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1 What are random numbers good for?

o Decision making (e.g., coin flip).

o Generation of numerical test data.

o Generation of unique cryptographic keys.

o Search and optimization via random walks.

o Selection: quicksort (C. A. R. Hoare, ACM Algorithm 64: Quicksort, Comm.
ACM. 4(7), 321, July 1961) was the first widely-used divide-and-conquer
algorithm to reduce an O(N2) problem to (on average) O(N lg(N)). Cf.
Fast Fourier Transform (Clairaut (1754), Lagrange (1759), Gauss (1805 un-
published, 1866) [Latin], Runge (1903), Danielson and Lanczos [crystal-
lography] (1942), Cooley-Tukey (1965)). See Figure 1.

o Simulation.
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Figure 1: Abu ’Abd Allah Muhammad ibn Musa al-Khwarizmi (ca. 780–850) is
the father of algorithm and of algebra, from his book Hisab Al-Jabr wal Mugabalah
(Book of Calculations, Restoration and Reduction). He is celebrated in this 1200-
year anniversary Soviet Union stamp.

o Sampling: unbiased selection of random data in statistical computations
(opinion polls, experimental measurements, voting, Monte Carlo integra-
tion, . . . ). The latter is done like this:∫ b

a
f (x) dx ≈

(
(b− a)

N

N

∑
k=1

f (xk)

)
+O(1/

√
N) (xk random in (a, b))

Here is an example of a simple, smooth, and exactly integrable function,
and the relative error of its Monte Carlo integration.
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2 One-time pad encryption

% hoc -q crypto.hoc

*******************************************************************************

*******************************************************************************

** Demonstration of a simple one-time pad symmetric-key encryption algorithm **

*******************************************************************************

*******************************************************************************

------------------------------------------------------------------------

The encryption does not reveal message length, although it DOES reveal

common plaintext prefixes:

encrypt(123,"A")

2b04aa0f ef15ce59 654a0dc6 ba409618 daef6924 5729580b af3af319 f579b0bc

encrypt(123,"AB")

2b47315b 22fdc9f1 b90d4fdb 1eb8302a 4944eddb e7dd1bff 8d0d1f10 1e46b93c

encrypt(123,"ABC")

2b47752c 286a4724 40bf188f c08caffa 1007d4cc 2c2495f9 cd999566 abfe0c2d

encrypt(123,"ABCD")

2b477571 f970b4a2 7346ca58 742e8379 e0ce97b3 1d69dc73 c7d921dc 018bc480

------------------------------------------------------------------------

The encryption does not reveal letter repetititions:

encrypt(123,"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA")

2b46736e 3b83cd28 777d88c8 ad1b12dc c28010ef 407d3513 e1ed75bc 5737fd71

6e68fb7d 4ac31248 94f21f9f d009455f 6d299f

------------------------------------------------------------------------

Now encrypt a famous message from American revolutionary history:

ciphertext = encrypt(123, \
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"One if by land, two if by sea: Paul Revere’s Ride, 16 April 1775")

println ciphertext

3973974d 63a8ac49 af5cb3e8 da3efdbb f5b63ece 68a21434 19cca7e0 7730dc80

8e9c265c 5be7476c c51605d1 af1a6d82 9114c057 620da15b 0670bb1d 3c95c30b

ed

------------------------------------------------------------------------

Attempt to decrypt the ciphertext with a nearby key. Decryption DOES

reveal the message length, although that flaw could easily be fixed:

decrypt(122, ciphertext)

?^?/?)?D?fN&???w??V???Gj5?????(????1???J???i?i)y?I?-G?????b?o??X?

------------------------------------------------------------------------

Attempt to decrypt the ciphertext with the correct key:

decrypt(123, ciphertext)

One if by land, two if by sea: Paul Revere’s Ride, 16 April 1775

------------------------------------------------------------------------

Attempt to decrypt the ciphertext with another nearby key:

decrypt(124, ciphertext)

??$???W?????N????????!?Z?U???????Q??????3?B}‘<?O ?P5%??VdNv??kS??

