 arithmetic produces Infinity or NaN for these two cases, according to well-defined, and
obvious, rules discussed below.

On these older systentgctries to prevent generation of exceptional values that might otherwise terminate
the job: it aborts such computations with an error message, and returns you to top level, ready for more in-
put. On IEEE 754 systems, computatiomat simply proceeds as the Standard intended.

The IEEE 754 nonstop property is exceedingly important in modern heavily-pipelined, or parallel, or super-
scalar, or vector, architectures, all of which have multiple operations underway at once. An interrupt to
handle a floating-point exception in software is extremely costly in performance.

Properties of Infinity and NaN

7.0.11

Both Infinity and NaN propagate in computations, so that if they occur in intermediate results, they will
usually be visible in the final results too, and alert the user to a potential problem.

Infinity behaves somewhat like a mathematical infinity:
finite / Infinity — O
Infinity * Infinity - Infinity
Infinity**(finite or Infinity) - Infinity
NaN is produced whenever one or more operands of an arithmetic expression is a NaN, or from most nu-
merical functions with NaN arguments, or from expressions where a limiting value cannot be determined:
Infinity — Infinity — NaN
Infinity / Infinity — NaN
0/0 - NaN

NaN has a unique property not shared by any other floating-point values, including Infinity: it is not equal
to anything, even itself! This should be usable as a completely portable test for a NaN, even on older sys-
tems that do not have IEEE 754 arithmetic:

(x !I=x) is true if, and only ifx is a NaN.

Regrettably, compiler writers on several systems have failed to grasp this important point, and they incor-
rectly optimize this test to false. Thus, portable code needs to use a test functioog pravides three of
them:isnan(x), isqnan(x), andissnan(x) which return true ik is a NaN (of any flavor, or quiet, or signal-

ing, respectively).

10-May-2011 16

HOC(1)

General Commands Manual HOC(1)

What NaNs mean for programmers

The presence of NaNs in the arithmetic system has an extremely important implication for numerical soft-
ware: comparisons now hatteeeoutcomes, not two. The expressiark y) will be true or false if neither
x nory is a NaN, but it is callednorderedif either, or both, is a NaN. In particular, this means that it is al-
most alwaysvrongto use a computer programming language two-brénelelsestatement with a numeri-
cal test. Instead, there need to be additional initial tests to check for NaNs. Thus, instedwbobthte-
ment
if (x>y)\
print "x is greater than y\n" \
else\
print "x is less than or equal to y\n"
you should instead write
if (isnan(x)) \
print "x is a NaN\n" \
else if (isnan(y)) \
print "y is a NaN\n" \
elseif (x> y)\
print "x is greater than y\n" \
else\
print "x is less than or equal to y\n"

Becausef — elsestatements are very common in software, but most programmers, and computer textbook
authors, are not sufficiently familiar with IEEE 754 arithmetic, you should expect that most existing soft-
ware, and textbook examples, will fail to behave consistently, or correctly, when dealing with NaN, and
possibly also Infinity.

There have been some major disasters, such as the failure of the Ariane satellite launch in West Africa, the
failure of Patriot missiles in the Gulf War, and a U.S. nuclear aircraft carrier sitting dead in the water for six
hours, all attributed to computer programmers who lacked sufficient understanding of computer arithmetic.
Arithmetic really does matter!

Numerical software often contains convergence tests of the form

while (tolerance is not reached)

reduce the tolerance

If a NaN ever appears in thehile expression, the test will never be satisfied, and the program will be in an
infinite loop. Even famous libraries like EISPACK and LINPACK have routines that will never return be-
cause of loops caused by NaNs. [In fairness, both of those libraries were developed before IEEE 754 arith-
metic existed, but CDC and Cray machines of that era had special values similar to Infinity and NaN, so
even then, there were systems where the code could endlessly loop.]

Vendor-provided floating-point systems and run-time libraries are not always entirely reliable in their han-
dling of signed zero, Infinity, and NaN, and portable programshidecan help to ferret out implementa-

tion differences, and errors that should be reported to the vendors. As noted earlier, signed zero is often
botched by compiler writers, and two functions commonly available in most programming languages,
max(x,y) andmin(x,y), in particular are badly done. Their simple implementations use a two-branch con-
ditional like this one fomax(x,y): if (x > y) return x else return y . If either argument is

a NaN, then the test will fail, and the second argument will be returned, leading to inconsistent nonsense
like max(1,NaN) - NaN but max(NaN,1) - 1. The C (before the 1999 ISO Standard) and C++ lan-
guages lack such functions, so programmers often write them as macros. However, Fortran and many other
languages have them. In the fall of 2001, tests of 61 Fortran compilers on 15 different UNIX platforms
showed thaall fail to behave consistently fonax(x,y) andmin(x,y).

Precision control

7.0.11

Intel 1A-32 systems do floating-point computations in 80-bit registers, but the hardware can be requested to
reduce the precision to that of the 32-bit or 64-bit memory formats.

AMDG64 and Intel EM64T systems have two floating-point instruction sets, one that matches the I1A-32 ar-
chitecture, and another that has sixteen 128-bit registers that support 32-bit and 64-bit computation

10-May-2011 17

HOC(1)

General Commands Manual HOC(1)

(including operations on two or four values in parallel). There is no support for precision control in this
second instruction set. However, for the 80-bit floating-point format, compilers generate 1A-32 floating-
point instructions, and precision control works as it does on IA-32 systems. Hdu&§on AMD64 and
EM64T systems has effective precision control.

The precision can be changed by callfegetprecision()with one of the predefined-constant arguments
FE_FLTPREC (32-bit), FE_DBLPREC (64-bit), orFE_LDBLPREC (80-bit). The return value is zero
on success, and negative on failure.

The current precision can be retrieved by calling the funddgetprec() It returns either the value of one
of the alovethreeFE_xxx constants, or else a negative value indicating failure.

Rounding control

Access to the IEEE 754 rounding-control feature is provided by two funcfiegstround() and fes-
etround().

The first returns the current rounding mode as one of the predefined nonnegative cBEStBQEVN-
WARD (to —infinity), FE_ TONEAREST, FE_TOWARDZERO, or FE_UPWARD (to +infinity), or else
a negative value indicating failure.

The second function takes one of those four values as an argument, and sets the rounding mode accord-
ingly. It returns zero on success, and nonzero on failure. On failure, the rounding mode is unchanged.

It should be noted that the floating-point library software is almost always written with the assumption that
the default IEEE 754 rounding mode of round-to-nearest-even is in effect, and does not set, or test, the cur-
rent rounding mode to guarantee that assumption. Consequently, those library routines may behave unpre-
dictably or unexpectedly if a nondefault rounding mode is in effect when their code is executed.

DECIMAL ARITHMETIC

7.0.11

hoc can be built with support for decimal, instead of binary, floating-point arithmetic. The range of decimal
arithmetic is somewhat larger than that of binary arithmetic, and input/output conversion errors are elimi-
nated as long as a sufficient number of digits is used in format items. For the same storage size, the deci-
mal ULP is larger than the binary ULP, but rounding is less often required. Programmers accustomed to
assuming tha? * x andx + x are exact operations (as they are in binary arithmetic) must remember that
about 40% of those operations require rounding in decimal arithmetic, and are then not exact.

Only a few platforms support decimal floating-point arithmetic in hardware, sohoognplementations

use decimal arithmetic in software. Limitations of current compilers mean that rounding-mode control is
not yet effective when software arithmetic is used: the rounding mode is always the default of rounding to
nearest, with ties to even.

Binary floating-point formats on current and most historical systems use a fractional significand with the bi-
nary point at the left, or one bit from the left, and results are always normalized. By contrast, decimal float-
ing-point formats use an integer significand, with the decimal point at the right, and numerical operations
do not modify the normalization unless more digits are needed for the result than can be stored. Thus, al-
though the values 1., 1.0, 1.00, are numerically equal, they are stored with significands of 1, 10, 100, ...,
and are therefore distinguishable.

When the exponents of two decimal numbers are the same, they are said to have thesamgeand the
function samequantum(x,y)tests for that case. Thguantize(x,y) function returns the value of renor-

malized to have the same quantunyadhenormalize(x) function returns the value afrenormalized by
trimming trailing zeros from the integer significand, and increasing the exponent.

An integer significand allows decimal floating-point arithmetic to be used for the important application of
decimal fixed-point arithmetic, such as in financial calculations. As long as quantization is preserved in a
decimal floating-point computation, the results are as if fixed-point arithmetic had been used instead.

Because many programming languages require that floating-point constants have at least one digit before
and after the decimal point, most programmers are accustomed to writing whole numbers in floating-point
notation asl.0 , 2.0 , and so on. With decimal arithmetic, it is important to write those valugés,da ,

. sothat multiplication does not change quantization. Similarly, powers of ten should be written as
lel, le2, andl.e3 instead of as 10, 100, and 1000. In genexabid trailing zeros in decimal

10-May-2011 18

HOC(1)

General Commands Manual HOC(1)

floating-point constants

COMPLEX ARITHMETIC

7.0.11

The 1999 ISO C Standard introduced complex arithmetic into the C programming language, and from ver-
sion 7.0.10 onwardhoc can be built with support for complex data, although it does not require a C99
compiler to do so.

Complex decimal arithmetic is not yet included in the extensions of C99, hatjeomplex arithmetic is
supported in both binary and decimal bases.

C99 permits, but does not require, support for a pure imaginary type. Few compilers provide that feature,
but hoc does, allowing numbers to be pure real, pure imaginary, or general complex. The distinction is im-

portant, because it allows shortcuts in arithmetic that provide consistent cross-platform behavior. For ex-
ample, division of a complex number by pure real or pure imaginary values requires only simple compo-
nentwise division, but when the divisor is complex, several more operations are needed.

The imaginary unit (square root of minus one) is represented by the built-in cdnstacitcomplex num-
bers are constructed with an add-and-multiply operation likezhisx + y * |. The multiplication is im-
plicit, and never needs to be performed, everisfitself complex.

As a conveniencéhoc recognizes imaginary constants as numbers suffixed by a lowereageut inter-

vening space, as in39i , 123.456i , 987e-123i , andOx1.feedfacep23i . This syntax is a C99
language extension supported by GNU compilers, and is the input style used for imaginary numbers in
some other programming languages. Because it is not portable to Standard C99 code, it should be consid-
ered an interactive shorthand that is best avoidédércode.

If a complex number is passed to a real function, the imaginary component is silently ignored. Similarly, a
pure imaginary value passed to a real function is effectively a real zero.

If a pure real or pure imaginary number is passed to a complex function, a zero value is supplied for its
other component.

