
ZFS — and why you need it

Nelson H. F. Beebe and Pieter J. Bowman

University of Utah
Department of Mathematics

155 S 1400 E RM 233
Salt Lake City, UT 84112-0090

USA

Email: beebe@math.utah.edu, bowman@math.utah.edu

15 February 2017

Nelson H. F. Beebe and Pieter J. Bowman Why ZFS? 15 February 2017 1 / 26



What is ZFS?

Zettabyte File System (ZFS) developed by Sun Microsystems from
2001 to 2005, with open-source release in 2005 (whence OpenZFS
project): SI prefix zetta ≡ 10007 = 1021

Sun Microsystems acquired in 2010 by Oracle [continuing ZFS]
ground-up brand-new filesystem design
exceptionally clean and well-documented source code
enormous capacity

28 ≈ 255 bytes per filename
248 ≈ 1014 files per directory
264 ≈ 1018 bytes per file [1 exabyte]
278 ≈ 1023 ≈ 1

2 Avogadro’s number bytes per volume

disks form a pool of storage that is always consistent on disk
disk blocks in pool allocatable to any filesystem using pool
[relatively] simple management
optional dynamic quota adjustment
ACLs, snapshots, clones, compression, encryption, deduplication,
case-[in]sensitive filenames, Unicode filenames, . . .

Nelson H. F. Beebe and Pieter J. Bowman Why ZFS? 15 February 2017 2 / 26



Why use ZFS?

ZFS provides a stable flexible filesystem of essentially unlimited
capacity [in current technology] for decades to come

we have run ZFS under Solaris for 11+ years, with neither data loss,
nor filesystem corruption

easy to implement n-way live mirroring [n up to 12 (??limit??)]

snapshots, even in large filesystems, take only a second or so

optional hot spares in each storage pool

with ZFS zpool import, a filesystem can be moved to a different
server, even one running a different O/S, as long as ZFS feature
levels permit

ZFS filesystems can be exported via FC, iSCSI, NFS (v2–v4) or
SMB/CIFS to other systems, including those without native support
for ZFS

blocksize can be set in powers-of-two from 29 = 512 to 217 = 128K or
with large blocks feature, to 220 = 1M; default on all systems is 128K.

small files are stored in 512-byte sub-blocks of disk blocks

Nelson H. F. Beebe and Pieter J. Bowman Why ZFS? 15 February 2017 3 / 26



Where do we run ZFS?

Solaris ⇐ main filesystem for 10,000+ users

Dyson ⇐ fork of illumos and OpenSolaris with Debian GNU toolset

FreeBSD
FreeNAS and TrueNAS ⇐ products of iXsystems

GhostBSD ⇐ fork of FreeBSD 10.3

GNU/Linux CentOS ⇐ unsupported Red Hat

GNU/Linux Debian
GNU/Linux Ubuntu
Hipster ⇐ rolling update of OpenIndiana

Illumian ⇐ fork of OpenSolaris 11 illumos

Mac OS X ⇐ from OpenZFS, not from Apple

OmniOS ⇐ fork of OpenSolaris 11 illumos

OpenIndiana ⇐ fork of OpenSolaris 11 illumos

PC-BSD ⇐ fork of FreeBSD 10.3

Tribblix ⇐ fork of illumos, OpenIndiana, and OpenSolaris

TrueOS ⇐ rolling-update successor to PC-BSD

XStreamOS ⇐ fork of OpenSolaris 11 illumos
Nelson H. F. Beebe and Pieter J. Bowman Why ZFS? 15 February 2017 4 / 26



zfs subcommands

allow rename

clone rollback

create send

destroy set

get share

groupspace snapshot

inherit unallow

mount unmount

promote upgrade

receive userspace

# zfs snapshot tank/ROOT/initial@auto-‘date +%Y-%m-%d‘
# zfs list -t snapshot

NAME USED AVAIL REFER MOUNTPOINT

tank/ROOT/initial@auto-2016-09-13 136M - 16.8G -

tank/ROOT/initial@auto-2016-09-19 304K - 16.9G -

...

