Pseudo-random numbers: a line at a time mostly

Nelson H. F. Beebe

Research Professor
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Email: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~ beebe
Telephone: +1 8015815254
FAX: +1 8015814148
24 September 2011

What are random numbers good for?

D Decision making (e.g., coin flip).
\square Generation of numerical test data.
\square Generation of unique cryptographic keys.
\square Search and optimization via random walks.

- Selection: quicksort (C. A. R. Hoare, ACM Algorithm 64: Quicksort, Comm. ACM. 4(7), 321, July 1961) was the first widely-used divide-and-conquer algorithm to reduce an $\mathcal{O}\left(N^{2}\right)$ problem to (on average) $\mathcal{O}(N \lg (N))$. Cf. Fast Fourier Transform (Clairaut (1754), Lagrange (1759), Gauss (1805 unpublished, 1866) [Latin], Runge (1903), Danielson and Lanczos [crystallography] (1942), Cooley and Tukey (1965)).

Historical note: al-Khwarizmi

Abu 'Abd Allah Muhammad ibn Musa al-Khwarizmi (ca. 780-850) is the father of algorithm and of algebra, from his book Hisab Al-Jabr wal Mugabalah (Book of Calculations, Restoration and Reduction). He is celebrated in a 1200-year anniversary Soviet Union stamp:

What are random numbers good for?

- Simulation.
\square Sampling: unbiased selection of random data in statistical computations (opinion polls, experimental measurements, voting, Monte Carlo integration, ...). The latter is done like this (x_{k} is random in (a, b)):

$$
\int_{a}^{b} f(x) d x \approx\left(\frac{(b-a)}{N} \sum_{k=1}^{N} f\left(x_{k}\right)\right)+\mathcal{O}(1 / \sqrt{N})
$$

Monte Carlo integration

Here is an example of a simple, smooth, and exactly integrable function, and the relative error of its Monte Carlo integration:

When is a sequence of numbers random?

- Computer numbers are rational, with limited precision and range. Irrational and transcendental numbers are not represented.
\square Truly random integers would have occasional repetitions, but most pseudo-random number generators produce a long sequence, called the period, of distinct integers: these cannot be random.
\square It isn't enough to conform to an expected distribution: the order that values appear in must be haphazard.
Mathematical characterization of randomness is possible, but difficult.
\square The best that we can usually do is compute statistical measures of closeness to particular expected distributions.

Distributions of pseudo-random numbers

\square Uniform (most common).
\square Exponential.
\square Normal (bell-shaped curve).
Logarithmic: if $\operatorname{ran}()$ is uniformly-distributed in (a, b), define $\operatorname{randl}(x)=\exp (x \operatorname{ran}())$. Then $\operatorname{arandl}(\ln (b / a))$ is logarithmically distributed in (a, b). [Important use: sampling in floating-point number intervals.]

Distributions of pseudo-random numbers

Sample logarithmic distribution:
\% hoc
$\mathrm{a}=1$
$\mathrm{b}=1000000$
for $(k=1 ; k<=10 ;++k)$ printf $" \% 16.8 f \backslash n ", a * r a n d l(\ln (b / a))$ 664.28612484
199327.86997895
562773.43156449
91652.89169494
34.18748767
472.74816777
12.34092778
2.03900107
44426.83813202
28.79498121

Uniform distribution

Here are three ways to visualize a pseudo-random number distribution, using the Dyadkin-Hamilton generator function rn01(), which produces results uniformly distributed on $(0,1]$:

Disorder and order

The Swiss artist Ursus Wehrli dislikes randomness:

Exponential distribution

Here are visualizations of computations with the Dyadkin-Hamilton generator $\operatorname{rnexp}()$, which produces results exponentially distributed on $[0, \infty)$:

Even though the theoretical range is $[0, \infty)$, the results are practically always modest: the probability of a result as big as 50 is smaller than 2×10^{-22}. At one result per microsecond, it could take 164 million years of computing to encounter such a value!

Normal distribution

Here are visualizations of computations with the Dyadkin-Hamilton generator rnnorm(), which produces results normally distributed on $(-\infty,+\infty)$:

Results are never very large: a result as big as 7 occurs with probability smaller than 5×10^{-23}. At one result per microsecond, it could take 757 million years of computing to encounter such a value.