The common operation of multiplication lbyas inw = z * |, is handled irhoc exactly as if it were com-

puted byw = —cimag(z) + creal(z) * | just as it is in mathematics. However, in C99, the compiler may
treat the operation as if it were codedaas z * (0 + 1 * 1), requiring a complex multiplication, and likely
destruction of the proper sign of zero, and conversion of SNaN into QNaN. Transcriptioo aide to

C99 or other languages should handle such multiplications with care to get the mathematically-correct re-
sult.

All of the real relational operations are valid for pure imaginary operands, but the only legal relational oper-
ations for complex operands are tests for equatity Gnd inequality '€).

The bitwise operators for AND, OR, and exclusive OR work only on real values, so they behave like any
other real function called with pure imaginary or complex arguments: missing real parts in the operands are
treated as zero.

Only a limited set of elementary functions for complex arithmetic is available in C9®andtach begins

with the lowercase lettex, and usually borrows its name from the corresponding real functss(z) ca-

cos(z) cacosh(z) cadd(w,z), carg(z), casin(z) casinh(z) catan(z), catanh(z), ccbrt(z), ccos(z) ccosh(z)

cdiv(w,z), cexp(z) cexpml(z) cipow(z,n), clog(z) cloglp(z) cmul(w,z), cmplx(x,y), cpow(w,z)

cproj(z), csin(z), csinh(z), csqrt(z), csub(w,z) ctan(z), andctanh(z). Of these,cadd(), ccbrt(), cdiv(),
cexpml() cipow(), clog1p() cmplx(), cmul(), andcsub() are extensions to C99, providing addition, cube

root, division, exponential minus one, integer power, logarithm of argument plus (real) one, construction
from real and imaginary parts, multiplication, and subtraction. The addition, division, multiplication, and
subtraction functions are not strictly needed since they have convenient operator equivalents, but are avail-
able in the underlying software interface, so they are made accessible in

The test functiongsscomplex(z) isimag(z), andisreal(z) return one if their argument is, respectively, gen-

eral complex, pure imaginary, or pure real, and zero otherwise. A complex number with either or both
components zero is still a complex number, and neither imaginary nor real. These test functions are unique
to hoc, and absent from C99. Their use should be rare.

10-May-2011 19

HOC(1)

General Commands Manual HOC(1)

There is no separate formatted 1/0O support for complex numbers in G@2,@o their components need
to be extracted withreal(z) andcimag(z)for printing.

The constructor functioomplx(x,y) is equivalent toc +y * |. It is provided because some programming
languages use that function instead of the add-and-multiply syntax.

The polar form of a complex number is easily obtained with the absolute value and argument funetions:
cabs(z)andtheta = carg(z) from whichz = r * cexp(theta * 1) = r * cos(theta) + r * sin(theta) * 1.

However, care should be exercised in programming with the polar form, because the absolute value can
overflow when the components are finite and large.

Although IEEE 754 real arithmetic requires tisgrt(—0) return—0, C99 requires that, in complex arith-
metic,csqrt(—=0 +/- 0 * 1) must returntO +~0 * |.

Many complex functions exhibltiranch cuts(tears in the surfaces of their real or imaginary components),
branch points(locations on those surfaces where a component of the function value becomes infinite), and
multiple valueghat depend on the choice of thigument(or phasé of the polar form of the function ar-
gument. The location of the branch cuts depends on particular mathematical decisions, and there is often
variation in the literature on where those branch cuts are located.

hoc follows C99, and most other programming languages with complex arithmetic, in its branch-cut
choices, and the built-in functions return hencipal valueof the general complex function. The princi-

pal value is a particular choice of the multiple values, usually by restricting the complex argument in the
polar form to lie in the range [02 For examplegcbrt((1 + 2 * 1)**3) returns a value close 10232 +

1.866 *1 ,rathertharl + 2 * |, because the former is the principal value of the cube root function.

In complex arithmetic, the n-th root of the n-th power & often unequal te.

IEEE 754 signed zeros aessentiafor proper behavior of complex arithmetic near branch cuts. For exam-

ple, ccbrt(-=8 + 0 * I) returns a value nedr + 1.732 * | , whereascbrt(-8 — 0 * I) returns a value
nearl - 1.732 *| , because the arguments lie on opposite sides of the branch cut along the negative
real axis.

C99 specifies complicated rules for the behavior of complex functions with arguments whose components
are signed zero, signed Infinity, or NaN, and further requires that a complex number is considered infinite if
at least one component is Infinigyen if the other component is a NaWhe knarly C99 rules, and the

C99 vagueness in the definitions of complex division and multiplication for components with those special
values, suggests that platform dependence should be expected until the language definition is tightened, and
library quality is improved.

There are additional test functioisfinite(z), iscinf(z), iscnan(z) andiscnormal(z) for testing whether a
complex value is finite, infinite, NaN, or normal. They are absent from C99.

Finally, there are convenient utility functiombinfp(z), cbinint(z), chexfp(z), chexint(z), coctfp(z), and
coctint(z) for displaying complex floating-point and integer values in binary, hexadecimal, and octal repre-
sentations.

HELP SYSTEM

7.0.11

One of the files thaboc normally loads on startup contains an extensive help system. Each named con-
stant, variable, function and procedure has an associated fumeipnNAME(), whereNAME is the ob-

ject name. Help is also available on each oftthelanguage statements, and on related topics. For an in-
troduction, rurhelp(), and for a detailed list of what help functions are available, inkiekz_help()

To display the entire help system, invdiadp_all().

apropos(topic)returns a string with the names of help functions matching the paipgenignoring letter-
case.

Users are encouraged to follow these help convention with theihoarode.

The entire help corpus is intentionadiyternalto hoc itself, to facilitate modification, partial replacement,
and internationalization, as discussed in the next section.

10-May-2011 20

HOC(1) General Commands Manual HOC(1)

INTERNATIONALIZATION
The hoc help system can be readily extended to support documentation in languages other than English,
and early releases contain limited prototype text in several languages.

Changing the language alters only documentation and program messages: theddasiguage remains
unchanged, and English-centric, just as do virtually all computer programming languages.

Selecting a language

An alternate language is selected at run-time by defining any one of three environment vaGalfies: ,
LC_MESSAGES, or LANG, just as described for other programming languagéscade(1). These vari-
ables take values of a locale code, the values of which you can list by

locale -a | sort -f
You could thus launch a German versiorhot like this:

env LANG=de hoc
Environment variables, rather than command-line options, control the locale selection, because it is likely
that most individuals will want to choose a fixed locale, and that can be done once and for all in user login
files, and also because several UNIX library functions access the locale environment variables to guide their
behavior. UNIX users could also create convenient shell aliases, esf(d)y tcsh(1) syntax,

alias hoc-da 'env LANG=da hoc \I*’

alias hoc-de 'env LANG=de hoc \I*’

alias hoc-fr 'env LANG=fr hoc \I’

What if you have no locale support?
Virtually all UNIX vendors today provide locale support, but they usually require installation of one or
more additional software packages that your system manager may have omitted, but may be willing to in-
stall on request.

Locale support is usually present in one of these directories; besides udowal@) command as shown
in the previous subsection, you can Is() on the appropriate one of them to see what locales are installed
on your system:

/usr/share/locale Apple Darwin (MacOS X), FreeBSD, GNU/Linux (all architectures)
Jusr/lib/nls/loc Compaq/DEC Alpha, IBM AIX

/usr/share/il8n/localesGNU/Linux (all architectures)

{usr/lib/nis/loc/locales Hewlett-Packard HP-UX

{usr/lib/locale SGI IRIX, Sun Solaris

What the locale affects
Normally, changing the locale affects more than just text: dates, monetary formats, numbers, and sort order
all change. However, for now, in the interests of simplicity, and cross-platform and cross-locale consis-
tency, hoc sets the locale categories io€ COLLATE , LC_CTYPE, LC_MESSAGES, LC_MONE-
TARY, LC_NUMERIC , andLC_TIME to their traditional (English/American) values. Changes will be
needed in future versions bibc to support other values of these categories; some of that support is already
available, as shown in the next subsection.

Changing the locale inside hoc programs
Locale categories can be set in the environment inside hoc programs to control calendar date and time
formatting by thestrftime() function:
Show time in the default locale:
hoc> strftime("%c",systime())
Fri Dec 21 15:18:14 2001

Switch to Portuguese: ISO8859-1 (Latin-1) encoding:
hoc> old_lIc_time = putenv("LC_TIME", "pt")

hoc> strftime("%c",systime())

sex 21 dez 2001 03:17:29 PM MST

7.0.11 10-May-2011 21

HOC(1) General Commands Manual HOC(1)

Restore the original locale:

hoc> ignore = putenv("LC_TIME", old_lIc_time)
The current locale setting can be saved and restored as shown. Less desirably, tk® vedgets it to the
C/C++ default of English.

The locale code is interpreted as the name of a subdirectory in which to find a localized version of any sys-
tem file thathoc loads at startup time. For example, in a Danish locale, it will load the English file,
help.hoc , and then the Danish filda/help.hoc , from thehoc system installation directory, provided

that the localized file exists. Otherwidmcis silent about its absence.

Changing the language of internal messages
The hoc program contains a number of messages that are hard-coded in English. Any, or all, of these can
be replaced at run time by assignments to special variables named with the reserved seven-character prefix
___msg_(yes, there arthreeleading underscores) used to identify translation variables.

These variables are normally only set in ttamslations.hodiles in thehoc system directory tree, but they
can also be set by user programs as well, unless they have been defined as permanent constants.

See the comments in those files for further documentation. Except for translation work, it should never be
necessary for ordinary users to reference or modify these variables.

Character set constraints
The significant constraint is that characters must be representable in 8-bit character sets, such as the dozen
or so 1SO885% sets that supply characters needed for European languages, or the Unicode (also known as
ISO10646-1) UTF-8 variable-byte-count encoding of potentially two million or so symbols used in the
world’s writing systems. In addition, tHeoc user must be running the program in an environment capable
of such display.

Changing screen display fonts
In a UNIX system, you might first scan the voluminous outputlsfbnts(1) to find out what fonts are
available for your window system, and then launch a terminal window like this:
xterm -fn \
-adobe-courier-medium-r-normal--14-100-100-100-m-90-is08859-1 &
to get a 14pt font with all of the characters needed for ISO8859-1 (Latin 1, handling most of the languages
of Western Europe, and many others, such as Hawaiian, Indonesian, and Swabhili).