------------------------------------------------------------------------

% cat encrypt.hoc

### -*-hoc-*-

### ====================================================================

### Demonstrate a simple one-time-pad encryption based on a

### pseudo-random number generator.

### [23-Jul-2002]

### ====================================================================

### Usage: encrypt(key,plaintext)

### The returned string is an encrypted text stream: the ciphertext.

func encrypt(key,plaintext) \

{

plaintext = (plaintext char(255)) # add message terminator

while (length(plaintext) < 32) \

plaintext = (plaintext char(randint(1,255))) # pad to 32*n characters

setrand(key) # restart the generator

n = 0

ciphertext = "\n\t"
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for (k = 1; k <= length(plaintext); ++k) \

{

## Output 32-character lines in 4 chunks of 8 characters each

if ((n > 0) && (n % 32 == 0)) \

ciphertext = ciphertext "\n\t" \

else if ((n > 0) && (n % 4 == 0)) \

ciphertext = ciphertext " "

ciphertext = sprintf "%s%02x", ciphertext, \

((ichar(substr(plaintext,k,1)) + randint(0,255)) % 256)

n++

}

ciphertext = ciphertext "\n"

return (ciphertext)

}

% cat decrypt.hoc

### -*-hoc-*-

### ====================================================================

### Demonstrate a simple one-time-pad decryption based on a

### pseudo-random number generator.

### [23-Jul-2002]

### ====================================================================

### Usage: isprint(c)

### Return 1 if c is printable, and 0 otherwise.

func isprint(c) \

{

return ((c == 9) || (c == 10) || ((32 <= c) && (c < 127)))

}

__hex_decrypt = "0123456789abcdef"

### Usage: decrypt(key,ciphertext)

### Return the decryption of ciphertext, which will be the original

### plaintext message if the key is correct.

func decrypt(key,ciphertext) \

{

global __hex_decrypt

setrand(key)

plaintext = ""

for (k = 1; k < length(ciphertext); k++) \

{

n = index(__hex_decrypt,substr(ciphertext,k,1))

if (n > 0) \
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{ # have hex digit: decode hex pair

k++

c = 16 * (n - 1) + index(__hex_decrypt,substr(ciphertext,k,1)) - 1

n = int((c + 256 - randint(0,255)) % 256) # recover plaintext char

if (n == 255) \

break;

if (!isprint(n)) \

n = ichar("?") # mask unprintable characters

plaintext = plaintext char(n)

}

}

return (plaintext)

}

3 When is a sequence of numbers random?

If the numbers are not random, they are at least higgledy-piggledy.
— George Marsaglia (1984)

o Observation: all finite computer numbers (both fixed and floating-point)
are rational and of limited precision and range: irrational and transcen-
dental numbers are not represented.

o Most pseudo-random number generators produce a long sequence, called
the period, of distinct integers: truly random integers would have occa-
sional repetitions. Thus, any computer-generated sequence that has no
repetitions is strictly not random.

o It isn’t enough to conform to an expected distribution: the order that val-
ues appear in must be haphazard. This means that simple tests of mo-
ments (called mean, variance, skewness, kurtosis, . . . in statistics) are in-
adequate, because they examine each value in isolation: tests are needed
to examine the sequence itself for chaos.

o Mathematical characterization of randomness is possible, but difficult:
pp. 149–193 of Donald E. Knuth’s The Art of Computer Programming, vol.
2.

o The best that we can usually do is compute statistical measures of closeness
to particular expected distributions. We examine a particularly-useful
measure in Section 5.

4 Distributions of pseudo-random numbers

o Uniform (most common).
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o Exponential.
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o Normal (bell-shaped curve) (see Section 8).
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o Logarithmic: if ran() is uniformly-distributed in (a, b), define randl(x) =
exp(x ran()). Then a randl(ln(b/a)) is logarithmically distributed in (a, b).

% hoc

a = 1

b = 1000000
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for (k = 1; k <= 10; ++k) \

printf "%16.8f\n", a*randl(ln(b/a))

664.28612484

199327.86997895

562773.43156449

91652.89169494

34.18748767

472.74816777

12.34092778

2.03900107

44426.83813202

28.79498121
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5 Goodness of fit: the χ2 measure

Given a set of n independent observations with measured values Mk and ex-
pected values Ek, then ∑n

k=1 |(Ek − Mk)| is a measure of goodness of fit. So
is ∑n

k=1(Ek −Mk)
2. Statisticians use instead a measure introduced by Pearson

(1900):

χ2 measure =
n

∑
k=1

(Ek −Mk)
2

Ek

Equivalently, if we have s categories expected to occur with probability pk,
and if we take n samples, counting the number Yk in category k, then

χ2 measure =
s

∑
k=1

(npk −Yk)
2

npk

The theoretical χ2 distribution depends on the number of degrees of free-
dom, and table entries look like this (boxed entries are referred to later):
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D.o.f. p = 1% p = 5% p = 25% p = 50% p = 75% p = 95% p = 99%
ν = 1 0.00016 0.00393 0.1015 0.4549 1.323 3.841 6.635

ν = 5 0.5543 1.1455 2.675 4.351 6.626 11.07 15.09
ν = 10 2.558 3.940 6.737 9.342 12.55 18.31 23.21

ν = 50 29.71 34.76 42.94 49.33 56.33 67.50 76.15

This says that, e.g., for ν = 10, the probability that the χ2 measure is no
larger than 23.21 is 99%.