Nelson H. F. Beebe and Pieter J. Bowman Why ZFS? 15 February 2017 5 / 26



zpool subcommands

add iostat

attach list

clear offline

create online

destroy remove

detach replace

export scrub

get set

history status

import upgrade

# zpool iostat -v

capacity operations bandwidth

pool alloc free read write read write

---------- ----- ----- ----- ----- ----- -----

tank 21.7G 56.3G 1 0 39.8K 3.58K

ada0p2 21.7G 56.3G 1 0 39.8K 3.58K

---------- ----- ----- ----- ----- ----- -----
Nelson H. F. Beebe and Pieter J. Bowman Why ZFS? 15 February 2017 6 / 26



ZFS storage pools

zero or more hot spares allocated at pool-creation time, or later:
# zpool create tank mirror c0t0d0 c0t1d0 spare c0t2d0

⇐ two disks in pool with one spare

# zpool replace tank c0t0d0 c0t3d0 ⇐ replace bad disk c0t0d0

# zpool remove tank c0t2d0 ⇐ remove hot spare

hot spares can be shared across multiple pools

easy expansion: zpool add pool vdev

disk-size agnostic [though best if pool members are identical]

disk-vendor agnostic

pools can grow, but cannot shrink

optional quotas provide additional level of usage control within a pool

quotas can oversubscribe pool storage

quotas can grow or shrink:
# zfs set quota=50G saspool01/students

Nelson H. F. Beebe and Pieter J. Bowman Why ZFS? 15 February 2017 7 / 26



ZFS data replication and recovery

none (no media-failure protection)

stripe over n disks (fast, but no media-failure protection)

mirror: recover from failure of 1 of 2 disks

triple-mirror: recover from failure of 2 of 3 disks

RAID Z1: recover from failure of 1 of 4 or more disks

RAID Z2: recover from failure of 2 of 9 or more disks

RAID Z3: recover from failure of 3 of many disks

Recoverable data errors result in replacement of the erroneous block,
making ZFS self healing.

Nelson H. F. Beebe and Pieter J. Bowman Why ZFS? 15 February 2017 8 / 26



ZFS performance and reliability

optional compression with LZJB, LZ4, GZIP, GZIP-2, or GZIP-9
algorithms

compression may increase performance by reducing data transfer, as
long as enough spare CPU cycles are available

copy-on-write policy means that existing data blocks are never
overwritten: once the new blocks are safely in place, old blocks are
freed for re-use if they are not in a snapshot

supports n-way mirrors: a mirror of n disks can lose up to n − 1 disks
before data loss

supports striping and RAID-Z[1-3]

internal per-block checksums [no hardware RAID needed or desirable:
JBOD is good enough because ZFS is better than RAID]

ZFS is being optimized for SSDs, which suffer from severe wear
limits that ultimately reduce disk and pool capacity

Nelson H. F. Beebe and Pieter J. Bowman Why ZFS? 15 February 2017 9 / 26



ZFS checksums

Unlike most other filesystems, each data and metadata block of a ZFS
filesystem has a SHA-256 checksum stored in the pointer to the block, not
in the block itself, so less subject to corruption.

!

!
!
PT!!W!!!"789:;<8;=7">!,?<7?:<@!,2!;9<!,7"8><!123!3;,

*6J!.*JX!:'!E&N5+J!&6$#(*E(E!'%(!'/'*+!*-*&+*D+(!$
5//+X!

123!G*'*!B#/'($'&/6!
;%(!,#*$+(!123!3'/#*4(!"55+&*6$(!5#/-&F(E!#/
(6E)#&64!F*'*!&6'(4#&'J!*6F!5#/'($'&64!*4*&6E'!E&
0*&+)#(EX!"'!'%(!N&$#/E$/5&$!+(-(+O!123!&E!*D+(!'/
$*$%(!$/N5/6(6'E!*++!'%(!.*J!F/.6!'/!'%(!F&EM
7":G!$/6'#/++(#Ei#*'%(#!'%(!E'/#*4(!$/6'#/++(#dE
0&+(!EJE'(N!0)++!(6FI'/I(6F!$/6'#/+!/0!F*'*!N/-(N
$%($ME)NN&64!$*6!D(!5(#0/#N(FX!123!$%($ME)
-(#E)E!'%(!'#*F&'&/6*+!0+*'!$%($ME)NN&64!*55#/*
D+/$M!&6!&E/+*'&/6!/0!/'%(#EO!N(*6&64!'%*'!N(F&*!
$/##)5'&/6!*$#/EE!'%(!:b,!5*'%!$*66/'!D(!&F(6'&0
*#(!F&E'&6$'!0#/N!*FF#(EE!D+/$M!$%($ME)NE!*6F!