Your system manager may be able to tell you about additional window system fonts that may also be avail-
able, but are not loaded by default. For example, at the maintainer’s site, there is a large collection of Asian
and European fonts installed in tamacgl) editor tree. To add, say, the European collection, in a shell
window type

xset fp+ /usr/local/share/emacs/fonts/European

xset fp rehash
The new fonts will then be available, and will be listablexisjonts(1). You can make those additions per-
manent by adding those two commands to WH®ME/.xinitrcor BHOME/.xsessiofile; the name is plat-
form-dependent, so the best choice is to make them identical, with one a symbolic link to the other.

Use
xset g
to find out what font directories are currently in the font search path.

Each X Window System font directory hasoats.dir text file that maps short file names to long font
names. There is sometimes alsiomts.alias text file to provide short aliases for the otherwise rather
long font names used in the X Window System. You can scan those files to see what is available.

Recent versions ofterm(1) have a special optioru8, to handle UTF-8 multibyte encoding, but you then
need to use a font with the corresponding character repertoire:
xterm -u8 -fn \
-misc-fixed-medium-r-normal--20-200-75-75-c-100-is010646-1 &

7.0.11 10-May-2011 22

HOC(1) General Commands Manual HOC(1)

Documentation for hoc in other languages
Internationalized documentation will usually augment, rather than replace, the English documentation.
That way, translations can be developed incrementally. Thus, in a French envirdmetgntresponds in
English, whereas output froaide() is in French. On startumoc will then usually display a greeting in
two languages: English, and the local one. Here is what this looks like in the French locale:

% env LANG=fr hoc

Welcome to the extensible high-order calculator, hoc.

This is hoc version 7.0.0.beta [15-Dec-2001].

Type help() for help, news() for news, and author() for author
information.

This system supports IEEE 754 floating-point arithmetic.

Bienvenue a la calculatrice, hoc.

C’est la version 7.0 du 15 décembre 2001.

Taper aide() pour de I'assistance, nouvelles() pour des
nouvelles, et auteur() pour des renseignements sur les
auteurs.

Cet ordinateur supporte I'arithmétique en virgule flottante du
standard IEEE 754.

The maintainer will be grateful for contributions of additional translationisoofhelp files and internal
messages!

HOC SUPPORT IN GNU EMACS
Whenhoc is installed properly, it adds a new librahgc.el to theemacs/site-lisglirectory, which should
always be included in themacgl) load-pathvariable (in an editor session, ty@eh vioad-path to
display it).

By suitable manual edits to tlsée-init.elfile in that directory, your system manager could masemode
support automatically available, but thec installation process cannot safely do that automatically.

You can test whether this has been done at your site by visiting a new file with extésjoif the
emacgl) mode line showéhoc . ..) , instead of something else, likeindamental .. .) , then
you need do nothing morkoc-modeis already fully installed.

Otherwise, in order to avoid the need for tedious manual loading dbthsupport inemacg1), add this
snippet of Emacs Lisp code at the end of yEBHOME/.emacdnitialization file:

(require "hoc-init)
This adds a binding between files with extensiooc and hoc-modein emacgl1), and arranges for the
hoc.ellibrary to be loaded the first time that it is required.

Two additional functions are provided to ease the task of creating help procéaurgsintify andhoc-
unprintify . Both operate on the region, converting texpriot statements, or the reverse.

DESCRIPTIONS OF BUILT-IN FUNCTIONS AND PROCEDURES
These descriptions are taken from the output of the corresponeliipgxxx() functions, and, apart from
font differences, are intended to be identical to them. Hgdp_xxx() functions are considered to be the
definitive documentation of each function.

In the following descriptions, square brackets on number ranges indicate that the endpeintési
parentheses indicate that the endpoiekiduded

abort(message) Print messagethen abort evaluation of the current expression, returning to top-
level without further processing of the remainder of the current statement or func-
tion/procedure call chain. The message should include the name of the function
calling abort(), because there is currently no function-call traceback, and end

7.0.11 10-May-2011 23

HOC(1)

7.0.11

abs(x)
acos(x)
acos(x)

acosh(x)

General Commands Manual HOC(1)

with a newline.

Return the absolute value xf

Return the arc cosine &f x must be in [-1, +1].
Return the arc cosine &f x must be in [-1, +1].

Return the inverse hyperbolic cosinexofx must be outside the interval (-1, +1).

add2(x_hi, x_lo, y_hi, y_lo))

anorm_lower(x)

anorm_upper(x)

apropos(topic)

asin(x)
asinh(x)
atan(x)
atan2(y,x)
atanh(x)
atoutf8(s)

author()

binstr(s)

bitand(m,n)

bitclear(m,k)

Compute the pair surfx_hi, x_lo) + (y_hi,y_lo) storing the result in globals
(__HL_, 1O _)andreturnind__HI__+_ LO_)as the function value.

Return the lower tail area froanfinity to x of the standard normal curve. That
is,
anorm_lower(x) = (1/sqrt(2*P1)) integral(t=—infinity:x) exp(-t**2/2) dt

By symmetry,anorm_lower(-|x|) == anorm_upper(|x|) and anorm_upper(x)

== erfc(x/sqrt(2))/2. The latter provides a stable and accurate way to compute
anorm_lower(x) whenx < 0; otherwiseanorm_lower(x) is computed stably and
accurately from(1 + erf(x/sqrt(2)))/2for x >= 0.

The relationanorm_lower(x) + anorm_upper(x) == 1holds for allx in (-Infin-
ity, +Infinity).

Return the upper tail area froxto +infinity of the standard normal curve. That
is,
anorm_upper(x) = (1/sqrt(2*P1)) integral(t=x:+infinity) exp(-t**2/2) dt

The computation of this function via the identitgnorm_upper(x) =
erfc(x/sqrt(2))/2 is stable and accurate.

The relationanorm_lower(x) + anorm_upper(x) == 1holds for allx in (-Infin-
ity, +Infinity).

Return a string with the names of help functions matching the paigo, ignor-
ing lettercase.

Seematch() for a description of pattern syntax.
Return the arc cosine &f x must be in{1,+1].
Return the inverse hyperbolic sinexof

Return the arc tangent xf

Return the principal value of the arc tangeny/af
Return the inverse hyperbolic tangenkof

Translate the ASCII string, possibly containing Unicode 4- and 8-hexadecimal
digit escape sequencesitihhhand \Uhhhhhhhh, to UTF-8 encoding and return
the resulting string.

Print information about the program authors.

Returns a copy of the strirgwith all characters represented as binary escape se-
quences in the forrbdddd_dddd

Return the bitwise logical AND of the two integensandn. This is equivalent to
the expressiofm & n).

Return the result of setting Bitin m to zero. This is equivalent to the expression
(m & 7(2**k)) .

Bits are numbered from thregghtmost (low-order) bit, counting from zero. Thus,
bit numberk always has valug**k .

10-May-2011 24

HOC(1) General Commands Manual HOC(1)

This choice ensures that bit manipulation code can be written to work the same in
all four hoc precisions, provided that no more than the rightmost 23 bits are used.

bitcom(m) Return the bitwise logical complementraf produced by inverting all bits of the
integer, equivalent to the expressiom) .
bitget(m,k) Return bitk in m.

bitgetfield(m, pos, width)
Returns a bit field ofn of width bits from bitpos+width-1to bit pos

bitlshift(m, count) Return the result of left-shiftinm by count bits, equivalent to the expressifm
<< count). Bits shifted off the left are lost.

If countis negative, return a right shift witkitrshift(m,-count) .

bitor(m,n) Return the bitwise logical OR of the two integemsandn, equivalent to the ex-
pressionm | n).

bitrshift(m, count) Return the result of right-shifting by count bits, equivalent to the expressifm
>> count). Bits shifted off the right are lost.
If count is negative, return a left shift wikhitlshift(m,-count).

bitset(m,k) Return the result of setting bitin m to one, equivalent to the expression |
2**K) .

bitsetfield(m, n, pos, width)
Returns the result of storing tiaedth low-order bits ofn in a bit field ofm from
bit pos+width-1to bit pos

bitsetfield(m,1,k,1)is equivalent tditset(m,k), andbitsetfield(m,0,k,1)is equiv-
alent tobitclear(m,k).

bitxor(m,n) Return the bitwise logical exclusive-OR of the two integer@ndn.

cbrt(x) Return the cube root af

cbrt2(x_hi, x_lo) Compute the pair-precision cube root(ef hi, x_lo), storing the result in globals
(__HL _, 1O _)andreturnind__HI__+ LO_)as the function value.

cd(s) Change the current working directory to that named by the Srimgdate the en-
vironment variablé®WD to that name, and return that name.

ceil(x) Return the smallest integer greater than or equal to

char(n) Return a one-character string containing the character whose ordinal value in the

host character set i= Characters are always considetgtsigned Thus, in an
ASCII or 1SO 8859-n or Unicode character s#tar(65) returns"A" , and both
char(255)andchar(-1) return"\xff" .

hoc strings are internally terminated by a NUL charactectsr(0) is equivalent
to an empty strind," , and("X" char(0) "Y") evaluates t¢"X" " "Y") which
in turn reduces toXY" .

chisqg(nu,x) Return the chi-square probability (in [0,1]) fon degrees of freedom correspond-
ing to the measure, usually computed as
x = sum(k=1:n)((M(k)-E(K))**2 / E(k))

whereM(K) is thek-th measured value a{k) is thek-th expected value.
nu must be an integer value greater than zeroxandst be nonnegative.

chisqg_percentile(nu,p) Return the chi-square percentile measure (in [0, +infinity]ptodegrees of free-
dom.

nu must be an integer value greater than zero,pantust be in [0,1]. The re-
turned valuey, satisfiechisq(nu,x) == p

7.0.11 10-May-2011 25

HOC(1)

7.0.11

class(x)

copysign(x,y)
cos(x)
cosd(x)
cosh(x)

cpulimit(t)

decstr(s)

defined(symbol)

General Commands Manual HOC(1)

WARNING : chisq_percentile(nu,p)increases monotonically with, but is flat

for p near 0 or 1, and even flatter in those regionsuascreases. Its computation
with suchp values is slow, and subject to considerable numerical error. However,
p values of interest are commonly in the range [0.001, 0.999], where this difficulty
does not arise.

Return a numeric value (available as a predefined constant) indicating into which
of these ten classadalls:

CLASS_NEGINF negative infinity
CLASS_NEGNORMAL negative normal
CLASS_NEGSUBNORMAL negative subnormal
CLASS_NEGZERO negative zero
CLASS_POSINF positive infinity
CLASS_POSNORMAL positive normal
CLASS_POSSUBNORMAL positive subnormal
CLASS_POSZERO positive zero
CLASS_QNAN quiet NaN
CLASS_SNAN signaling NaN

An eleventh value is reserved to flag classification failure:
CLASS_UNKNOWN should never happen

Return a value with the magnitudexpfand the sign of.