Logarithmic distribution

Here are visualizations of computations with the hoc generator randl (ln(1000000)), which produces results normally distributed on $(1,1000000)$:

The graphs are similar to those for the exponential distribution, but here, the result range is controlled by the argument of randl().

Goodness of fit: the χ^{2} measure

Given a set of n independent observations with measured values M_{k} and expected values E_{k}, then $\sum_{k=1}^{n}\left|\left(E_{k}-M_{k}\right)\right|$ is a measure of goodness of fit. So is $\sum_{k=1}^{n}\left(E_{k}-M_{k}\right)^{2}$. Statisticians use instead a measure introduced in 1900 by one of the founders of modern statistics, the English mathematician Karl Pearson (1857-1936):

$$
\chi^{2} \text { measure }=\sum_{k=1}^{n} \frac{\left(E_{k}-M_{k}\right)^{2}}{E_{k}}
$$

Equivalently, if we have s categories expected to occur with probability p_{k}, and if we take n samples, counting the number Y_{k} in category k, then

$$
\chi^{2} \text { measure }=\sum_{k=1}^{s} \frac{\left(n p_{k}-Y_{k}\right)^{2}}{n p_{k}}
$$

(1880)

Goodness of fit: the χ^{2} measure

The theoretical χ^{2} distribution depends on the number of degrees of freedom, and table entries look like this (highlighted entries are referred to later):

D.o.f.	$p=1 \%$	$p=5 \%$	$p=25 \%$	$p=50 \%$	$p=75 \%$	$p=95 \%$	$p=99 \%$
$\boldsymbol{v = 1}$	0.00016	0.00393	0.1015	$\mathbf{0 . 4 5 4 9}$	1.323	3.841	$\mathbf{6 . 6 3 5}$
$v=5$	0.5543	1.1455	2.675	4.351	6.626	11.07	15.09
$\boldsymbol{v}=\mathbf{1 0}$	2.558	3.940	6.737	9.342	12.55	18.31	$\mathbf{2 3 . 2 1}$
$v=50$	29.71	34.76	42.94	49.33	56.33	67.50	76.15

For example, this table says:
For $v=10$, the probability that the χ^{2} measure is no larger than 23.21 is 99%.
In other words, χ^{2} measures larger than 23.21 should occur only about 1% of the time.

Goodness of fit: coin-toss experiments

Coin toss has one degree of freedom, $v=\mathbf{1}$, because if it is not heads, then it must be tails.
\% hoc
for (k = 1; k <= 10; ++k) print randint (0,1), " "
0111000010

This gave four 1 s and six 0 s :

$$
\begin{aligned}
\chi^{2} \text { measure } & =\frac{(10 \times 0.5-4)^{2}+(10 \times 0.5-6)^{2}}{10 \times 0.5} \\
& =2 / 5 \\
& =0.40
\end{aligned}
$$

Goodness of fit: coin-toss experiments

From the table, for $v=\mathbf{1}$, we expect a χ^{2} measure no larger than
0.4549 half of the time, so our result is reasonable.

On the other hand, if we got nine 1 s and one 0 , then we have

$$
\begin{aligned}
\chi^{2} \text { measure } & =\frac{(10 \times 0.5-9)^{2}+(10 \times 0.5-1)^{2}}{10 \times 0.5} \\
& =32 / 5 \\
& =6.4
\end{aligned}
$$

This is close to the tabulated value 6.635 at $p=99 \%$. That is, we should only expect nine-of-a-kind about once in every 100 experiments.
If we had all 1 s or all 0 s , the χ^{2} measure is 10 (probability $p=0.998$) [twice in 1000 experiments].
If we had equal numbers of $1 s$ and $0 s$, then the χ^{2} measure is 0 , indicating an exact fit.

Goodness of fit: coin-toss experiments

Let's try 100 similar experiments, counting the number of 1 s in each experiment:
\% hoc
for ($\mathrm{n}=1$; n <= 100 ; ++n) \{
sum $=0$
for (k = 1; k <= 10; ++k) \}
sum += randint $(0,1)$
print sum, ""
\}
4473555256663667454554
3669534544454554635534
4726536567625355578737
8427733547362451455566
565548775545

Goodness of fit: coin-toss experiments

The measured frequencies of the sums are:

Notice that nine-of-a-kind occurred once each for 0 s and 1 s , as predicted.