2&4)#(!kc!;%(!123!*55#/*$%!'/!$%($ME)NE!$*6!F('($'

!

"6/'%(#!*F-*6'*4(!/0!123!$%($ME)NN&64!&E!'%
*55#/*$%(EO!.%(#(-(#!F*'*!D+/$ME!4('!#(5+&$*'(
F*'*!$/##)5'&/6X!;%&E!&E!D($*)E(O!.&'%!'#*F&'&/6*
#(5+&$*'(FX!@&'%!123!$%($ME)NEO!(*$%!D+/$M!#(
'/!D(!$/##)5'(FO!'%(!%(*+'%J!D+/$M!&E!'%(6!)E(F!*

,7"A<!"BB>:"C8<!

$*5*$&'J!0/#!*++!0&+(EO!*++!E%*#(EO!*6F!*++!5#/K($'E!*EE/$&*'(F!.&'%

D)E'!F*'*!5#/'($'&/6!*'!D/'%!N&$#/E$/5&$!*6F!N*$#/E$/5&$!+(-(
&+(6'!F*'*!$/##)5'&/6!.%&+(!*+E/!5#/'($'&64!F*'*!0#/N!%*#F.*#(!
/!5(#0/#N!(6FI'/I(6F!$%($ME)NN&64!'%#/)4%/)'!*++!$/6'#/++(#ID
M!+(-(+X!!;%&E!&E!D($*)E(!'%(!,#*$+(!123!3'/#*4(!"55+&*6$(!)E(
E!/5(#*'&64!EJE'(N!&'E(+0!#)6E!123!F*'*!5#/'($'&/6X!;%&E!5#/-&F
N(6'!*6F!-&E&D&+&'J!/0!'%(!D+/$ME!E/!'%*'!0)++!*6F!&6'(4#*'(F!(6FI
)NN&64!&E!*!N/#(!*F-*6$(F!'J5(!/0!%&(#*#$%&$*+!$%($ME)NN&6
*$%X!;#*F&'&/6*+!$%($ME)NN&64!$*6!$%($M!'%(!&6'(4#&'J!/0!/6+J!
!D&'!#/'!$*6!D(!E)$$(EE0)++J!E$#((6(FO!D)'!/'%(#!'J5(E!/0!F*'*!
0&(FX!!123!$%($ME)NN&64!)E(E!*!H(#M+(!'#((O!.%(#(DJ!F*'*!D+/
'%(!(6'&#(!:b,!5*'%!$*6!D(!5#/'($'(F!0#/N!(6F!'/!(6FX!

'!N/#(!'J5(E!/0!(##/#E!'%*6!'%(!'#*F&'&/6*+!*55#/*$%X!

*'!&'!(6*D+(E!*!E(+0I%(*+&64!*#$%&'($')#(X!:6!E/N(!'#*F&'&/6*+!$%(
(F!0#/N!/6(!+/$*'&/6!'/!*6/'%(#!'%(#(!&E!*6!/55/#')6&'J!'/!5#/5*
*+!$%($ME)N!*55#/*$%(EO!'%(!6(.(E'!F*'*!D+/$M!E&N5+J!4('E!
(5+&$*!5*&#!%*E!*!$%($ME)N!$*+$)+*'(F!&6F(5(6F(6'+JX!:0!/6(!&E!0
*E!*!#(0(#(6$(!'/!#(5*&#!'%(!)6%(*+'%J!D+/$MX!

%!'%(!

(+EO!

D*E(F!
(E!6/!
F(E!'%(!
I'/I(6F!
64!
/6(!

/$ME!

!

($ME)N!
*4*'(!

0/)6F!

[From Architectural Overview of the Oracle ZFS Storage Appliance]

Checksums on new blocks are recalculated, not copied, and errors can be
corrected if there is sufficient redundancy (mirror or RAID-Zn replication).