Return the cosine of (x in radians). Expect severe accuracy loss for ladge
Return the cosine of (x in degrees). Expect severe accuracy loss for |afge
Return the hyperbolic cosine xf

Set the CPU time limit from now to an additioniadeconds, set the system vari-
able_ CPU_LIMIT__ tot, and return the current CPU time limit, which is al-
ways measured from ttgtart of the job.

If the limit is exceeded, execution of the current expression is aborted, control re-
turns to the top-level interpreter, and the time limit is incremented by the current
value of CPU_LIMIT_

Althought may be fractional, on most operating systems, the time limit is an inte-

ger, sot will be rounded up internally to the nearest integer before setting the time

limit.

If resource usage and limits are not supported on the current platform, this func-
tion has no effect, other than settingCPU_LIMIT_ _, and returning Infinity.

By default, there is no time limit for the job (although some operating systems
may impose such limits).

Negative, zero, and NaN arguments are treated like Infinity.
NB: This function isexperimentaland may be withdrawn in future versions.

Returns a copy of the strirggwith all characters represented as decimal escape se-
qguences in the forrdnnn

Return 1 ifsymbolis defined, and O if not.

Programming note: This function can be usethar libraries to provide default
values of variables, for example,
if (!defined(seed)) seed = 123456789

10-May-2011 26

HOC(1)

7.0.11

delete(symbol)

General Commands Manual HOC(1)

Return 1 ifsymbol was successfully deleted, and 0 if not. When a symbol is
deleted, its value is no longer available, as if it had never been defined.

Most user-defined symbols can be deleted himgtkernel symbols, and user-de-
fined immutable symbols, cannot.

div2(x_hi, x_lo, y_hi, y_lo)

dirs()
double(x)

endinput()

erf(x)
erfc(x)
errbits(x,y)

eval(string)

exit(s)

exp(x)
expandenv(s)

expml(x)

exponent(x)

Compute the pair quotieifx_hi, x_lo) / (y_hi, y_lo) storing the result in globals
(__HL _, 1O _)andreturnind__HI__+_ LO_)as the function value.

Print the current directory stack, with the most recent directory first.

Return the value of converted to double precision, and then back to working pre-
cision.

Set an internal flag that terminates reading of the current file at the time the next
input line is requested.

Return the error function of
Return the complementary error functionxof
With x an approximation tg, return the number of bits thais in error by.

Push the argument string, which must contain vadidcode, onto the input stack
so that it will be evaluated next. The size of the input stack is limited only by
available memory.

This function makes it possible fbioc programs to construct nelaoc code on-
the-fly and then run it.

Print the strings if it is not empty, and exit to the operating system with a success
return code (on Unix-like systems, 0) if the string was empty, and with a failure
code (on Unix-like systems, 1) if the string was not empty.

Return the exponential function 0fE**x .

Expand environment variables of the fofNAME and ${NAME} in s and return
the result. To prevent potential infinite loops, expansions are not themselves ex-
panded.

Return the exponential function xfless 1E**x — 1.

For smallx, exp(x) is approximately 1, so there is serious subtraction loss in di-
rectly usingexp(x) — 1; expm1(x)avoids this loss.

From Sun Solaris documentationfieexpm1()and log1lp() functions are use-
ful for financial calculations of(1 + x)**n — 1) / x, namely:

expml(n * loglp(x))/x

whenx is very small (for example, when performing calculations with a small
daily interest rate). These functions also simplify writing accurate inverse hyper-
bolic functions:

Return the base-2 exponentgkuch that
X == significand(x) * 2**exponent(x)
where|significand(x)|is in [1,2).

For IEEE 754 arithmetic, normal numbers hasponent(x) in [-1022,+1023]
and subnormal numbers, if supported, haxgonent(x)in [-1074,+1023].

WARNING : The power2**exponent(x) will underflow to zero for IEEE 754
subnormal numbers, so for such numbers, the right-hand side must be computed
with suitable scaling, like this:

10-May-2011 27

HOC(1)

7.0.11

factorial(n)

General Commands Manual HOC(1)

(significand(x) * 2**(exponent(x) + 52)) * 2**(-52)

Returnn! = n*(n-1)*(n-2)*...*1, wheren is an integer, and! == 0! == 1, by
definition. Otherwise, return NaN for negative or fractional arguments.

feclearexcept(exceptions)

fegetprec()

fegetround()

Clear the floating-point exception flags correspondingxteptions which is the
bitwise logical OR of one or more of the predefined constaatDIVBYZERO ,
FE_INEXACT , FE_INVALID , FE_OVERFLOW, andFE_UNDERFLOW.

Return the current precision-control flag value (one of the predefined nonnegative
constants=E_FLTPREC, FE_DBLPREC, or FE_LDBLPREC), or a negative
value if the operation is not supported.

Hardware precision-control is effective only on the Intel 1A-32 architecture in all
precisions, and on the AMDG64 architecture in 80-bit precision only. On all other
architectures,fegetprec() returns the one of the three cale constants that
matches the default precision. A negative return value indicates failure, but that
should never happen.

Return the current rounding mode (the value of one of the predefined nonnegative
constants FE_DOWNWARD, FE_TONEAREST, FE_TOWARDZERO, or
FE_UPWARD), or a negative value if the current rounding direction is not deter-
minable (should never happen).

feraiseexcept(exceptions)

fesetprec(flag)

fesetround(mode)

Raise the floating-point exception flags correspondirexteptions which is the
bitwise logical OR of one or more of the predefined constaatDIVBYZERO ,
FE_INEXACT , FE_INVALID , FE_OVERFLOW, andFE_UNDERFLOW.

Set the precision-contrélag value with an argument that is one of the predefined
nonnegative constantSE_FLTPREC, FE_DBLPREC, or FE_LDBLPREC.
Return zero on success, and a negative value on failure.

This function is useful on the Intel 1A-32 architecture, and on the AMD64 archi-
tecture in 80-bit precision only, where computations in registers in the CPU are
normally done in 80-bit extended precision, but can be set to work in 32-bit single
precision or 64-bit double precision instead.

On all other architecturefgsetprec(flag)returns zero if the argument matches the
default precision. Otherwise, it returns a negative value indicating failure.

Set the current rounding mode to the valuenofle, which should be one of the
predefined nonnegative constantSE_ DOWNWARD, FE_TONEAREST,
FE_TOWARDZERO, or FE_UPWARD. Return zero on success, and nonzero
on failure. On failure, the rounding mode is unchanged.

fetestexcept(exceptions)

floor(x)

fma(x,y,z)

Test the floating-point exception flags corresponding to exceptions, which is the
bitwise logical OR of one or more of the predefined constaatDIVBYZERO ,
FE_INEXACT, FE_INVALID , FE_OVERFLOW, and FE_UNDERFLOW,

and return a result which is the bitwise OR of the specified exception flags that are
currently set.

Return the greatest integer less than or equal to
Return the value of*y + z with only one rounding.

The result is computed by forming an exact (unrounded) double-length product
x*y, and then adding, rounding the result just once to working precision.

The name is an abbreviation of fused-multiply-add, an operation first introduced
in 1990 on the IBM Power architecture. It has been found to be so beneficial

10-May-2011 28

HOC(1)

7.0.11

fma2(x,y,z)

fmod(x,y)
ftoh(x)

gamma(x)

ged(x,y)
getenv(envvar)

getgid()

getpgrp()

getpid()

getppid()

getrandseed()

getuid()

General Commands Manual HOC(1)

numerically that several other CPU architectures now provide it, and it was made
available for explicit use in software in the 1999 ISO C Standard.

Compute the value dix,0)*(y,0) + (z,0)in pair-precision arithmetic, storing the
resultinglobalg HI__, 1O _)andreturning_ HI__+ 1O _)asthe
function value.

Return the remainder of the divisionxoby y.

Return a hexadecimal string containing the native floating-point representation of
X.

For readability, a separating underscore is inserted between groups of eight hexa-
decimal digits.

This function is the inverse tof(s).

Return the gamma (generalized factorial) functior, afefined by
gamma(x) = integral(0:+infinity) t**(x-1) exp(-t) dt

For integer arguments,
gamma(n+1) =1*2*3* .. *(n-1) * n = n! = factorial(n)

For any argument,
gamma(x+1) = x * gamma(x)

Return the greatest common divisoxaindy.

Return the string value of the environment variaievar, or an empty string if it

is not defined.

Return the group identity number of the current process;laf that concept is
not supported on the current host.

Return the process group identity number of the current process,ifdhat con-
cept is not supported on the current host.

Return the process identity number of the current procesq, ibthat concept is
not supported on the current host.

Return the process identity number of the parent process of the current process, or
-1 if that concept is not supported on the current host.

Return the current seed of the random-number generator. If the seed is then
changed via a call teetrandseed(,) the original sequence can be continued by
calling setrandseed(again with the saved seed as its argument.

Return the user identity number of the current process] drthat concept is not
supported on the current host.

helpless(prefix,pattern)

hexfp(x)

hexint(x)

Return a string with the names of functions, procedures, and variables matching
pattern, preservinglettercase, and lacking corresponding functions beginning
with prefix.

Seematch() for a description of pattern syntax.

Return a string containing the hexadecimal floating-point representatignirof
the form

"+0x1.hhhhh. . .p+ddddd"

Trailing zeros in the fraction, and leading zeros in the exponent, are dropped, and
the sign is always included.

Return a string containing the hexadecimal integer representatignifdhat is
possible, in the form

10-May-2011 29

HOC(1)

7.0.11

hexstr(s)

htof(s)

hypot(x,y)

ichar(s)

igamma(p,x)

igammac(p,x)

General Commands Manual HOC(1)

"+0xhhhhh. . ."
Leading zeros are dropped, and the sign is always included.

If x is too big to represent as an exact integer, then the floating-point representa-
tion, hexfp(x), is returned instead.

Return a copy of the strirgwith all characters represented as hexadecimal escape
sequences in the fork@xhh

Return a floating-point number corresponding to the native representation in the
hexadecimal string.

Nonhexadecimal digits inare ignored.
This function is the inverse @oh(x).

Compute the length of the hypotenuse of a right-angled triangle with adjacent
sides of lengthx andy, sqrt(x**2 + y**2) , but without accuracy loss or range
limitation from premature overflow or underflow.

This function has possibly unexpected behavior for exceptional arguments: when
either argument is Infinity, then the result is Infingyen if the other argument is
a NaN! The explanation is found on the 4.3BSD manual page:
... programmers on machines other than a VAX (it has no infinity) might
be surprised at first to discover thatpot(+infinity,NaN) = +infinity .
This is intentional; it happens becausgot(infinity,v) = +infinity for
all v, finite or infinite. Hencéaypot(infinity,v) is independent of. Un-
like the reserved operand on a VAX, the IEEE NaN is designed to disap-
pear when it turns out to be irrelevant, as it dodsypot(infinity,NaN) .