For example, coin toss has ν = 1: if it is not heads, then it must be tails.

for (k = 1; k <= 10; ++k) print randint(0,1), ""

0 1 1 1 0 0 0 0 1 0

This gave four 1s and six 0s:

χ2 measure =
(10× 0.5− 4)2 + (10× 0.5− 6)2

10× 0.5
= 2/5 = 0.40

From the table, we expect a χ2 measure no larger than 0.4549 half of the time,
so our result is reasonable.

On the other hand, if we got nine 1s and one 0, then we have

χ2 measure =
(10× 0.5− 9)2 + (10× 0.5− 1)2

10× 0.5
= 32/5 = 6.4

This is close to the tabulated value 6.635 at p = 99%. That is, we should only
expect nine-of-a-kind about once in every 100 experiments.

If we had all 1s or all 0s, the χ2 measure is 10 (probability p = 0.998).
If we had equal numbers of 1s and 0s, then the χ2 measure is 0, indicating

an exact fit.
Let’s try 100 similar experiments, counting the number of 1s in each exper-

iment:

for (n = 1; n <= 100; ++n) \

{sum = 0; for (k = 1; k <= 10; ++k) sum += randint(0,1);

print sum, ""}

4 4 7 3 5 5 5 2 5 6 6 6 3 6 6 7 4 5 4 5 5 4 3 6 6 9 5 3

4 5 4 4 4 5 4 5 5 4 6 3 5 5 3 4 4 7 2 6 5 3 6 5 6 7 6 2

5 3 5 5 5 7 8 7 3 7 8 4 2 7 7 3 3 5 4 7 3 6 2 4 5 1 4 5

5 5 6 6 5 6 5 5 4 8 7 7 5 5 4 5

The measured frequencies of the sums are:
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100 experiments
k 0 1 2 3 4 5 6 7 8 9 10

Yk 0 1 5
1
2

1
9

3
1

1
6

1
2 3 1 0

Notice that nine-of-a-kind occurred once each for 0s and 1s, as predicted.
A simple one-character change on the outer loop limit produces the next

experiment:

1000 experiments

k 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
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2
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8
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Another one-character change gives us this:

10 000 experiments

k 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

Yk 0 0 3 1 7 7
1
2
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A final one-character change gives us this result for one million coin tosses:

100 000 experiments

k 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
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In the magazine Science 84 (November 1984), the chi-square test was ranked
among the top twenty scientific discoveries of the 20th Century that changed
our lives:

1900–1919 1 Bakelite 11 Fission
2 IQ test 12 Red Shift
3 Non-Newtonian physics 13 DDT
4 Blood groups 14 Television
5 Chi-square test 1940–1959 15 Birth control pills
6 Vacuum tubes 16 Colossus and Eniac
7 Hybrid corn 17 Pschoactive drugs
8 Airfoil theory 18 Transistor

1920–1939 9 Antibiotics 19 Double helix
10 Taung skull 20 Masers and lasers

6 Randomness of digits of π

Here are χ2 results for the digits of π from recent computational records (χ2(ν =
9, P = 0.99) ≈ 21.67):

π

Digits Base χ2 P(χ2)
6B 10 9.00 0.56

50B 10 5.60 0.22
200B 10 8.09 0.47

1T 10 14.97 0.91
1T 16 7.94 0.46
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1/π

Digits Base χ2 P(χ2)
6B 10 5.44 0.21

50B 10 7.04 0.37
200B 10 4.18 0.10

Whether the fractional digits of π, and most other transcendentals, are nor-
mal (≈ equally likely to occur) is an outstanding unsolved problem in mathe-
matics.

De Morgan suspected that Shanks’ 1872–73 computation of π to 707 deci-
mal digits was wrong because the frequency of the digit 7 was low. De Morgan
was right, but it took a computer calculation by Ferguson in 1946 to show the
error at Shanks’ digit 528.

