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Common misconceptions about computer arithmetic

o Integer arithmetic is always exact

o Integer overflows are caught

o Floating-point arithmetic is fuzzy

o Floating-point equality comparisons are unreliable

o Floating-point precision and range are adequate for everyone

o Rounding errors accumulate

o Computers execute arithmetic code in the order and precision in
which it is written

o Underflows are harmless

o Overflows are disastrous

o Sign of zero does not matter

o Arithmetic exceptions should cause job termination
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Historical floating-point arithmetic

o Konrad Zuse’s Z1, Z3, and Z4 (1936–1945): 22-bit (Z1 and Z3) and
32-bit Z4 with exponent range of 2±63 ≈ 10±19

o Burks, Goldstine, and von Neumann (1946) argued against
floating-point arithmetic

o It is difficult today to appreciate that probably the biggest problem
facing programmers in the early 1950s was scaling numbers so as to
achieve acceptable precision from a fixed-point machine, Martin
Campbell-Kelly (1980)

o IBM mainframes from mid-1950s supplied floating-point arithmetic

o IEEE 754 Standard (1985) proposed a new design for binary
floating-point arithmetic that has since been widely adopted

o IEEE 754 design first implemented in Intel 8087 coprocessor (1980)
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Historical flaws on some systems

Floating-point arithmetic can make error analysis difficult, with behavior
like this in some older designs:

o u 6= 1.0× u

o u + u 6= 2.0× u

o u × 0.5 6= u/2.0

o u 6= v but u − v = 0.0, and 1.0/(u − v) raises a zero-divide error

o u 6= 0.0 but 1.0/u raises a zero-divide error

o u × v 6= v × u

o underflow wraps to overflow, and vice versa

o division replaced by reciprocal approximation and multiply

o poor rounding practices increase cumulative rounding error
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IEEE 754 binary floating-point arithmetic

s exp significand

bit 0 1 9 31 single

0 1 12 63 double

0 1 16 79 extended

0 1 16 127 quadruple

0 1 22 255 octuple

o s is sign bit (0 for +, 1 for −)

o exp is unsigned biased exponent field

o smallest exponent: zero and subnormals (formerly, denormalized)

o largest exponent: Infinity and NaN (Not a Number)

o significand has implicit leading 1-bit in all but 80-bit format

o ±0, ±∞, signaling and quiet NaN
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IEEE 754 binary floating-point arithmetic

o NaN from 0/0, ∞−∞, f (NaN), x op NaN, . . .

o NaN 6= NaN is distinguishing property, but botched by 10% of
compilers

o ±∞ from big/small, including nonzero/zero

o precisions in bits: 24, 53, 64, 113, 235

o approximate precisions in decimal digits: 7, 15, 19, 34, 70

o approximate ranges (powers of 10): [−45, 38], [−324, 308],
[−4951, 4932], [4966, 4932], [−315 723, 315 652]
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IEEE 754 binary floating-point arithmetic

o nonstop computing model

o five sticky flags record exceptions: underflow , overflow , zero divide ,
invalid , and inexact

o four rounding modes: to-nearest-with-ties-to-even (default),
to-plus-infinity , to-minus-infinity , and to-zero

o traps versus exceptions

o fixups in trap handlers impossible on heavily-pipelined or parallel
architectures (since IBM System/360 Model 91 in 1968)

o no language support for advanced features until 1999 ISO C Standard

o some architectures implement only subsets (e.g., no subnormals, or
only one rounding mode, or only one kind of NaN, or in embedded
systems, neither Infinity nor NaN)

o some platforms have nonconforming rounding behavior
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Why the base matters

o accuracy and run-time cost of conversion between internal and
external (usually decimal) bases

o effective precision varies when the floating-point representation uses a
radix larger than 2 or 10

o reducing the exponent width makes digits available for increased
precision

o for a fixed number of exponent digits, larger bases provide a wider
exponent range, and reduce incidence of rounding

o for a fixed storage size, granularity (the spacing between successive
representable numbers) increases as the base increases

o in the absence of underflow and overflow, multiplication by a power of
the base is an exact operation, and this feature is essential for many
computations, in particular, for accurate elementary and special
functions
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Why the base matters [cont.]