Return the ordinal value of the first character in the sgin@haracters are al-
ways considerednsigned Thus, in an ASCII or ISO 8859-n or Unicode charac-
ter set,ichar("ABC") returns 65 (the ordinal value #&f), andichar("\xff") re-
turns 255.ichar("™) returns 0, becaud®c strings are internally terminated by a
NUL (zero-valued) character.

Return the normalized incomplete gamma function, defined by
igammay(p,x) = (1/gamma(p)) integral(0:x) t**(p-1) exp(-t) dt

wheregammay(p)is the ordinary gamma (generalized factorial) function.

Some texts call this functio®(p,x), with a corresponding functioQ(p,x) repre-
senting the integral onxJinfinity), such thaP(p,x) + Q(p,x) = 1 with bothP(p,x)
andQ(p,x) in [0,1].

The companion functiolyammac(p,x)handles the integral om,[nfinity).

igammay(p,x) is equal togamma(p,x)/gamma(p) where the numerator is the un-
normalized incomplete gamma function given in the National Bureau of Standards
Handbook of Mathematical Functionequation 6.5.2, p. 260. The normalized
form is generally preferable because its value is confined to [0,1], whereas the un-
normalized form soon overflows for large

Maple provides another incomplete gamma function var@ANMMA(p,X) , de-
fined by
GAMMA(p,xX) = GAMMA(p) - gamma(p,X)

where Maple’sGAMMA(p) is hocs gamma(p) Maple’s is related tdnocs in-
complete gamma function by
igammay(p,x) = (1- GAMMA(p,x)/{GAMMA(p))

Return the normalized complementary incomplete gamma function, defined by
igammac(p,x) = (L/gamma(p)) integral(x:+infinity) t**(p-1) exp(-t) dt

10-May-2011 30

HOC(1)

7.0.11

ilogb(x)
index(s,t)
int(x)
irand()

irandlog2period()

irandmax()
irandmin()

irandoffset(m)

isconst(sym)
isfinite(x)
isfunc(sym)
isinf(x)
isnan(x)

isnormal(x)

isnum()
isproc(sym)

isgnan(x)

General Commands Manual HOC(1)
wheregammay(p)is the ordinary gamma (generalized factorial) function.

Some texts call this functioQ(p,x), with a corresponding functiol®,(p,x) repre-
senting the integral on [, such thatP(p,x) + Q(p,x) = 1 with bothP(p,x) and

Q(p.x) in [0,1].
The companion functiolyamma(p,x) handles the integral on [,

igammac(p,x)is equal tal — gamma(p,x)/gamma(p) where the numerator is the
unnormalized incomplete gamma function given in the National Bureau of Stan-
dardsHandbook of Mathematical Functignsquation 6.5.2, p. 260. The normal-
ized form is generally preferable because its value is confined to [0,1], whereas
the unnormalized form soon overflows for lage

Maple provides another incomplete gamma function var@ANMMA(p,X) , de-
fined by
GAMMA(p,xX) = GAMMA(p) - gamma(p,X)

where Maple’lGAMMA(p) is hocs gamma(p) Maple’s is related thhoc's com-
plementary incomplete gamma function by
igammac(p,x) = GAMMA(p,X)/GAMMA(p)

Return the exponent part wfthat is,int(log2(x)).
Return the index of stringin strings, counting from 1, or 0 if is not found irs.
Return the integer part (truncated toward zerd). of

Return a pseudo-random number uniformly distributedi@ndmin(), irand-
max()].

Return the base-2 logarithm of the period of the pseudo-random-number genera-
tor, irand().

The logarithm is used because the period may be too large to represent in floating-
point arithmetic, and the logarithmic base is 2 because most generators have peri-
ods that are a power of 2, or that number plus or minus a small constant.

Return the largest integer thieind() can produce.
Return the smallest integer thietnd() can produce.

For integem, return the smallest positive intedesuch tha{m/(m + k)) < 1.0in
floating-point arithmetic. This value is needed for production of floating-point
values scaled to the unit interval with the right endpoint excluded.

Return 1 (true) if symbalymis a constant value, and otherwise, 0 (false).
Return 1 (true) ik is finite and otherwise, 0 (false).

Return 1 (true) if symbaymis a function, and otherwise, 0 (false).
Return 1 (true) ik is Infinite, and otherwise, O (false).

Return 1 (true) ik is a NaN, and otherwise, 0 (false).

Return 1 (true) ik is finite and normalized and not subnormal, and otherwise, 0
(false).

Return 1 (true) if symbalym holds a numeric value, and otherwise, 0 (false).
Return 1 (true) if symbaymis a procedure, and otherwise, 0 (false).
Return 1 (true) ik is a quiet NaN, and otherwise, 0 (false).

On some architectures (e.g., Intel x86 and possibly, MIPS processors earlier than
the R4000), there is only one type of NaNgnan(x) is then defined to retuiis-
nan(x).

10-May-2011 31

issnan(x)

isstr(sym)

issubnormal(x)

isunicodedigit(n)
isunicodeletter(n)
isvar(sym)
itoutf8(n)

JO(x)
J1(x)
Jn(n,x)
lcm(x,y)
Idexp(x,y)
length(s)
lg()

lgamma(x)

In(x)

load(filename)

General Commands Manual HOC(1)
Return 1 (true) ik is a signaling NaN, and otherwise, 0 (false).

On some architectures (e.g., Intel x86 and possibly, MIPS processors earlier than
the R4000), there is only one type of NalNsnan(x)is then defined to returis-
nan(x).

You can test whether your system has both quiet and signaling NaNs likeghis:
nan(NaN). The result is O (false) if distinct NaN types are available, and 1 (true)
if not.

Return 1 (true) if symbalym holds a string value, and otherwise, 0 (false).

Return 1 (true) ifx is subnormal (formerly, denormalized), and otherwise, 0
(false).

Return 1 (true) ih is a valid Unicode digit, and otherwise, O (false).
Return 1 (true) ih is a valid Unicode letter, and otherwise, 0 (false).
Return 1 (true) if symbaymis a mutable variable, and otherwise, O (false).

Return a string containing the Unicode UTF-8 encoding of the Unicode character
n.

Return the Bessel function of the first kind of order 8.of
Return the Bessel function of the first kind of order %.of
Return the Bessel function of the first kind of integral ordef x.
Return the least common multipleiof(x) andint(y).

Returnx * 2**(int(y)) .

Return the length of string

Return the base-2 logarithm{same asog2(x)).

Return the natural logarithm gamma(x).

Becausegamma(x) has poles at zero and at negative integer values, and grows
factorially with increasingx, it reaches the floating-point overflow limit fairly
quickly. For 64-bit IEEE 754 arithmetic, this happens at approximately
206.779 However,lgamma(x) is representable almost to the overflow limit. In
64-bit IEEE 754 arithmetic, this happens at approximately 2.55e+306 (the
overflow limit is 1.80e+308).

Unfortunately, there is mathematically-unavoidable accuracy loss when
gamma(x) is computed fromexp(lgamma(x)) so you should avoid the logarith-
mic form unless you really need large arguments that would cause overflow.

Return the natural (bag€-logarithm ofx.

Read input from the specified file. The file can be prepared by hand, or by the
save()command.

See thelNPUT FILE SEARCH PATH section abve for details on howhoc
finds input files.

Loaded files can themselves contliad() commands, with nesting up to some
unknown limit imposed by the host operating system on the maximum number of
simultaneously-open files for a process, user, or the entire system.

This command can be disabled for security reasons by the commandiine
load or —secureoptions.

The return value is an empty string on success, and otherwise, an error message.

10-May-2011 32

HOC(1)

7.0.11

log(x)
log10(x)

log1p(x)

log2(x)

lodfile(filename)

logoff()

logon()

macheps(x)

macheps2(x_hi, x_lo)

match(s,pattern)

max(x,y)

maxnormal()

min(x,y)

minnormal()

minsubnormal()

General Commands Manual HOC(1)
Return the natural (bag€-logarithm ofx.
Return the base-10 logarithm>af

Returnlog(1 + x), but without accuracy loss for smdf]. x must be in (-1, +in-
finity].

Return the base-2 logarithm xf

Log the session on the specified file, which, for security reasmnst,be a new
file. Itis a normal text file that you can edit, print, and view.

Input is recorded verbatim. Output is recorded in comments. This permits the
logfile to be read bjoc later, allowing a session to be replayed.

If a lodfile is already opened, it is closed before opening the new one.

Logging may be turned on and off withgon() andlogoff(), and can be entirely
disabled for security reasons by the command-tima-logfile option.

The return value is an empty string on success, and otherwise, an error message.

Suspend logging to any open log file. Itrist an error if there is no current log
file.

Restore logging to any open log file. Itnst an error if there is no current log
file.

Return the generalized machine epsilorxpthe smallest number which, when
added tok, produces a sum that still differs from(x + macheps(x)) != x

macheps(1)s the normal machine epsilon.

macheps(—x)is macheps(x)/BASE or equivalently, the smallest number that can
be subtracted from with the result still different from.

macheps(0)is the smallest representable floating-point number. Depending on
the host system, it may be a normal number, or a subnormal number (invoke
help_subnormal()for details).

Compute the machine epsilon in pair-precision arithmeti¢xfoni, x_lo), storing
theresultinglobalé HI__, LO_)andreturnind_ _HI__+_ LO_as
the function value.

Match the strings againstpattern, and return 1 (true) for a match, or O (false) for
no match.

Matching is similar to UNIX shell pattern matching: asterisk (*) matches zero or
more characters, and query (?) matches any single character. A square-bracketed
list of characters, and/or hyphen-separated character ranges, matches any charac-
ter in that list. A right bracket can be in the list only if it appears first. Thus, [A-
Za-z0-9] matches an English letter or digit, and []J[] matches a square bracket.

Return the larger of andy.

If eitherargument is a NaN, the result is a NaN.
Return the maximum positive normal number.
Return the smaller of andy.

If eitherargument is a NaN, the result is a NaN.
Return the minimum positive normal number.

Return the minimum positive subnormal number. If subnormals are not sup-
ported, then return the minimum normal number instead.