7 Are the first 1000 fractional digits of π random?

3.14159265358979323846264338327950288419716939937510
58209749445923078164062862089986280348253421170679
82148086513282306647093844609550582231725359408128
48111745028410270193852110555964462294895493038196
44288109756659334461284756482337867831652712019091
45648566923460348610454326648213393607260249141273
72458700660631558817488152092096282925409171536436
78925903600113305305488204665213841469519415116094
33057270365759591953092186117381932611793105118548
07446237996274956735188575272489122793818301194912
98336733624406566430860213949463952247371907021798
60943702770539217176293176752384674818467669405132
00056812714526356082778577134275778960917363717872
14684409012249534301465495853710507922796892589235
42019956112129021960864034418159813629774771309960
51870721134999999837297804995105973173281609631859
50244594553469083026425223082533446850352619311881
71010003137838752886587533208381420617177669147303
59825349042875546873115956286388235378759375195778
18577805321712268066130019278766111959092164201989

In the first 1000 fractional digits of π, we find:

• 83 digit pairs (81 expected; only the first pair for each digit is highlighted
in blue)

• 77-digit sequence (red) without a 4 (probability: (9/10)77 ≈ 0.0003)

• six consecutive 9 digits (green) (probability: 1/1,000,000)

• last five digits (blue) are a calendar year (probability: 1/100,000)

Conclusion: for a finite sequence of digits, the answer is no!
See Aaldert Compagner, Definitions of randomness, American Journal of Physics

59(8) 700–705 (1991).
http://m.ajp.aapt.org/resource/1/ajpias/v59/i8/p700_s1
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8 The Central-Limit Theorem

The
normal

law of error
stands out in the

experience of mankind
as one of the broadest

generalizations of natural
philosophy � It serves as the

guiding instrument in researches
in the physical and social sciences and

in medicine agriculture and engineering �
It is an indispensable tool for the analysis and the

interpretation of the basic data obtained by observation and experiment.

— W. J. Youdon (1956)
[from Stephen M. Stigler, Statistics on the Table (1999), p. 415]

The famous Central-Limit Theorem (de Moivre 1718, Laplace 1810, and
Cauchy 1853), says:

A suitably normalized sum of independent random variables is
likely to be normally distributed, as the number of variables grows
beyond all bounds. It is not necessary that the variables all have
the same distribution function or even that they be wholly inde-
pendent.

— I. S. Sokolnikoff and R. M. Redheffer
Mathematics of Physics and Modern Engineering, 2nd ed.

In mathematical terms, this is

P(nµ+ r1
√

n ≤ X1 +X2 + · · ·+Xn ≤ nµ+ r2
√

n) ≈ 1
σ
√

2π

∫ r2

r1

exp(−t2/(2σ2))dt

where the Xk are independent, identically distributed, and bounded random
variables, µ is their mean value, and σ2 is their variance (not further defined
here).

The integrand of this probability function looks like this:
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The normal curve falls off very rapidly. We can compute its area in [−x,+x]
with a simple midpoint quadrature rule like this:

func f(x) {global sigma;

return (1/(sigma*sqrt(2*PI)))*exp(-x*x/(2*sigma**2))}

func q(a,b){n = 10240; h = (b - a)/n; s = 0;

for (k = 0; k < n; ++k) s += h*f(a + (k + 0.5)*h);

return s}

sigma = 3

for (k = 1; k < 8; ++k) printf "%d %.9f\n", k, q(-k*sigma,k*sigma)

1 0.682689493

2 0.954499737

3 0.997300204

4 0.999936658

5 0.999999427

6 0.999999998

7 1.000000000

In computers, 99.999% (five 9’s) availability is 5 minutes downtime per year.
In manufacturing, Motorola’s 6σ reliability with 1.5σ drift is about 3.4 defects
per million (from q(4.5 ∗ σ)/2).

It is remarkable that the Central-Limit Theorem applies also to nonuniform
distributions: here is a demonstration with sums from exponential and normal
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distributions. Superimposed on the histograms are rough fits by eye of normal
distribution curves 650 exp(−(x− 12.6)2/4.7) and 550 exp(−(x− 13.1)2/2.3).
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Not everything looks like a normal distribution. Here is a similar exper-
iment, using differences of successive pseudo-random numbers, bucketizing
them into 40 bins from the range [−1.0,+1.0]:

10 000 experiments (counts scaled by 1/100)
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Yk

1
3

3
5

6
1

8
8

1
1
3

1
3
8

1
6
3

1
8
7

2
1
1

2
3
6

2
6
2

2
9
0

3
1
2

3
3
9

3
6
1

3
8
7

4
1
4

4
3
7

4
6
4

4
8
7

4
8
7

4
6
7

4
3
7

4
1
4

3
8
5

3
6
5

3
3
7

3
1
2

2
8
8

2
6
1

2
3
6

2
1
2

1
8
8

1
6
2

1
3
7

1
1
3

8
7

6
3

3
6

1
2

This one is known from theory: it is a triangular distribution. A similar
result is obtained if one takes pair sums instead of differences.