Nelson H. F. Beebe and Pieter J. Bowman Why ZFS? 15 February 2017 10 / 26



ZFS snapshots

fast: one or two seconds, independent of filesystem size

unlimited number of snapshots

snapshots are read-only

snapshots are user visible [e.g.,
/.zfs/snapshot/auto-2016-10-11/home/jones/mail]

/.zfs normally hidden from directory listing commands [management
configurable]

disk blocks captured in a snapshot are in use until snapshot is
destroyed

removing recent large files on a disk-full condition may free no space
at all: instead, need to remove oldest snapshots

a snapshot can be cloned to create a new writable filesystem

Nelson H. F. Beebe and Pieter J. Bowman Why ZFS? 15 February 2017 11 / 26



ZFS scrub, resilver, and ZIL

scrub is root-initiated dynamic consistency check, run in background
on mounted live filesystem, so no denial-of-service as in traditional
fsck

resilver is automatic dynamic consistency restoration run after a disk
or network failure, or slowdown of one or more mirrors

ZIL is ZFS Intent Log: a journal of metadata commits; it can
optionally be kept in a different filesystem, perhaps on solid-state
drives (SSDs)

Nelson H. F. Beebe and Pieter J. Bowman Why ZFS? 15 February 2017 12 / 26



ZFS scrub example

# mount | grep zfs

tank/ROOT/initial on / (zfs, local, noatime, nfsv4acls)

...

# zpool scrub tank

# zpool status

pool: tank

state: ONLINE

scan: scrub in progress since Tue Oct 11 18:07:36 2016

14.0M scanned out of 21.7G at 895K/s, 7h2m to go

0 repaired, 0.06% done

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0

ada0p2 ONLINE 0 0 0

errors: No known data errors

Nelson H. F. Beebe and Pieter J. Bowman Why ZFS? 15 February 2017 13 / 26



ZFS boot environments

on some O/Ses with ZFS, critical system updates are done in a new
boot environment that is not visible until selected at the next boot

if a problem appears in the new environment, just reboot into most
stable recent boot environment

analogous to grub, lilo, silo, or other boot loader, offer of multiple
kernels at boot time, but includes much more than just the kernel

Nelson H. F. Beebe and Pieter J. Bowman Why ZFS? 15 February 2017 14 / 26



ZFS inter-site mirrors

n-way live mirroring

we use 8Gb/s FibreChannel connect to ZFS mirror in another campus
building

read requests can be served by any mirror

if one mirror goes away, file serving continues transparently from
another mirror

when lost mirror comes back, a resilver operation eventually makes
all mirrors consistent [but may take hours or days]

Nelson H. F. Beebe and Pieter J. Bowman Why ZFS? 15 February 2017 15 / 26



ZFS send, receive, and live migration

For convenient filesystem backup:

initial zfs send of a ZFS filesystem snapshot to a remote machine
running zfs receive duplicates filesystem (assuming compatible
ZFS feature levels)

remote machine has working [but out-of-date] copy of original
filesystem: probably okay for HTTP and FTP services, library
catalogs, and other reasonably stable databases

subsequent zfs send transfers only a snapshot that is usually much
smaller than original filesystem

zfs receive can pull back a filesystem from a remote machine to
repopulate a replaced or repaired local filesystem

Can migrate entire live filesystem to new storage technology with
replacement of old disks by bigger new disks using resilver feature.

Nelson H. F. Beebe and Pieter J. Bowman Why ZFS? 15 February 2017 16 / 26



ZFS as root filesystem

Some O/Ses [Solaris, ghostbsd, PC-BSD, and TrueOS] can boot from
ZFS filesystem

Other O/Ses [Debian, FreeBSD, Ubuntu] need a small native UFS [or
FFS, JFS, Reiser, XFS, . . . ] filesystem for /boot partition, with
remaining data on ZFS

Several Linux distributions have optional ZFS support [we run it on
CentOS, Debian, Fedora, Red Hat, and Ubuntu]

Fully-bootable ZFS coming on Debian and Debian-like
[ElementaryOS, Kali, Knoppix, Mint, Salix, Ubuntu, and others]
GNU/Linux systems