10-May-2011 33

HOC(1)

msg_translate(msg)

General Commands Manual HOC(1)

Look up the message stringisg, in hocs translation tables, and if a nonempty
translation exists, return that translation; otherwise, return its argumsgpt,

Please use this function in your olwoc code to ensure that your messages can be
translated to other languages without any changes whatsoever to your code.

mul2(x_hi, x_lo, y_hi, y_lo)

nearest(x,y)

nextafter(x,y)

nint(x)

now()

number(s)

octstr(s)

popd()

printenv(pattern)

protect(s)

psi(x)

7.0.11

Compute the pair produéx_hi, x_lo) * (y_hi, y_lo), storing the result in globals
(__HL _, 1O _)andreturnind__HI__+_ LO_)as the function value.

Return the machine number nearesin the direction ofy. If y is equal tax, re-
turnx. If either argument is a NaN, the result is a NaN.

nearest()is a Cray synonym for the IEEE 754 and C99 functiextafter(),
which is the preferred name.

Return the machine number nearesin the direction ofy. If y is equal tax, re-
turnx. If either argument is a NaN, the result is a NaN.

Return the nearest integertorounding away from zero in case of a tie.

Return the current date and time, in the standard UNIX form
"Wed Jul 4 14:57:51 2001"
If the month day has only one digit, then it is preceded by an extra space.

Convert the stringto a number and return it.

s should contain either a hexadecimal floating-point number, a hexadecimal inte-
ger, a decimal floating-point number, a decimal integer, or a representation of NaN
or Infinity.

If scontains a number followed by unrecognizable text, the number is converted
and returned, and the following text is silently ignored. Otherwise, the return
value is 0, and the text is silently ignored. Thusnber(“*123abc”) returns 123,
andnumber(“abc”™) returns 0.

This function is an inverse bkxfp(), hexint(), andstring():

number(hexfp(x)) == x[for all numericx]
number(hexint(x)) == x [for all numericx]
number(string(x)) == x [for all numericx]

Return a copy of the stringwith all characters represented as octal escape se-
guences in the forroddd

Removethe top-most element from the current directory stack, make it the current
directory, and caltlirs() to print the updated stack.

Print the names and values of all environment variables whose namespatatch
tern, sorted in strict lexicographic order.

To match all environment variables, ygentenv(“*”) .

Return a copy of the strirgwith all nonprintable characters represented as escape
sequences.

Return the psi function of x, also known as the digamma function. It is the loga-
rithmic derivative ogamma(x), defined by
psi(x) = d(In(gamma(x))/dx = gamma’(x)/gamma(x)

The psi function satisfies the recursion relation
psi(x + 1) = psi(x) + 1/x

The higher-order derivatives are called polygamma functionshduidoes not
provide them.

10-May-2011 34

HOC(1)

7.0.11

psiln(x)

pushd(s)

putenv(envvar,newval)

pwd()

rand()

randl1()
rand2()
rand3()
rand4()
randint(x,y)
randl(x)

randlab(a,b)

remainder(x,y)

rint(x)

rsqrt(x)

General Commands Manual HOC(1)

Return an accurate value of

psiln(x) = psi(x) — In(x)
A separate function is needed for this purpose bedgasi§e) tends toln(x) for
largex, leading to massive subtraction loss.

Try to make the directory named by the strathe new current working directory,
and if that was successful, make that directory the new top of the current directory
stack, and calfflirs() to print the updated stack.

Replace the current string value of the environment vareilear with newval,
and return its old value.

This affects subsequent callsgetenv() but doesnot affect the environment of
the parent process.

You can use this function to set locale environment variables that control the out-
put of dates and times, in order to get internationalized outputdiidiime().

Return the name of the current working directory. That name is also available in
the environment agetenv(“PWD") .

Return a pseudo-random number uniformly distributed on (0, 1). Unless the seed
is changed by a call teetrandseed(,) successive runs of the same program will
generate the same sequence of pseudo-random numbers.

Seerandint() for uniformly-distributed integers in an interval, arahdI() for
logarithmically-distributed pseudo-random numbers.

The pseudo-random generator algorithm is platform-independent, allowing repro-
duction of the same number sequence on any computer architecture.

Return a pseudo-random number uniformly distributed on [0,1].
Return a pseudo-random number uniformly distributed on [0,1).
Return a pseudo-random number uniformly distributed on (0,1].
Return a pseudo-random number uniformly distributed on (0,1).
Return a pseudo-random integer uniformly distributedr(], int(y)].
Return a pseudo-random number logarithmically distributed ex{(x)).

This function can be used to generate logarithmic distributions on any interval:
a*randl(In(b/a)) is logarithmically distributed ora(b).

Return a pseudo-random number logarithmically distributec . (

Return the remainder= x — n*y, wheren is the integral value nearest the exact
valuex/y. When|n - x/y| = 1/2 the value oh is chosen to be even.

Return the integral value nearesn the direction of the current IEEE 754 round-
ing mode.

Return the reciprocal square robtsgrt(x).

save(filename,pattern) Save the state of the current session in the specified file, which, for security rea-

sons,mustbe a new file.

Only symbols whose nhames mafeditern are saved.
Seematch() for a description of pattern syntax.

To match all symbols, usave(flename,“*”).

Symbols are output in strict lexicographic order.

10-May-2011 35

HOC(1)

7.0.11

scalb(x,y)

second()

General Commands Manual HOC(1)

Reserved symbol names (those beginning with two or more underscores) are not
saved. Predefined immutable names are also excluded.

The saved file is a normal text file that can be later redwbpn any platform.

[NB: A temporary implementation restriction also excludes user-defined im-
mutable names, and all functions and procedures.]

This command can be disabled for security reasons by the commandiine
saveoption.

The return value is an empty string on success, and otherwise, an error message.
Returnx * 2**(int(y)) .

Return the CPU time in job seconds since some fixed time in the past. Take the
difference of two bracketing calls to get the elapsed CPU time for a block of code.
For example,

PREC =3

x =1

t = second()

for (k = 1; k < 1000000; ++k) x *=1
second() -t

4.73

set_locale(localecode) Load the locale files for the locale identifiedlbgalecode This must correspond

to a subdirectory of thieoc system directory, which is
/usr/luumath/share/lib/hoc/hoc-7.0.11

in this installation.

Becauseset_locale()is a long name, up to three shorthand procedures are pro-
vided for each language: the two-letter country code, the native name for the lan-
guage, and the English name for the language. Tda(9, dansk(), anddan-

ish() all switch to the Danish locale, ard(), engelsk() andenglish()switch to

the default English locale.

setrandseed(new_seed)

significand(x)

sin(x)
sind(x)

single(x)

sinh(x)

sleep(x)

Set the seed of the pseudo-random number generator to the scaled significand of
new_seedand return the old seed. As a general rule for any generator, the seed
should be a large integer.

As a special case, whaew_seeds negative, infinity, or NaN, the argument is ig-
nored, and a new seed is constructed from a random number, the calendar time,
the process ID, the user ID, and an incremented call counter, guaranteeing a new
unigue seed on each call to this function.

Return the significand of, s, such thak = s * 2**n, with sin [1,2), andn an inte-
ger.

Seehelp_exponent()for how to extract the exponenmt,
Return the sin of (x in radians). Expect severe accuracy loss for latge
Return the sin of (x in degrees). Expect severe accuracy loss for lxfge

Return the value of converted to single precision, and then back to working pre-
cision.

Return the hyperbolic sin af

Suspend théoc session fox seconds, returning zero on success, and nonzero on
failure. The argument may be fractional. It is rounded upward on hosts that only
support sleeps for an integral number of seconds.

10-May-2011 36

HOC(1) General Commands Manual HOC(1)

Negative, zero, and NaN arguments cause immediate return, without a sleep.

A sleep can be prematurely terminated by typing the keyboard interrupt character
(usually Ctl-C).

shan() Return a distinct signaling NaN on each call, up to some architectural limit, after
which, the values cycle. At least 2**23 different values can be returned. The only
way to distinguish between them is to examine their bit representations with
ftoh().

By contrast, the predefined consta®lMAN andSNaN have fixed bit patterns.
sqrt(x) Return the square root »f x must be in [-0, +infinity].
Special casesqrt(-0) - -0.

sqrt2(x_hi, x_lo) Compute the square root in pair-precision arithmeti¢xohi, x_lo), storing the
resultinglobalg HI__, 1O _)andreturning_ HI__+ 1O _)asthe
function value.

stritime(format,time) Convert a numeric time measured in seconds since the epoch — a fixed reference
time in the past (usually obtained frapystime() — to a formatted string deter-
mined by one or more of these format items:

%A the locale’s full weekday name.

%a the locale’s abbreviated weekday name.

%B the locale’s full month name.

%b the locale’s abbreviated month name.

%c the locale’s appropriate date and time representation.
%d the day of the month as a decimal number81).
%H the hour (24-hour clock) as a decimal numberg3).
%Il the hour (12-hour clock) as a decimal number{@®).
%)j the day of the year as a decimal number {3886).
%M the minute as a decimal number+<60).

%m the month as a decimal number{Q2).

%p the locale’s equivalent of either “AM” or “PM".

%S the second as a decimal number{g&0).

%U the week number of the year (Sunday as the first day of the week)
as a decimal number (683).

%W the week number of the year (Monday as the first day of the
week) as a decimal number ({H3B).

%w the weekday (Sunday as the first day of the week) as a decimal
number (6:6).

%X the locale’s appropriate time representation.

%x the locale’s appropriate date representation.

%Y the year with century as a decimal number.

%y the year without century as a decimal number-9@X).
%Z the time zone name.

%% literal percent character.

7.0.11 10-May-2011 37

HOC(1)

7.0.11

string(x)

General Commands Manual HOC(1)

WARNING : The behavior of this function is locale-dependent, and changes ac-
cording to the current value of the first set of these environment variables:
LC_ALL,LC_TIME , andLANG.

WARNING : Single-precision 32-bit floating-point arithmetic is inadequate to rep-
resent the time values required by this routine for more than the first three months
of the epoch.

Return a string containing the decimal representatiaq efther in integer form
(if x is exactly representable that way), or in floating-point form.

sub2(x_hi, x_lo, y_hi, y_lo)

substr(s,start,len)

symnum(s)

symstr(s)

systime()

tan(x)
tand(x)
tanh(x)

tolower(s)

toupper(s)

trunc(x)

unistr(s)

Compute the pair differendg_hi, x_lo) — (y_hi, y_lo), storing the result in glob-
als(__HI__, 1O _) andreturning(__HI__ + __LO__)as the function
value.

Return a substring of stringbeginning at charactestart (counting from 1), of
length at mosten. If start is outside the string, it is moved to the nearest end-
point, without adjustinglen. Fewer tharen characters will be returned if the sub-
string extends outside the original string.

Convert the string to a symbol naming a numeric variable, which must exist. It
may then be used almost like any numeric variable name, wherever its value is
taken, but it cannot be used to define a symbol, such as on the left-hand side of an
assignment statement.