Goodness of fit: coin-toss experiments ...

A simple one-character change on the outer loop limit produces the next experiment:

1000 experiments

Goodness of fit: coin-toss experiments

Another one-character change gives us this:
10000 experiments

Goodness of fit: coin-toss experiments

A final one-character change gives us this result for one million coin tosses:

100000 experiments

Are the digits of π random?

Here are χ^{2} results for the digits of π from recent computational records $\left(\chi^{2}(v=9, \mathrm{p}=0.99) \approx 21.67\right)$:

$\boldsymbol{\pi}$									
Digits	Base	$\chi^{\mathbf{2}}$	$\mathbf{p}\left(\chi^{\mathbf{2}}\right)$						
6B	10	9.00	0.56						
50B	10	5.60	0.22						
200B	10	8.09	0.47						
1T	10	14.97	0.91						
1T	16	7.94	0.46	\quad	$\mathbf{1} / \boldsymbol{\pi}$				
---:	---:	---:	---:	---:					

Whether the fractional digits of π, and most other transcendentals, are normal (\approx equally likely to occur) is an outstanding unsolved problem in mathematics.

Are the first 1000 fractional digits of π random?

3.14159265358979323846264338327950288419716939937510 58209749445923078164062862089986280348253421170679 82148086513282306647093844609550582231725359408128 48111745028410270193852110555964462294895493038196 44288109756659334461284756482337867831652712019091 45648566923460348610454326648213393607260249141273 72458700660631558817488152092096282925409171536436 78925903600113305305488204665213841469519415116094 33057270365759591953092186117381932611793105118548 07446237996274956735188575272489122793818301194912 98336733624406566430860213949463952247371907021798 60943702770539217176293176752384674818467669405132 00056812714526356082778577134275778960917363717872 14684409012249534301465495853710507922796892589235 42019956112129021960864034418159813629774771309960 51870721134999999837297804995105973173281609631859 50244594553469083026425223082533446850352619311881 71010003137838752886587533208381420617177669147303 59825349042875546873115956286388235378759375195778 18577805321712268066130019278766111959092164201989

Are the first 1000 fractional digits of π random?

In the first 1000 fractional digits of π :

- 83 digit pairs (81 expected)
- 77-digit sequence without a 4 (probability: $(9 / 10)^{77} \approx 0.0003$)
- six consecutive 9 digits (probability: $1 / 1,000,000$)
- last five digits are a calendar year (probability: $1 / 100,000$)

Conclusion: for a finite sequence of digits, the answer is no!
See Aaldert Compagner, Definitions of randomness, American Journal of Physics 59(8) 700-705 (1991).
URL http://m.ajp.aapt.org/resource/1/ajpias/v59/i8/p700_s1

Is your name in π ?

From http://www.dr-mikes-maths.com/pisearch.html:
NELSON was not found, but I searched 31415929 digits of π, and found BEEBE 4 times. The first occurrence was at position 846052 . What this means is that

$$
\pi=\frac{3+\ldots+}{\frac{B}{27^{2 / 8246052}}+\frac{E}{27^{278246053}}+\frac{E}{27^{278240054}}+\frac{B}{27^{278246055}}+\frac{E}{27^{278246056}}+\ldots .}
$$

where $A=1, B=2, C=3$, and so on.

The Central-Limit Theorem

The famous Central-Limit Theorem (de Moivre (1718), Laplace
(1810), and Cauchy (1853)), says:
A suitably normalized sum of independent random variables is likely to be normally distributed, as the number of variables grows beyond all bounds. It is not necessary that the variables all have the same distribution function or even that they be wholly independent.

- I. S. Sokolnikoff and R. M. Redheffer

Mathematics of Physics and Modern Engineering, 2nd ed.

The Central-Limit Theorem

In mathematical terms, this is

$$
\begin{gathered}
P\left(n \mu+r_{1} \sqrt{n} \leq X_{1}+X_{2}+\cdots+X_{n} \leq n \mu+r_{2} \sqrt{n}\right) \\
\approx \frac{1}{\sigma \sqrt{2 \pi}} \int_{r_{1}}^{r_{2}} \exp \left(-t^{2} /\left(2 \sigma^{2}\right)\right) d t
\end{gathered}
$$

where the X_{k} are independent, identically distributed, and bounded random variables, μ is their mean value, σ is their standard deviation, and σ^{2} is their variance.