Nelson H. F. Beebe and Pieter J. Bowman Why ZFS? 15 February 2017 17 / 26



ZFS underneath virtual machines

SmartOS is a minimal OpenSolaris-based system with zones, ZFS,
and a port of Linux KVM. SmartOS provides an alternative to
Hyper-V, QEMU, VirtualBox, VMware, Xen, and other virtualization
environments [News: Samsung bought out Joyent, maker of
SmartOS, in June 2016]

VM filesystem backup and snapshot really requires communication
between virtualization layer and VM O/S or database, but only a few
O/Ses have the needed kernel drivers to support that

Without such synchronization, a restored backup or snapshot may
well be unusable in a VM because of filesystem inconsistencies

Nelson H. F. Beebe and Pieter J. Bowman Why ZFS? 15 February 2017 18 / 26



ZFS vs. GNU/Linux btrfs

Compared to GNU/Linux btrfs, ZFS

is developed and supported on multiple O/Ses, and thus not tied to
one O/S kernel flavor

can be imported to, and exported from, other O/Ses with zpool

import and zpool export

is capable of much larger filesystem capacity

is more mature and stable

has more features, with deduplication, compression, encryption [not
yet in OpenZFS], . . .

snapshots appear to take much less space than in btrfs

seems to reclaim disk space much faster from freed snapshots
[personal observation]

Nelson H. F. Beebe and Pieter J. Bowman Why ZFS? 15 February 2017 19 / 26



ZFS in network-attached storage appliances

Even if you cannot, or will not, manage ZFS on your fileserver, you can
buy turn-key appliances that contain ZFS:

Dell Compellent NAS

EON ZFS Storage

iXsystems FreeNAS and TrueNAS

Oracle ZFS Storage Appliance [includes ARC — Adaptive
Replacement Cache (DRAM level-1 cache), plus L2ARC (SSD level-2
cache, and ZIL in SSD)]

Polywell PolyStor

QNAP ES (Enterprise Storage) NAS

Tegile all-flash and hybrid-flash arrays

Zeta Storage Systems

others?

Nelson H. F. Beebe and Pieter J. Bowman Why ZFS? 15 February 2017 20 / 26



Other filesystems with snapshots

Apple Mac OS X Time Machine [incremental backups to remote
storage with time-slice views]
DragonFlyBSD hammer [automatic snapshots of active files]
% undo -i myfile

myfile: ITERATE ENTIRE HISTORY

0x0000000102b96fa0 18-Aug-2016 09:57:49

0x000000010e6621f0 27-Sep-2016 17:42:13 file-deleted

0x000000010e662310 27-Sep-2016 17:52:07 inode-change

0x00000001128d8110 08-Oct-2016 09:13:47

% undo -u myfile

% undo -u -t0x000000010e662310 myfile

% ls -log myfile*

-rwxr-xr-x 1 132026 Oct 8 09:13 myfile

-rw-rw-r-- 1 130023 Oct 12 06:26 myfile.undo.0000

GNU/Linux btrfs volume-based snapshots [read-only, or writable]
NetApp network attached storage (NAS) with proprietary WAFL
filesystem with up to 255 snapshots per volume, visible in special
hidden subdirectory .snapshot of each directory
others?

Nelson H. F. Beebe and Pieter J. Bowman Why ZFS? 15 February 2017 21 / 26



ZFS from a developer’s viewpoint

See interview with Richard Yao on BSD Now TV program Episode 157:
ZFS, The “Universal” File-system:

https://www.bsdnow.tv/episodes/

Yao says that there are ways to lose your entire ZFS filesystem, even
though they are rare [we’ve never seen such a loss].
All filesystems need to be backed up, and preferably, redundantly!
See also the MeetBSD 2016 conference video OpenZFS: History of ZFS
by ZFS architect Matt Ahrens:

https://www.youtube.com/watch?v=Hz7CEI8LwSI

Nelson H. F. Beebe and Pieter J. Bowman Why ZFS? 15 February 2017 22 / 26



Our ZFS development wishlist

shrinkable storage pools

automatic drive capacity rebalancing in background after a pool is
grown [or, in the future, shrunk]

view into pool disks: free and used space, error counts, I/O stats, . . .