Here is another type, the Poisson distribution, which arises in time series
when the probability of an event occurring in an arbitrary interval is propor-
tional to the length of the interval, and independent of other events:

P(X = n) =
λn

n!
e−λ

In 1898, Ladislaus von Bortkiewicz collected Prussian army data on the number
of soldiers killed by horse kicks in 10 cavalry units over 20 years: 122 deaths,
or an average of 122/200 = 0.61 deaths per unit per year.

15



λ = 0.61
Deaths Kicks (actual) Kicks (Poisson)

0 109 108.7
1 65 66.3
2 22 20.2
3 3 4.1
4 1 0.6
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lambda = 0.61

Measurements of physical phenomena often form normal distributions:
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9 How do we generate pseudo-random numbers?

Any one who considers arithmetical methods of producing random numbers is, of
course, in a state of sin.

— John von Neumann (1951)
[The Art of Computer Programming, Vol. 2,

Seminumerical Algorithms, 3rd ed., p. 1]

He talks at random; sure, the man is mad.
— Margaret, daughter to Reignier,
afterwards married to King Henry

in William Shakespeare’s 1 King Henry VI, Act V,
Scene 3 (1591)

A random number generator chosen at random isn’t very random.
— Donald E. Knuth

[The Art of Computer Programming, Vol. 2,
Seminumerical Algorithms, 3rd ed., p. 384]
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o Linear-congruential generators (most common): rn+1 = (arn + c) mod
m, for integers a, c, and m, where 0 < m, 0 ≤ a < m, 0 ≤ c < m, with
starting value 0 ≤ r0 < m. Under certain known conditions, the period
can be as large as m, unless c = 0, when it is limited to m/4.

o Fibonacci sequence (bad!): rn+1 = (rn + rn−1) mod m.

o Additive (better): rn+1 = (rn−α + rn−β) mod m.

o Multiplicative (bad): rn+1 = (rn−α × rn−β) mod m.

o Shift register: rn+k = ∑k−1
i=0 (airn+i (mod 2)) (ai = 0, 1).

Given an integer r ∈ [A, B), x = (r− A)/(B− A + 1) is on [0, 1).
However, interval reduction by A + (r − A) mod s to get a distribution in

(A, C), where s = (C− A+ 1), is possible only for certain values of s. Consider
reduction of [0, 4095] to [0, m], with m ∈ [1, 9]: we get equal distribution of
remainders only for m = 2q − 1:

m counts of remainders k mod (m + 1), k ∈ [0, m]
OK 1 2048 2048

2 1366 1365 1365
OK 3 1024 1024 1024 1024

4 820 819 819 819 819
5 683 683 683 683 682 682
6 586 585 585 585 585 585 585

OK 7 512 512 512 512 512 512 512 512
8 456 455 455 455 455 455 455 455 455
9 410 410 410 410 410 410 409 409 409 409

Samples from other distributions can usually be obtained by some suitable
transformation. Here is the simplest generator for the normal distribution, as-
suming that randu() returns uniformly-distributed values on (0, 1]:

func randpmnd() \

{

## Polar method for random deviates

## Algorithm P, p. 122, from Donald E. Knuth, The Art

## of Computer Programming, 3rd edition, 1998

while (1) \

{

v1 = 2*randu() - 1

v2 = 2*randu() - 1

s = v1*v1 + v2*v2

if (s < 1) break

}

return (v1 * sqrt(-2*ln(s)/s))
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## (v2 * sqrt(-2*ln(s)/s)) is also normally distributed,

## but is wasted, since we only need one return value

}

10 Period of a sequence

All pseudo-random number generators eventually reproduce the starting se-
quence; the period is the number of values generated before this happens. Good
generators are now known with periods long enough to be impossible to ex-
haust:

> 1014 POSIX drand48() LCG (248) (1982),

> 1057 Marsaglia short and fast xorshift() (2192) (2003),

> 1018 Numerical Recipes ran2() (1992),

> 1038 NIST Advanced Encryption Standard (AES) (2128) (2003),

> 10449 Matlab’s rand() (≈ 21492 Columbus generator),

> 102894 Marsaglia’s Monster-KISS (2000),

> 106001 Matsumoto and Nishimura’s Mersenne Twister (1998),

> 1014100 Deng and Xu (2003),

> 1016736 Berdnikov, Trutia, & Compagner MathLink (1996).