The Central-Limit Theorem

The integrand of this probability function looks like this:

The Central-Limit Theorem

The normal curve falls off very rapidly. We can compute its area in $[-x,+x]$ with a simple midpoint quadrature rule like this:
func $f(x)$ \{
global sigma;
return $(1 /($ sigma $*$ sqrt $(2 * P I))) * \exp (-x * x /(2 *$ sigma $* * 2))$
\}

```
func q(a,b) {
    n = 10240
    h = (b - a)/n
    area = 0
    for (k = 0; k < n; ++k) \
    area += h*f(a + (k + 0.5)*h);
    return area
}
```


The Central-Limit Theorem

```
sigma = 3
for (k = 1; k < 8; ++k) \
        printf "%d %.9f\n",k, q(-k*sigma,k*sigma)
10.682689493
2 0.954499737
3 0.997300204
4 0.999936658
5 0.999999427
6 0.999999998
71.000000000
```

In computer management, 99.999\% (five 9's) availability is five minutes downtime per year.
In manufacturing, Motorola's $\mathbf{6} \sigma$ reliability with 1.5σ drift is about three defects per million (from $q(-(6-1.5) * \sigma,+(6-1.5) * \sigma) / 2$).

The Central-Limit Theorem

It is remarkable that the Central-Limit Theorem applies also to nonuniform distributions. Here is a demonstration with sums from exponential and normal distributions:

Superimposed on the histograms are rough fits by eye of normal distribution curves $650 \exp \left(-(x-12.6)^{2} / 4.7\right)$ and $550 \exp \left(-(x-13.1)^{2} / 2.3\right)$.

The Central-Limit Theorem

Not everything looks like a normal distribution. Here is a similar experiment, using differences of successive pseudo-random numbers, bucketizing them into 40 bins from the range $[-1.0,+1.0]$:

10000 experiments (counts scaled by $1 / 100$)

This one is known from theory: it is a triangular distribution. A similar result is obtained if one takes pair sums instead of differences.

Digression: Poisson distribution

The Poisson distribution arises in time series when the probability of an event occurring in an arbitrary interval is proportional to the length of the interval, and independent of other events:

$$
P(X=n)=\frac{\lambda^{n}}{n!} e^{-\lambda}
$$

In 1898, Ladislaus von Bortkiewicz collected Prussian army data on the number of soldiers killed by horse kicks in 10 cavalry units over 20 years: 122 deaths, or an average of $122 / 200=0.61$ deaths per unit per year.

Deaths	$\lambda=0.61$ Kicks (actual)	Kicks (Poisson)
0	109	108.7
1	65	66.3
2	22	20.2
3	3	4.1
4	1	0.6

The Central-Limit Theorem

Measurements of physical phenomena often form normal distributions:

The Central-Limit Theorem

Error in $\operatorname{erf}(\mathrm{x}), \mathrm{x}$ on $[-5,5]$

The Central-Limit Theorem

The Normal Curve and Carl-Friedrich Gauß (1777-1855)

The Normal Curve and the Quincunx

quincunx, n.

2. An arrangement or disposition of five objects so placed that four occupy the corners, and the fifth the centre, of a square or other rectangle; a set of five things arranged in this manner.
b. spec. as a basis of arrangement in planting trees, either in a single set of five or in combinations of this; a group of five trees so planted.

Oxford English Dictionary

The Normal Curve and the Quincunx

For simulations and other material on the quincunx (Galton's bean machine), see:

- http://www.ms.uky.edu/~mai/java/stat/GaltonMachine.html
- http://www.rand.org/statistics/applets/clt.html
- http://www.stattucino.com/berrie/dsl/Galton.html
- http://teacherlink.org/content/math/interactive/ flash/quincunx/quincunx.html
- http://www.bun.kyoto-u.ac.jp/~suchii/quinc.html

Remarks on random numbers

Any one who considers arithmetical methods of producing random numbers is, of course, in a state of sin. - John von Neumann (1951)
[The Art of Computer Programming, Vol. 2, Seminumerical Algorithms, 3rd ed., p. 1]

He talks at random; sure, the man is mad.