Consider evaluation of z = x/(2y):

o In the binary base, optimum form is z = x/(y + y).

o In a nonbinary base, compute z = 0.5 × (x/y).

These alternatives avoid introducing unnecessary additional rounding error,
and the second sacrifices speed for accuracy.
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Base conversion problem

o exact in one base may be inexact in others (e.g., decimal 0.9 is
hexadecimal 0x1.cccccccccccccccccccccccc...p-1)

o 5% sales-tax example: binary arithmetic:
0.70× 1.05 = 0.734999999 . . . , which rounds to 0.73; correct decimal
result 0.735 may round to 0.74

o Goldberg (1967) and Matula (1968) showed how many digits needed
for exact round-trip conversion

o exact conversion may require many digits: more than 11 500 decimal
digits for binary-to-decimal conversion of 128-bit format,

o base-conversion problem not properly solved until 1990s

o few (if any) languages guarantee accurate base conversion
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Decimal floating-point arithmetic

o Absent in most computers from mid-1960s to 2007

o IBM Rexx and NetRexx scripting languages supply decimal arithmetic
with arbitrary precision (109 digits) and huge exponent range
(10±999 999 999)

o IBM decNumber library provides portable decimal arithmetic, and
leads to hardware designs in IBM zSeries (2006) and PowerPC (2007)

o GNU compilers implement low-level support in late 2006

o business processing traditionally require 18D fixed-point decimal, but
COBOL 2003 mandates 32D, and requires floating-point as well

o four additional rounding modes for legal/tax/financial requirements

o integer, rather than fractional, coefficient means redundant
representation, but allows emulating fixed-point arithmetic

o quantization primitives can distinguish between 1, 1.0, 1.00, 1.000,
etc.

o trailing zeros significant: they change quantization
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Decimal floating-point arithmetic

s cf ec cc

bit 0 1 6 9 31 single

0 1 6 12 63 double

0 1 6 16 127 quadruple

0 1 6 22 255 octuple

o IBM Densely-Packed Decimal (DPD) and Intel Binary-Integer
Decimal (BID) in 32-bit, 64-bit, 128-bit, and 256-bit formats provide
3n + 1 digits: 7, 16, 34, and 70

o wider exponent ranges in decimal than binary: [−101, 97],
[−398, 385], [−6176, 6145], and [−1 572 863, 1 572 865]

o cf (combination field), ec (exponent continuation field), (cc)
(coefficient combination field)

o Infinity and NaN recognizable from first byte (not true in binary
formats)
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Library problem

o Need much more than ADD, SUB, MUL, and DIV operations

o mathcw library provides full C99 repertoire, including printf and
scanf families, plus hundreds more [but not functions of type
complex]

o code is portable across all current platforms, and several historical
ones (PDP-10, VAX, S/360, . . . )

o supports six binary and four decimal floating-point datatypes

o separate algorithms cater to base variations: 2, 8, 10, and 16

o pair-precision functions for even higher precision

o fused multiply-add (FMA) via pair-precision arithmetic

o programming languages: Ada, C, C++, C#, Fortran, Java, Pascal

o scripting languages: gawk, hoc, lua, mawk, nawk
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Virtual platforms
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Fused multiply-add

o a× b + c is a common operation in numerical computation (e.g.,
nested Horner polynomial evaluation and matrix/vector arithmetic)

o fma(a,b,c) computes a× b + c with exact double-length product
and addition with one rounding

o fma(a,b,c) recovers error in multiplication:

d← fl(a * b)

err← fma(a,b,-d)

a× b = fl(a * b)+ err

o fma() in some native hardware [IBM PowerPC (32-bit and 64-bit
only), HP/Intel IA-64 (32-bit, 64-bit, 80-bit), and some HP PA-RISC
and MIPS R8000]

o fma() is a critical component of many algorithms for accurate
computation
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Fused multiply-add

o Markstein’s book shows how fma() leads to accurate and compact
elementary functions, as well as provably-correctly-rounded software
division and square root

o Nievergelt [TOMS 2003] proved that fma() leads to matrix
arithmetic provably accurate to the penultimate digit

o See fparith.bib for many other applications of fma()
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The MathCW Library