11 Reproducible sequences

In computational applications with pseudo-random numbers, it is essential to
be able to reproduce a previous calculation. Thus, generators are required that
can be set to a given initial seed:

% hoc

for (k = 0; k < 3; ++k) \

{

setrand(12345)

for (n = 0; n < 10; ++n) print int(rand()*100000), ""

println ""

}

88185 5927 13313 23165 64063 90785 24066 37277 55587 62319

88185 5927 13313 23165 64063 90785 24066 37277 55587 62319

88185 5927 13313 23165 64063 90785 24066 37277 55587 62319

for (k = 0; k < 3; ++k) \
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{

## setrand(12345)

for (n = 0; n < 10; ++n) print int(rand()*100000), ""

println ""

}

36751 37971 98416 59977 49189 85225 43973 93578 61366 54404

70725 83952 53720 77094 2835 5058 39102 73613 5408 190

83957 30833 75531 85236 26699 79005 65317 90466 43540 14295

In practice, this means that software must have its own source-code im-
plementation of the generators: vendor-provided ones do not suffice.

12 The correlation problem

Random numbers fall mainly in the planes
— George Marsaglia (1968)

Linear-congruential generators are known to have correlation of successive
numbers: if these are used as coordinates in a graph, one gets patterns, instead
of uniform grey. The number of points plotted in each is the same in both
graphs:
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The good generator is Matlab’s rand(). Here is the bad generator:

% hoc

func badran() { global A, C, M, r; r = int(A*r + C) % M;

return r }

M = 2^15 - 1

A = 2^7 - 1

C = 2^5 - 1

r = 0

r0 = r
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s = -1

period = 0

while (s != r0) {period++; s = badran(); print s, "" }

31 3968 12462 9889 10788 26660 ...

22258 8835 7998 0

# Show the sequence period

println period

175

# Show that the sequence repeats

for (k = 1; k <= 5; ++k) print badran(), ""

31 3968 12462 9889 10788

13 The correlation problem [cont.]

Marsaglia’s (Xorshift RNGs, J. Stat. Software 8(14) 1–6, 2003) family of genera-
tors:
y ^= y << a; y ^= y >> b; y ^= y << c;
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14 Generating random integers

When the endpoints of a floating-point uniform pseudo-random number gen-
erator are uncertain, generate random integers in [low,high] like this:

func irand(low, high) \

{

# Ensure integer endpoints

low = int(low)

high = int(high)

# Sanity check on argument order

if (low >= high) return (low)

# Find a value in the required range

n = low - 1

while ((n < low) || (high < n)) \

n = low + int(rand() * (high + 1 - low))

return (n)

}

for (k = 1; k <= 20; ++k) print irand(-9,9), ""

-9 -2 -2 -7 7 9 -3 0 4 8 -3 -9 4 7 -7 8 -3 -4 8 -4

for (k = 1; k <= 20; ++k) print irand(0, 10^6), ""

986598 580968 627992 379949 700143 734615 361237

322631 116247 369376 509615 734421 321400 876989

940425 139472 255449 394759 113286 95688
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15 Generating random integers in order

See Chapter 12 of Jon Bentley, Programming Pearls, 2nd ed., Addison-Wesley
(2000), ISBN 0-201-65788-0. [Published in ACM Trans. Math. Software 6(3),
359–364, September 1980].

% hoc

func bigrand() { return int(2^31 * rand()) }

# select(m,n): select m pseudo-random integers

# from (0,n) in order

proc select(m,n) \

{

mleft = m

remaining = n

for (i = 0; i < n; ++i) \

{

if (int(bigrand() % remaining) < mleft) \

{

print i, ""

mleft--

}

remaining--

}

println ""

}

select(3,10)

5 6 7

select(3,10)

0 7 8

select(3,10)

2 5 6

select(3,10)

1 5 7

select(10,100000)

7355 20672 23457 29273 33145 37562 72316 84442 88329 97929

select(10,100000)

401 8336 41917 43487 44793 56923 61443 90474 92112 92799

select(10,100000)
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5604 8492 24707 31563 33047 41864 42299 65081 90102 97670

16 Testing pseudo-random number generators

Most of the tests of pseudo-random number distributions are based on com-
puting a χ2 measure of computed and theoretical values. If one gets values
p < 1% or p > 99% for several tests, the generator is suspect.

Knuth devotes about 100 pages to the problem of testing pseudo-random
number generators. Unfortunately, most of the easily-implemented tests do not
distinguish good generators from bad ones. The better tests are much harder
to implement.

The Marsaglia Diehard Battery test suite (1985) has 15 tests that can be
applied to files containing binary streams of pseudo-random numbers. The
Marsaglia/Tsang tuftest suite (2002) has only three, and requires only func-
tions, not files, but a pass is believed (empirically) to imply a pass of the Diehard
suite. All of these tests produce p values that can be checked for reasonable-
ness.