- Queen Margaret [William Shakespeare's 1 King Henry VI, Act V, Scene 3 (1591)]

A random number generator chosen at random isn't very random.
— Donald E. Knuth (1997)
[The Art of Computer Programming, Vol. 2, Seminumerical Algorithms, 3rd ed., p. 384]

How do we generate pseudo-random numbers?

- Linear-congruential generators (most common):
$r_{n+1}=\left(a r_{n}+c\right) \bmod m$, for integers a, c, and m, where $0<m$, $0 \leq a<m, 0 \leq c<m$, with starting value $0 \leq r_{0}<m$.
\square Fibonacci sequence (bad!):
$r_{n+1}=\left(r_{n}+r_{n-1}\right) \bmod m$.
\square Additive (better): $r_{n+1}=\left(r_{n-\alpha}+r_{n-\beta}\right) \bmod m$.
- Multiplicative (bad):
$r_{n+1}=\left(r_{n-\alpha} \times r_{n-\beta}\right) \bmod m$.
\square Shift register:

$$
r_{n+k}=\sum_{i=0}^{k-1}\left(a_{i} r_{n+i}(\bmod 2)\right) \quad\left(a_{i}=0,1\right)
$$

How do we generate pseudo-random numbers?

Given an integer $r \in[A, B), x=(r-A) /(B-A+1)$ is on $[0,1)$. However, interval reduction by $A+(r-A) \bmod s$ to get a distribution in (A, C), where $s=(C-A+1)$, is possible only for certain values of s. Consider reduction of $[0,4095]$ to $[0, m]$, with $m \in[1,9]$: we get equal distribution of remainders only for $m=2^{q}-1$:

	m	counts of remainders $k \bmod (m+1), \quad k \in[0, m]$									
OK	1	2048	2048								
	2	1366	1365	1365							
OK	3	1024	1024	1024	1024						
	4	$\mathbf{8 2 0}$	819	819	819	819					
	5	$\mathbf{6 8 3}$	$\mathbf{6 8 3}$	$\mathbf{6 8 3}$	$\mathbf{6 8 3}$	682	682				
	6	$\mathbf{5 8 6}$	585	585	585	585	585	585			
OK	7	512	512	512	512	512	512	512	512		
	8	$\mathbf{4 5 6}$	455	455	455	455	455	455	455	455	
	9	$\mathbf{4 1 0}$	$\mathbf{4 0 9}$	409	409	409					

How do we generate pseudo-random numbers?

Samples from other distributions can usually be obtained by some suitable transformation. Here is the simplest generator for the normal distribution, assuming that randu() returns uniformly-distributed values on (0,1]:

```
func randpmnd() \
```

\{ \#\# Polar method for random deviates
\#\# Algorithm P, p. 122, from Donald E. Knuth,
\#\# The Art of Computer Programming, vol. 2, 3/e, 1998
while (1) \}
\{
$\mathrm{v} 1=2 * r a n d u()-1$ \# v1 on $[-1,+1]$
$\mathrm{v} 2=2 * r a n d u()-1$ \# v2 on [-1,+1]
$\mathrm{s}=\mathrm{v} 1 * \mathrm{v} 1+\mathrm{v} 2 * \mathrm{v} 2$ \# s on $[0,2]$
if (s < 1) break \# exit loop if s inside unit circle
\}
return (v1 * sqrt($-2 * \ln (\mathrm{~s}) / \mathrm{s})$)
\}

Period of a sequence

All pseudo-random number generators eventually reproduce the starting sequence; the period is the number of values generated before this happens.
Widely-used historical generators have periods of a few tens of thousands to a few billion, but good generators are now known with very large periods:

$>10^{14}$	POSIX drand48() LCG $\left(2^{48}\right)(1982)$,
$>10^{57}$	Marsaglia short and fast xorshift($)\left(2^{192}\right)(2003)$,
$>10^{18}$	Numerical Recipes ran2() (1992),
$>10^{38}$	NIST Advanced Encryption Standard (AES) $\left(2^{128}\right)(2003)$,
$>10^{449}$	Matlab's rand() $\left(\approx 2^{1492}\right.$ Columbus generator),
$>10^{2894}$	Marsaglia's Monster-KISS (2000),
$>10^{6001}$	Matsumoto and Nishimura's Mersenne Twister (1998),
$>10^{14100}$	Deng and Xu (2003),
$>10^{16736}$	Berdnikov, Trutia, \& Compagner MathLink (1996).