Convert the strings to a symbol naming a string variable, which must exist. It
may then be used almost like any string variable name, wherever its value is taken,
but it cannot be used to define a symbol, such as on the left-hand side of an assign-
ment statement.

Return the calendar time in seconds since the epoch. On UNIX systems, the
epoch starts on January 1, 1970 00:00:00 UTC. Other operating systems make
different choices. It can be converted to a formatted time stringstvittme().

A negative return value indicates that no calendar time support is available. This
should never happen in any POSIX-compliant system.

WARNING : Single-precision 32-bit floating-point arithmetic is inadequate to rep-
resent the time values returned by this routine for more than the first three months
of the epoch.

Return the tangent of (x in radians). Expect severe accuracy loss for lgtge
Return the tangent of (x in degrees). Expect severe accuracy loss for lxjge
Return the hyperbolic tangent>af

Return a copy of string with uppercase letters converted to lowercase, and all
other characters unchanged.

Which characters are considered uppercase depends on the locale. On UNIX, this
is determined by theC_CTYPE environment variable.

Return a copy of string with lowercase letters converted to uppercase, and all
other characters unchanged.

Which characters are considered lowercase depends on the locale. On UNIX, this
is determined by theC_CTYPE environment variable.

Return the integer part &f with the fractional part discarded.

Return a copy of the UTF-8 strirggwvith all characters represented as Unicode es-
cape sequences in the fokmhhhhand\Uhhhhhhhh

10-May-2011 38

HOC(1)

unordered(x,y)

General Commands Manual HOC(1)

Return 1 (true) ik ory is unordered with respect to the other (that is, at least one
of them is a NaN), and otherwise, O (false).

utf8toa(s) Translate non-ASCII characterssmo Unicode 4- and 8-hexadecimal digit escape
sequences\ghhhhand\Uhhhhhhhf and return the resulting string of ASCll-only
characters.

what(name) Returns a string identifying the type of the symbol identified by the argument
name

when() Print the current time.

where(pattern) Print all symbols whose names match pagtern string, together with their val-
ues and source locations, grouped by symbol category.
To print all symbols, usehere(**”) .
Seematch() for a description of pattern syntax.

who(pattern) Print all symbols whose names match ph#ern string, grouped by category, and
sorted lexicographically within each category.
To print all symbols, useho(“*") .
Seematch() for a description of pattern syntax.

why(name) Print help on the function named by the argument string.

xd() Exchange the top two entries in the current directory stack, making the new top
entry the current working directory, and cdirs() to print the updated stack.
xd() raises an error if there are not at least two directories in the stack.

YO(x) Return the Bessel function of the second kind of order X &r x >= 0. This
function is also calletVeber’s function

Y1(x) Return the Bessel function of the second kind of order ¥, &r x >= 0. This
function is also calletlVeber’s function

Yn(n,x) Return the Bessel function of the second kind of integral eraérx, for x >= 0.
This function is also called/eber’s function

__hex(x) Return a string containing the native hexadecimal, C99 hexadecimal, and the deci-

mal representation of the numeric argument

DYNAMIC LINKING INTERFACE

From version 7.0.%hoc has support for dynamic linking of functions from shared libraries. Although this
carries a bit of extra overhead (a symbol table lookup at each dynamic-function call), it greatly extends the
available function repertoire without requiring code changésditself, and makes it easy for users to add

to hoctheir own functions written in other programming languages

7.0.11

Functions can be dynamically linked intdn@c session if they match a small number of prototypes typical
of mathematical library functions. Each prototype requires internal supploocito ensure that dynamic
functions are called with arguments of the appropriate type. The data types are encoded as tfietéetters
ger), n(numeric floating-point)h(next higher-precision numeric floating-point), an@oid). The type

codes are embedded

in several built-in function names of the fdicall <RETURN-

TYPE> <ARGTYPES¥). The available functions are:

dicall_h_h()
dicall_h_hh()
dicall_h_hhh()
dicall_h_hi()
dicall_h_i()
dicall_h_ih()
dicall_h_v()
dicall_i_h()
dicall_i_hh()

10-May-2011 39

HOC(1)

7.0.11

General Commands Manual HOC(1)

dicall_i_n()

dicall_i_nn()

dicall_i_v()

dicall_n_i()

dicall_n_ii()

dicall_n_in()

dicall_n_n()

dicall_n_ni()

dicall_n_nn()

dicall_n_nnn()

dicall_n_v()

dicall_n_z()

dicall_z_iz()

dicall_z_v()

dicall_z_z()

dicall_z_zi()

dicall_z_zz()

dicall_z_zzz()
Each function takes two initial string arguments giving the shared library name and the function name, fol-
lowed by additional arguments that match the argument type codes. A sample from the MathCW library
interface file shows the recommended way of writing such code:

if (! (P ==53) && (BASE ==2)))\

abort("This interface to the -Imcw library is available "
"ONLY for the IEEE 754 binary 64-bit type")

__LIBMCW___ :="libmcw.so"

func acosdeg(x) { return (dicall_n_n (__LIBMCW__, "acosdeg", x)) }
func adx(x,n) { return (dicall_n_ni(__LIBMCW __, "adx", x, n)) }
func agm(x,y) { return (dicall_n_nn(__LIBMCW__, "agm", X, y)) }
func intxp(x) { return (dicall_i_n (__LIBMCW__, "intxp", X)) }
func _second() { return (dicall_n_v (__LIBMCW __, "second")) }

func bin(n,x) { return (dicall_n_in(__LIBMCW__, "bin", n, X)) }

The interface convention is to add a leading underscore to function names that conflict with names already
known tohoc.

Because it is not possible for a compiler to check that arguments and return values of dynamic functions
have the correct types whéoc is built, care is needed in calling a dynamic function. The first statement

in the interface file verifies that the precision and base correspond to the function names. The library name
is assigned to a global string constant. Finally, ordimemyfunctions are defined that call the appropriate
interface routine.

The library name can be specified by a full Unix pathname, but it is usually better to give just its pathless
filename, so that the native dynamic-linking interface looks in standard places to find the library, including
any defined in the colon-separated search path ihDh&IBRARY_PATH environment variable.

On the first call to &oc function defined this way, thdlopen(1) function is called to locate the library and
merge it into the process address space, and theitsgire(1) function is called to return the address of the
requested function. The library handle and function pointer are then savedauacthgmbol table, indexed
by the library name.

10-May-2011 40

HOC(1) General Commands Manual HOC(1)

Subsequent calls look the library name up in the symbol table, and then call the function using its saved ad-
dress. Timing tests for a few dynamic functions show that they are usually two to three times slower than a
built-in function, which is rarely significant in an interactive language.

Error messages are issued if either the library or the dynamic function cannot be found, and the user func-
tion then always returns a NaN.

ADDITIONAL LIBRARIES
hoc comes with a small collection of libraries that can be loadedleatt() commands, possibly placed in
your personal startup file so that you always have selected libraries preloaded. Each function and procedure
provided has a corresponding help procedure, so that documentation will not be repeated here.

annuity Simple financial computations with functioasnuity() and compound() and
proceduranortgage()

fortune Numeric fortune cookies, with procedufestune() andfindfortune().

ilmach AT&T PORT Library Framework environmental inquiry routines for integer con-

stants and floating-point arithmetic parameters.

libmcw The large MathCW library, available in all supported floating-point types for bi-
nary, and on some platforms, decimal, arithmetic. The interface file automati-
cally selects code suitable for the current precision and base.

libultim The IBM Accurate Portable Mathlib library, available only for IEEE 754 64-bit
binary arithmetic. Its function results are guaranteed to be correctly rounded.

locale Locale query support, with functidacale()

primes Prime number support, with functiomgprime(), next_prime(), nth_prime(),
prev_prime(), this_or_next_prime(), andthis_or_prev_prime(), and proce-
duresprime_factors() andprimes_between()

pushd Proceduredlirs(), popd(), pushd(), andxd(). [This library is useful enough
that it is preloaded by default.]

rimach AT&T PORT Library Framework environmental inquiry routines for floating-
point constants.

randnorm Normally-distributed pseudo-random number generators, with functions
randn(), randno(), randpmnd(), andrandrmnd(). These all call a user-defin-
able functionrandu(), to obtain uniformly-distributed pseudo-random numbers.
Its default implementation simply calland(), and thus, the generator seed can
be reset by a call teetrandseed(new_seed)

require Proceduregprovide() andrequire() for loading only libraries that have not al-
ready been loaded.

show-strftime Procedureshow_strftime_conversions(Yo test all of the format items provided
by thestrftime() function.

sunmath Additional functions modeled on ones available in the Sun Solaris mathematical
library: expl0() exp2() iszero() max_normal(), max_subnormal()
min_normal(), min_subnormal(), quiet_nan(), signaling_nan() and sign-
bit().

IMPLEMENTATION LIMITS
All internal storage areas imoc grow as needed. There are no fixed limits on their size, other than the
amount of available allocatable memory.

The current sizes of these internal storage areas are recorded as immutable numeric named constants:
__MAX FRAME_ Function/procedure call stack size.
__MAX LINE_ Input line buffer size.

7.0.11 10-May-2011 41

HOC(1) General Commands Manual HOC(1)

__MAX_ NAME_ Longest identifier name.

__MAX PROG_ hocvirtual machine code size.
__MAX_PUSHBACK__ Input pushback buffer size.
__MAX_STACK Argument stack size.

__MAX _STRING_ Longest character string constant.
__MAX TOKEN_ Longest numeric token.

This list may change durirfipc development, but will ultimately be stable.
The functionhelp_limits() can be conveniently used to display their current values.

EXAMPLES

func ged(i,j) {
gcd(i,j) returns the greatest common denominator of i and j
temp = abs(i) % abs(j)
if(temp == 0) return abs(j)
return gcd(j, temp)

}

for(i=1; i<12; i++) print gcd(i,12)

print "\n"

12341614321

Print a table of the representable negative powers of 2

k=0
x =1
while (x > 0) \
{
print "2**(", k, ") =", x, "\n"
K--
X /= 2
}
2**0)=1
2**%(-1)=0.5
2**%(-2)=0.25

2+%(-3) = 0.125

2**%(-1072) = 1.9762625833649862e-323
2**%(-1073) = 9.8813129168249309e-324
2**%(-1074) = 4.9406564584124654e-324

INITIALIZATION FILES
On startup, after processing any command-line options that suppress initializatidmofilesecks for the
existence of local system-wide initialization files,

» /usr/uumath/share/lib/hoc/hoc-7.0.11/hoc.rc

» Jusr/uumath/share/lib/hoc/hoc-7.0.11/locale/LN/hoc.rc

» Jusr/uumath/share/lib/hoc/hoc-7.0.11/help.hoc

» /usr/uumath/share/lib/hoc/hoc-7.0.11/locale/LN/help.hoc
» /usr/uumath/share/lib/hoc/hoc-7.0.11/translations.hoc

» Jusr/uumath/share/lib/hoc/hoc-7.0.11/locale/LN/translations.hoc
(LN is replaced by the locale name (see tREERNATIONALIZATION section above), if one is de-
fined, and otherwise, that file is omitted), and a private initialization file,

7.0.11 10-May-2011 42

HOC(1)

General Commands Manual HOC(1)

¢ $HOME/.hocrc
in that order. Any that exist are automatically processed before the remaining command-line options are
handled.