These tests all expect uniformly-distributed pseudo-random numbers. How
do you test a generator that produces pseudo-random numbers in some other
distribution? You have to figure out a way to use those values to produce an
expected uniform distribution that can be fed into the standard test programs.
For example, take the negative log of exponentially-distributed values, since
− log(exp(−random)) = random. For normal distributions, consider succes-
sive pairs (x, y) as a 2-dimensional vector, and express in polar form (r, θ): θ is
then uniformly distributed in [0, 2π), and θ/(2π) is in [0, 1).

17 Digression: The Birthday Paradox

The birthday paradox arises from the question “How many people do you need in a
room before the probability is at least half that two of them share a birthday?”

The answer surprises most people: it is just 23, not 365/2 = 182.5.
The probability that none of n people are born on the same day is

P(1) = 1
P(n) = P(n− 1)× (365− (n− 1))/365

The n-th person has a choice of 365− (n− 1) days to not share a birthday with
any of the previous ones. Thus, (365− (n− 1))/365 is the probability that the
n-th person is not born on the same day as any of the previous ones, assuming
that they are born on different days.

Here are the probabilities that n people share a birthday (i.e., 1− P(n)):

% hoc128

PREC = 3
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p = 1; for (n = 1;n <= 365;++n) \

{p *= (365-(n-1))/365; println n,1-p}

1 0

2 0.00274

3 0.00820

4 0.0164

...

22 0.476

23 0.507

24 0.538

...

30 0.706

...

40 0.891

...

50 0.970

...

70 0.999

...

80 0.9999

...

90 0.999994

...

100 0.999999693

...

110 0.999999989

...

120 0.99999999976

...

130 0.9999999999962

...

140 0.999999999999962

...

150 0.99999999999999978

...

160 0.99999999999999999900

...

170 0.9999999999999999999975

...

180 0.9999999999999999999999963

...

190 0.9999999999999999999999999967

...

200 0.9999999999999999999999999999984

...

210 0.99999999999999999999999999999999952
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...

365 1.0 - 1.45e-157

366 1.0

[Last two results taken from 300-digit computation in Maple.]

18 The Marsaglia/Tsang tuftest tests

The first tuftest test is the b’day test, a generalization of the Birthday Paradox
to a much longer year. Here are two reports for it:

Good generator
Birthday spacings test: 4096 birthdays, 2^32 days in year

Table of Expected vs. Observed counts:

Duplicates 0 1 2 3 4 5 6 7 8 9 >=10

Expected 91.6 366.3 732.6 976.8 976.8 781.5 521.0 297.7 148.9 66.2 40.7

Observed 87 385 748 962 975 813 472 308 159 61 30

(O-E)^2/E 0.2 1.0 0.3 0.2 0.0 1.3 4.6 0.4 0.7 0.4 2.8

Birthday Spacings: Sum(O-E)^2/E= 11.856, p= 0.705

Bad generator
Birthday spacings test: 4096 birthdays, 2^32 days in year

Table of Expected vs. Observed counts:

Duplicates 0 1 2 3 4 5 6 7 8 9 >=10

Expected 91.6 366.3 732.6 976.8 976.8 781.5 521.0 297.7 148.9 66.2 40.7

Observed 0 0 0 0 1 3 18 53 82 144 4699

(O-E)^2/E 91.6 366.3 732.6 976.8 974.8 775.5 485.6 201.1 30.0 91.6 533681.1

Birthday Spacings: Sum(O-E)^2/E=538407.147, p= 1.000

The second tuftest test is based on the number of steps to find the great-
est common denominator by Euclid’s (ca. 330–225BC) algorithm (the world’s
oldest surving nontrivial algorithm in mathematics), and on the expected dis-
tribution of the partial quotients.

func gcd(x,y) \

{

rem = abs(x) % abs(y)

if (rem == 0) return abs(y) else return gcd(y, rem)

}

proc gcdshow(x,y) \
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{

rem = abs(x) % abs(y)

println x, "=", int(x/y), "*", y, "+", rem

if (rem == 0) return

gcdshow(y, rem)

}

gcd(366,297)

3

gcdshow(366,297)

366 = 1 * 297 + 69

297 = 4 * 69 + 21

69 = 3 * 21 + 6

21 = 3 * 6 + 3

6 = 2 * 3 + 0

This took k = 5 iterations, and found partial quotients (1, 4, 3, 3, 2).
Interestingly, the complete rigorous analysis of the number of steps re-

quired in Euclid’s algorithm was not achieved until 1970–1990! The average
number is