Reproducible sequences

In computational applications with pseudo-random numbers, it is essential to be able to reproduce a previous calculation. Thus, generators are required that can be set to a given initial seed :

```
% hoc
for (k = 0; k < 3; ++k) \
{
        setrand(12345)
        for (n = 0; n < 10; ++n) print int(rand()*100000),""
    println ""
}
88185 5927 13313 2316564063 90785 24066 37277 55587 62319
88185 5927 13313 23165 64063 90785 24066 37277 55587 62319
88185 5927 13313 23165 64063 90785 24066 37277 55587 62319
```


Reproducible sequences

If the seed is not reset, different sequences are obtained for each test run. Here is the same code as before, with the setrand() call disabled:

```
for (k = 0; k < 3; ++k) \
{
    ## setrand(12345)
    for (n = 0; n < 10; ++n) print int(rand()*100000),""
    println ""
}
36751 37971 9841659977 49189 8522543973 93578 61366 54404
7 0 7 2 5 8 3 9 5 2 5 3 7 2 0 7 7 0 9 4 ~ 2 8 3 5 5 0 5 8 ~ 3 9 1 0 2 7 3 6 1 3 5 4 0 8 ~ 1 9 0 ~
83957 30833 75531 85236 26699 79005 65317 90466 43540 14295
```

In practice, software must have its own source-code implementation of the generators: vendor-provided ones do not suffice.

The correlation problem

Random numbers fall mainly in the planes

- George Marsaglia (1968)

Linear-congruential generators are known to have correlation of successive numbers: if these are used as coordinates in a graph, one gets patterns, instead of uniform grey:

Good

Bad

The number of points plotted is the same in each graph.

The correlation problem

The good generator is Matlab's rand(). Here is the bad generator:

```
% hoc
func badran() {
    global A, C, M, r;
    r = int (A*r + C) % M;
    return r }
M=2^15-1;A= 2^7-1 ; C = 2^5 - 1
r=0;r0=r ; s=-1 ; period = 0
while (s != r0) {period++; s = badran(); print s, "" }
    31 3968 12462 9889 10788 26660 ... 22258 8835 7998 0
# Show the sequence period
println period
    175
# Show that the sequence repeats
for (k = 1; k <= 5; ++k) print badran(),""
    31 396812462 9889 10788
```


The correlation problem

Marsaglia's (2003) family of xor-shift generators:

$$
y^{\wedge}=y \ll a ; y ~ へ=y ~ \gg b ; y^{\wedge}=y \ll c ;
$$

I-007

1-077

Generating random integers

When the endpoints of a floating-point uniform pseudo-random number generator are uncertain, generate random integers in [low,high] like this:

```
func irand(low, high) \
{
    # Ensure integer endpoints
    low = int(low)
    high = int(high)
    # Sanity check on argument order
    if (low >= high) return (low)
    # Find a value in the required range
    n = low - 1
    while ((n < low) || (high < n)) \
        n = low + int(rand() * (high + 1 - low))
    return (n)
}
for (k = 1; k <= 20; ++k) print irand(-9,9), ""
-9 -2 -2 -7 7
for (k = 1; k <= 20; ++k) print irand(0, 10^6), ""
986598 580968 627992 379949700143 734615 361237
322631 116247 369376 509615 734421 321400 876989
940425 139472 255449 394759113286 95688
```


Generating random integers in order

```
% hoc
func bigrand() { return int(2^31 * rand()) }
# select(m,n): select m pseudo-random integers from (0,n) in order
proc select(m,n) \
{
    mleft = m
    remaining = n
    for (i = 0; i < n; ++i) \
    {
        if (int(bigrand() % remaining) < mleft) \
        {
                print i, ""
                mleft--
        }
        remaining--
    }
    println ""
}
```

See Chapter 12 of Jon Bentley, Programming Pearls, 2nd ed., Addison-Wesley (2000), ISBN 0-201-65788-0. [ACM TOMS 6(3), 359-364, September 1980].