better utilization of pool of disks of mixed sizes [e.g., from technology
improvements over time]

contiguous files [for maximal streaming performance]

preallocated files [to prevent run-time out-of-space condition]; partly
available by # zfs set reservation=nnnn

traditional Unix access controls are based on 3 local categories: user,
group, and other : need more, such as client, customer, and world

NetApp WAFL-like .snapshot subdirectory of each directory

quality-of-service (QoS) guarantee for ZFS I/O

platform-independent GUI for visual control of disks, pools,
mirroring, RAIDing, and striping, with visual warnings for excess use
or errors [partially available with Sun StorAid or Oracle ZFS Appliance]

Nelson H. F. Beebe and Pieter J. Bowman Why ZFS? 15 February 2017 23 / 26



Sample ZFS I/O statistics

# zpool iostat -v

capacity operations bandwidth

pool alloc free read write read write

------------ ----- ----- ----- ----- ----- -----

pool01 9.53T 1.34T 33 19 3.65M 2.35M

raidz1 2.38T 342G 8 4 934K 602K

c0t2d0 - - 4 1 184K 122K

c1t2d0 - - 4 1 184K 122K

c2t2d0 - - 4 1 184K 122K

c3t2d0 - - 4 1 184K 122K

c4t2d0 - - 4 1 184K 122K

c4t7d0 - - 14 16 320K 205K

...

------------ ----- ----- ----- ----- ----- -----

rpool 112G 352G 3 6 57.1K 27.1K

mirror 112G 352G 3 6 57.1K 27.1K

c3t0d0s0 - - 1 3 52.3K 27.2K

c3t4d0s0 - - 1 3 52.3K 27.2K

------------ ----- ----- ----- ----- ----- -----
Nelson H. F. Beebe and Pieter J. Bowman Why ZFS? 15 February 2017 24 / 26



Books on ZFS

Sun, Solaris ZFS administration guide (2008), ISBN 0-595-35252-9

Scott Watanabe, Solaris 10 ZFS essentials (2010), ISBN
0-13-700010-3

Nicholas A. Solter, Jerry Jelinek, and David Miner, OpenSolaris
Bible (2009), ISBN 0-470-38548-0

Thomas W. Doeppner, Operating Systems In Depth: Design and
Programming (2011), ISBN 0-471-68723-5

Marshall Kirk McKusick and George V. Neville-Neil, The Design and
Implementation of the FreeBSD Operating System, 2nd edition
(2014), ISBN 0-321-96897-2

Michael W. Lucas and Allan Jude, FreeBSD Mastery: ZFS (2015),
ISBN 0-692-45235-4

Allan Jude and Michael W. Lucas, FreeBSD Mastery: Advanced
ZFS (2016), ISBN 0-692-68868-4

Oracle, Architectural Overview of the Oracle ZFS Storage
Appliance (2016).

Nelson H. F. Beebe and Pieter J. Bowman Why ZFS? 15 February 2017 25 / 26



Web resources on ZFS

http://learnxinyminutes.com/docs/zfs/

http://open-zfs.org/wiki/Performance tuning

http://wiki.freebsd.org/ZFSTuningGuide

http://www.bsdnow.tv/tutorials/zfs

http://www.freebsd.org/doc/en US.ISO8859-1/books/handbook/zfs.html

http://www.solarisinternals.com/wiki/index.php/ZFS Best Practices Guide

http://www.solarisinternals.com/wiki/index.php/ZFS Configuration Guide

http://www.solarisinternals.com/wiki/index.php/ZFS Evil Tuning Guide

Nelson H. F. Beebe and Pieter J. Bowman Why ZFS? 15 February 2017 26 / 26

http://learnxinyminutes.com/docs/zfs/
http://open-zfs.org/wiki/Performance_tuning
http://wiki.freebsd.org/ZFSTuningGuide
http://www.bsdnow.tv/tutorials/zfs
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/zfs.html
http://www.solarisinternals.com/wiki/index.php/ZFS_Best_Practices_Guide
http://www.solarisinternals.com/wiki/index.php/ZFS_Configuration_Guide
http://www.solarisinternals.com/wiki/index.php/ZFS_Evil_Tuning_Guide