A (gcd(x, y)) ≈
(
(12 ln 2)/π2

)
ln y

≈ 1.9405 log10 y

and the maximum number is

M (gcd(x, y)) = blogφ ((3− φ)y)c
≈ 4.785 log10 y + 0.6723

where φ = (1 +
√

5)/2 ≈ 1.6180 is the golden ratio. For our example above,
we find

A (gcd(366, 297)) ≈ 4.798
M (gcd(366, 297)) ≈ 12.50

Here are two tuftest reports:

Good generator

Euclid’s algorithm:

p-value, steps to gcd: 0.452886

p-value, dist. of gcd’s: 0.751558
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Bad generator

Euclid’s algorithm:

p-value, steps to gcd: 1.000000

p-value, dist. of gcd’s: 1.000000

The third tuftest test is a generalization of the monkey test: a monkey
typing randomly produces a stream of characters, some of which eventually
form words, sentences, paragraphs, . . . .

Good generator
Gorilla test for 2^26 bits, positions 0 to 31:

Note: lengthy test---for example, ~20 minutes for 850MHz PC

Bits 0 to 7---> 0.797 0.480 0.096 0.660 0.102 0.071 0.811 0.831

Bits 8 to 15---> 0.731 0.110 0.713 0.624 0.019 0.405 0.664 0.892

Bits 16 to 23---> 0.311 0.463 0.251 0.670 0.854 0.414 0.221 0.563

Bits 24 to 31---> 0.613 0.562 0.191 0.830 0.284 0.752 0.739 0.356

KS test for the above 32 p values: 0.289

Bad generator
Gorilla test for 2^26 bits, positions 0 to 31:

Note: lengthy test---for example, ~20 minutes for 850MHz PC

Bits 0 to 7---> 0.000 0.000 0.000 0.000 0.000 1.000 1.000 1.000

Bits 8 to 15---> 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Bits 16 to 23---> 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Bits 24 to 31---> 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

KS test for the above 32 p values: 1.000

19 Hardware generators

Some vendors (e.g., IBM and Sun/Oracle) offer hardware cryptographic-accel-
eration boards that provide fast nonreproducible sequences of pseudorandom
numbers, as well as supplying fast implementations of operations needed in
important standard encryption and decryption algorithms.

The Quantis PCI card uses quantum fluctuations as a source of (again non-
reproducible) random numbers, and a Web site provides test access to it: http:
//www.randomnumbers.info/.

New Intel processors will contain a new instruction, RdRand, for returning
16-, 32-, and 64-bit random values at speeds comparable to that of arithmetic in-
structions. See the September 2011 issue of IEEE Spectrum magazine: http://
spectrum.ieee.org/computing/hardware/behind-intels-new-randomnumber-

generator. Such instructions are likely to be adopted by in future CPU designs
from competing vendors.
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20 Further reading

The definitive work on computer generation of sequences of pseudo-random
number is Chapter 3 of Donald E. Knuth, The Art of Computer Programming, Vol.
2, Seminumerical Algorithms, 3rd ed., Addison-Wesley (1998), ISBN 0-201-89684-
2.

Douglas Lehmer and George Marsaglia have probably written more techni-
cal papers on the subject than anyone else: look for them with bibsearch and
in the MathSciNet database.

Marsaglia’s Diehard Battery test suite is available at:

http://www.stat.fsu.edu/pub/diehard/

Marsaglia and Tsang’s tuftest package is described in Some Difficult-to-
pass Tests of Randomness, J. Stat. Software 7(1) 1–8 (2002):

http://www.jstatsoft.org/v07/i03/tuftests.pdf

http://www.jstatsoft.org/v07/i03/tuftests.c

For a history of the Central-Limit Theorem, see

http://mathsrv.ku-eichstaett.de/MGF/homes/didmath/seite/1850.pdf

For a real-time demonstration of the Central-Limit Theorem based on balls
threading through a grid of pins, visit

http://www.rand.org/methodology/stat/applets/clt.html

For another live demonstration based on dice throws, visit

http://www.math.csusb.edu/faculty/stanton/probstat/clt.html

See Simon Singh’s The Code Book: the evolution of secrecy from Mary, Queen
of Scots, to quantum cryptography, Doubleday (1999), ISBN 0-385-49531-5, for a
fine introduction to cryptography through the ages. Journals in the field are:
Cryptologia, Designs, Codes, and Cryptography, and Journal of Cryptology.

For generation of truly-random sequences, see Peter Gutmann’s book Cryp-
tographic Security Architecture: Design and Verification, Springer-Verlag (2002)
ISBN 0-387-95387-6. Chapter 6 of his Ph.D. thesis is available at

http://www.cryptoengines.com/~peter/06_random.pdf
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