Generating random integers in order

```
Here is how the select() function works:
select(3,10)
5 6 7
select(3,10)
0 7 8
select(3,10)
2 5 6
select(3,10)
1 57
select(10,100000)
7355 20672 23457 29273 33145 37562 72316 84442 88329 97929
select(10,100000)
401 8336 41917 43487 44793 56923 61443 90474 92112 92799
```


Testing pseudo-random number generators

Most tests are based on computing a χ^{2} measure of computed and theoretical values.
If one gets values $p<1 \%$ or $p>99 \%$ for several tests, the generator is suspect.
Marsaglia Diehard Battery test suite (1985): 15 tests.
Marsaglia/Tsang tuftest suite (2002): 3 tests.
All produce p values that can be checked for reasonableness.
These tests all expect uniformly-distributed pseudo-random numbers.

Testing nonuniform pseudo-random number generators

How do you test a generator that produces pseudo-random numbers in some other distribution? You have to figure out a way to use those values to produce an expected uniform distribution that can be fed into the standard test programs.
For example, take the negative log of exponentially-distributed values, since $-\log (\exp (-$ random $))=$ random.
For normal distributions, consider successive pairs (x, y) as a 2-dimensional vector, and express in polar form $(r, \theta): \theta$ is then uniformly distributed in $[0,2 \pi)$, and $\theta /(2 \pi)$ is in $[0,1)$.

The Marsaglia/Tsang tuftest tests

Just three tests instead of the fifteen of the Diehard suite:
\square b'day test (generalization of Birthday Paradox).
\square Euclid's (ca. 330-225BC) gcd test.
\square Gorilla test (generalization of monkey's typing random streams of characters).

Digression: The Birthday Paradox

The birthday paradox arises from the question How many people do you need in a room before the probability is at least half that two of them share a birthday?
The answer is just 23 , not $365 / 2=182.5$.
The probability that none of n people are born on the same day is

$$
\begin{aligned}
& P(1)=1 \\
& P(n)=P(n-1) \times(365-(n-1)) / 365
\end{aligned}
$$

The n-th person has a choice of $365-(n-1)$ days to not share a birthday with any of the previous ones. Thus, $(365-(n-1)) / 365$ is the probability that the n-th person is not born on the same day as any of the previous ones, assuming that they are born on different days.

Digression: The Birthday Paradox

Here are the probabilities that n people share a birthday (i.e., $1-P(n)$):

```
% hoc128
PREC = 3
p = 1
for (n = 1;n <= 365;++n) \
    {p *= (365-(n-1))/365; println n,1-p}
1 0
20.00274
3 0.00820
40.0164
220.476
230.507
240.538
```

1000.999999693
$P(365) \approx 1.45 \times 10^{-157}$ [cf. 10^{80} particles in universe].

Digression: Euclid's algorithm (ca. 300BC)

This is the oldest surviving nontrivial algorithm in mathematics.

```
func gcd(x,y) \
{ ## greatest common denominator of integer x, y
    r = abs(x) % abs(y)
    if (r == 0) return abs(y) else return gcd(y, r)
}
func lcm(x,y) \
{ ## least common multiple of integer x,y
    x = int(x)
    y = int(y)
    if ((x == 0) || (y == 0)) return (0)
    return ((x * y)/gcd(x,y))
}
```


Digression: Euclid's algorithm

Complete rigorous analysis of Euclid's algorithm was not achieved until 1970-1990!
The average number of steps is

$$
\begin{aligned}
A(\operatorname{gcd}(x, y)) & \approx\left((12 \ln 2) / \pi^{2}\right) \ln y \\
& \approx 1.9405 \log _{10} y
\end{aligned}
$$

and the maximum number is

$$
\begin{aligned}
M(\operatorname{gcd}(x, y)) & =\left\lfloor\log _{\phi}((3-\phi) y)\right\rfloor \\
& \approx 4.785 \log _{10} y+0.6723
\end{aligned}
$$

where $\phi=(1+\sqrt{5}) / 2 \approx 1.6180$ is the golden ratio.

Hardware generators

- Cryptographic accelerator boards (IBM, Sun/Oracle, ...)
- Quantis PCI card (2004) (http://www.randomnumbers.info/) 8633284059853101883007955886
84210411664264438221561756152 6176521123165511026822851425
- New Intel hardware: RdRand for 16-, 32-, and 64-bit random values [IEEE Spectrum September 2011]