This feature allows for local customizationtafc, usually for additional constants and functions, as well as
for locale-specific translations of output strings.

In initialization files, thdoad(), logdfile(), andsave()commands aralwaysavailable, even if command-
line options disable them from use later in the job.

If GNU readlinelibrary support is available ihoc, then its initialization file 3HOME/.inputrc ~ (over-
riddable by supplying an alternate filename in the value of NF&JTRC environment variable), can be
used for customization of key bindings for command completion, editing, and recall. To restrict any such
bindings tohoc, put them in a conditional like this:

$if hoc
$endif
ENVIRONMENT VARIABLES
HOCPATH Colon-separated list of directories in which to search for input files. An empty compo-
nent in the directory path list stands for the defaattsystem path.
HOME User’s home directory, where any privdec startup file is stored.
INPUTRC Name of an alternatereadline initialization file, overriding the default file,
$HOME/.inputrc
LC_ALL Primary variable defining the locale name. The name defines a component in the local

installation’shoc library directory path in which are found localized files to support use
of hocin non-English environments.

LC_MESSAGES Secondary variable defining the locale name. Itis ignore@ifALL is set.

LANG Tertiary variable defining the locale name. It is ignored Gf ALL or LC_MES-
SAGES:Is set.
MAX_PROG A numeric integer value defining thec program memory size in bytes, in any form

accepted bytrtol(1). It may optionally be suffixed with K (kilobytes), M (megabytes),
G (gigabytes), or T (terabytes), in either lettercase.

Setting this variable should rarely be needed, because the default memory size is ample.
The program memory available, and the program memory used so far, is recorded in the
hocvariables MAX_PROG__and__MAX_ PROG_USED__, respectively.

SEE ALSO

awk(1), be(1), dc(1), dircolors(1), emacgl), expr(1), geniug1), localg(1), readline(3), vi(1), xIsfonts(1),
xterm(1).

FURTHER READING

7.0.11

This version ohoc grew out of the six generations presented in
Brian W. Kernighan and Rob Pike,
The UNIX Programming Environment
Prentice-Hall, Upper Saddle River, NJ (1984)
ISBN 0-13-937699-2 (hardcover), 0-13-937681-X (paperback),
LCCN: QAT76.76.063 K48 1984.

Sadly, most programming-language textbooks have little or no coverage of floating-point arithmetic, and
programming-language standards, besides being hard to read, have generally provided inadequate support
for IEEE 754 arithmetic.

An early draft of the IEEE 754 Standard was published in an October 1979 special k€M STGNUM
Newsletter The January 1980 and March 1981 issues of the IEEE joDomaputercontain several papers
about the then-developing IEEE 754 proposal, including a draft of the Standard.

10-May-2011 43

HOC(1) General Commands Manual HOC(1)

The official IEEE 754 Standard is available as:
ANSI/IEEE 754-1985, Standard for Binary Floating-Point Arithmetic
IEEE, New York, NY (1985)
20 pp.
ISBN 1-55937-653-8
Work on a revision of that Standard began about 2000, and is expected to take several years.

An interestingly account of the early development of the IEEE 754 arithmetic system can be found in the
Web document

Charles Severance

An Interview with the Old Man of Floating-Point:

Reminiscences elicited from William Kahan

URL http://www.cs.berkeley.edu/"wkahan/ieee754status/754story.html

The IEEE sponsors symposia on computer arithmetic that are held approximately every other year; the 16th
was held in 2003. Most of the papers deal with low-level hardware issues of computer arithmetic.

The journalCommunications of the ACllegan publishing computer algorithms in 1960, and in 1974, that
function was moved to a new journ&CM Transactions on Mathematical SoftwarBhat journal, TOMS

for short, has become the principal publication source for computer software that implements numerical al-
gorithms. Other important journals in this area inclGdenputing Mathematics of Computatipand Nu-
merische Mathematikwhose articles are mostly in English, despite the German title); their emphasis is of-
ten heavily theoretical.

An excellent tutorial on floating-point arithmetic can found in the article
David Goldberg
What Every Computer Scientist Should Know About Floating-Point Arithmetic
ACM Computing Survey23(1) 5--48, March 1991 an2i3(3) 413, September 1991.
It has been republished several times, and is available in various Web archives.

A recent short book that discusses IEEE 754 arithmetic exclusively is:
Michael Overton
Numerical Computing with IEEE Floating Point Arithmetic, Including One Theorem, One Rule of
Thumb, and One Hundred and One Exercises
xiv + 104 pp.
SIAM, Philadelphia, PA (2001)
ISBN 0-89871-482-6
LCCN QA76.9.M35 094 2001

Three recent books about hardware implementation of computer arithmetic are:
Amos R. Omondi
Computer Arithmetic Systems --- Algorithms, Architecture, Implementation
Prentice-Hall, Upper Saddle River, NJ (1994)
xvi + 520 pp.
ISBN 0-13-334301-4
LCCN QA76.9.C62 046 1994

Behrooz Parhami

Computer Arithmetic: Algorithms and Hardware Designs
Oxford University Press, Oxford, UK (2000)

xx + 490 pp.

ISBN 0-19-512583-5

LCCN QA76.9.C62P37 1999

Israel Koren

Computer Arithmetic Algorithmsgcond edition
A. K. Peters, Ltd., Natick, MA, USA (2002)
xv + 281 pp.

7.0.11 10-May-2011 44

HOC(1) General Commands Manual HOC(1)

ISBN 1-56881-160-8
LCCN QA76.9.C62 K67 2002

The older book

William J. Cody, Jr. and William Waite

Software Manual for the Elementary Functions

Prentice-Hall, Upper Saddle River, NJ (1980)

X + 269 pp.

ISBN 0-13-822064-6

LCCN QA331 .C635 1980
remains a good reference for the accurate computation of the elementary functions, and is one of the few to
address the related issuedafcimalfloating-point systems (such as used in some hand calculators). Its ele-
mentary function test packagel EFUNT, exposed serious flaws in a great many vendor implementations,
and thanks to ELEFUNT, today, the accuracy and reliability of the revised implementations is very much
better. Although the book was written before IEEE 754 arithmetic became available, in many cases, only
simple tests for NaN and Infinity arguments need to be inserted into the start of each algorithm to general-
ize the code for current systems. Source code for ELEFUNT in Fortran, and translations to C/C++ and
Java, is available at

http://www.math.utah.edu/pub/elefunt/

A excellent recent book that addresses computation of the elementary functions on a particular extended
implementation of IEEE 754 arithmetic, that in the HP/Intel 1A-64 architecture, is

Peter Markstein

IA-64 and Elementary Functions: Speed and Precision

Xix + 298 pp.

Prentice-Hall, Upper Saddle River, NJ (2000)

ISBN 0-13-018348-2

LCCN QA76.9.A73 M365 2000
Markstein’s book also contains algorithms for the correctly-rounded computation of floating-point division
and square-root, and of integer division, starting from low-precision reciprocal approximations.

A comprehensive, and frequently-updated, bibliography on the research literature on floating-point arith-
metic can be found at
http://www.math.utah.edu/pub/tex/bib/index-table-f.html#fparith

BUGS
All components of dor statement must be non-empty.

Error recovery is imperfect within function and procedure definitions.
The treatment of newlines is not exactly user-friendly.

Function/procedure arguments, whether named or numbgte&Z, ...) are not really variables and thus
won't work in constructs like, for instancgl++.

Functions and procedures typically have to be declared before use, which makes mutual recursion at first
sight impossible. The workaround is to first define a dummy version of one of them. For example, here is
an unusual implementation of a pair of functions, each of which returns the factorial of its argument:

func foo() return O

func bar(n) {if (n > 0) return n * foo(n-1) else return 1}

func foo(n) {if (n > 0) return n * bar(n-1) else return 1}

AVAILABILITY
hoc is highly portable, and very much smaller than a compiler for a major programming language, so it
should be usable on all computing platforms. When a C or C++ compiler is avdilablean be easily
built, validated, and installed using the distribution source code from its master archive:
ftp://ftp.math.utah.edu/pub/hoc/
http://www.math.utah.edu/pub/hoc/
For platforms where suitable compilers are often not installed, there may be binary distributions available at
those locations.

7.0.11 10-May-2011 45

HOC(1) General Commands Manual HOC(1)

COPYRIGHT
Copyright (C) AT&T 1995
All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of AT&T or any of its entities
not be used in advertising or publicity pertaining to

distribution of the software without specific, written prior
permission.

AT&T DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.

IN NO EVENT SHALL AT&T OR ANY OF ITS ENTITIES BE LIABLE FOR ANY
SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
THIS SOFTWARE.

ACKNOWLEDGEMENTS
The hoc version 7 developer and maintainer (Nelson H. F. Bedds=be @math.utah.edu>) thanks
the AT&T/Lucent Bell Labs people (current and former), notably Ken Thompson, Dennis Ritchie, Brian
Kernighan, Rob Pike, John Bentley, Bill Plauger, Stu Feldman, David Gay, Norm Schryer, and Bjarne
Stroustrup for developing the wonderful UNIX and C/C++ programming environment, for being a constant
source of inspiration for software development, and for their superb book authoring.

He also thanks the many people at the Free Software Foundation, for enriching UNIX with GNUware, and
most notably, Richard Stallman femacg1) andgcql), for founding the FSF and the GNU Project, and
for vigorous campaigning to keep software freely distributable.

Finally, he thanks friends and colleagues onhbehelp facility translation team for assistance in interna-
tionalization: Hugo Bertete-Aguirre (Portuguese), Andrej Cherkaev (Russian), Tanya Damjanovic (Ser-
bian), Michel Debar (French), Miguel Dumett (Spanish), Henryk Hecht (Polish), Michael Hohn (German),
Ismail Kuguk (Turkish), Young Seon Lee (Korean), Dragan Milicic (Croatian), and Jingyi Zhu (Chinese).
[The English and Danish, and part of the French, help facilities were written by the maintainer.]

7.0.11 10-May-2011 46

