Corrigendum
["What Every Computer Scientist Should Know About Floating-Point Arithmetic" by David Goldberg, ACM Computing Surveys 23, 1 (March 1991), 5-48.]

page 11: The first paragraph should begin:
To avoid confusion between exact and computed values, the following notation is used. Whereas \(x - y \) denotes the exact difference of \(x \) and \(y \), \(x \oplus y \) denotes the computed difference (i.e., with rounding error).

page 11: The second paragraph should begin:
Although \((x \oplus y) \odot (x \oplus y) \) is an excellent approximation of \(x^2 - y^2 \), the floating-point numbers \(x \) and \(y \) might themselves be approximations . . .

page 12: Equation 8 should read:
\[
(SQRT(a \oplus (b \oplus c)) \odot (c \oplus (a \oplus b))) \\
\odot (c \oplus (a \oplus b)) \odot (a \oplus (b \oplus c))) \\
\odot 4.
\]

page 30: The last two sentences in the third paragraph should read:
In the IEEE model, we can prove that \((3.0/10.0) \times 10.0\) evaluates to 3 (Theorem 7). In Brown's model, we cannot.

page 32: The sixth sentence in the second paragraph should read:
In the case of \(1.0^n\), when \(f(x) = 1 \) and \(g(x) = 1/x \) the limit approaches 1, but when \(f(x) = 1 - x \) and \(g(x) = 1/x \) the limit is \(e^{-1} \).

The following authors' names were incorrectly spelled in the references:
Kulish should be Kulisch
Sterbenz should be Sterbenz.

The following citation should be added to the references:

We apologize for any inconvenience these errors may have caused.