__acs _cvtinf _cvtnan _cvtrnd _cvtrn _ipow _prd _pr _pxy _red _re _rp _rph acosdeg acos acosh acosp

acospi adx agm annuity asindeg asin asinh asinp asinpi atan2deg atan2 atan2p atandeg atan atanh

atanp atanpi bi0 bi1 bin bis0 bis1 bisn bk0 bk1 bkn bks0 bks1 bksn cad cbrt ceil chisq compound

compoun copysign cosdeg cos cosh cosp cospi cotandeg cotan cotanp cotanpi cvtia cvtib cvtid cvti

cvtig cvtih cvtio cvtod cvto cvtog cvtoi cvton cxabs cxadd cxad cxarg cxconj cxcopy cxdiv cximag

cxmul cxneg cxproj cxreal cxset cxsub dfabs dfadd dfad dfdiv dfmul dfneg dfsqrt dfsub echeb ellec

elle ellkc ellk ercw ereduce erfc erf eriduce exp10 exp10m1 exp16 exp16m1 exp2 exp2m1 exp8 exp8m1

exp expm1 fabs fdim floor fma fmax fmin fmod fmo fmul fpclassify frexp frexph frexpo gamib gamic

gami hypot ichisq ierfc ierf ilogb infty intxp iphic iphi ipow isfinite isgreater isgreaterequal

isinf isless islessequal islessgreater isnan isnormal isqnan issnan issubnormal isunordered

isunordere j0 j1 jn ldexp ldexph ldexpo lgamma lgamma_r llrint llround llroun log101p log10 log161p

log16 log1p log21p log21p log2 log81p log8 logb log lrcw lrint lround lroun mchep modf nan nearbyint

nextafter nexttoward nexttowar normalize nrcw ntos pabs pacos pacosh padd pad pasin pasinh patan2

patan patanh pcbrt pcmp pcon pcopy pcopysign pcos pcosh pcotan pdiv pdot peps peval pexp10 pexp16

pexp2 pexp8 pexp pexpm1 pfdim pfmax pfmin pfrexp pfrexph phic phi phigh phypot pierfc pierf pilogb

pin pinfty pipow pisinf pisnan pisqnan pissnan pldexp pldexph plog101p plog1p plogb plog plow pmul2

pmul pneg pout pow pprosum pqnan pscalbln pscalbn pset psi psignbit psiln psin psinh psnan psplit

psqrt psub psum2 psum ptan ptanh qert qnan quantize remainder remquo rint round roun rsqrt

samequantum sbi0 sbi1 sbin sbis0 sbis1 sbisn sbj0 sbj1 sbjn sbk0 sbk1 sbkn sbks0 sbks1 sbksn sby0

sby1 sbyn scalbln scalbn second secon setxp signbit sincos sincosp sincospi sindeg sin sinh sinp

sinpi snan sqrt tandeg tan tanh tanp tanpi tgamma trunc urcw1 urcw1_r urcw2 urcw2_r urcw3 urcw3_r

urcw4 urcw4_r urcw urcw_r vagm vbi vbis vbj vbk vbks vby vercw vercw_r vlrcw vlrcw_r vnrcw vnrcw_r

vsbi vsbis vsbj vsbk vsbks vsby vsum vurcw1 vurcw1_r vurcw2g vurcw2_r vurcw3 vurcw3_r vurcw4

vurcw4_r vurcw vurcw_r y0 y1 yn

. . . × 10 ≈ 3660 functions ≈ 2M lines
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MathCW design goals

o Complete C99 and POSIX support with many enhancements

o Portable across past, present, and future platforms

o Binary and decimal arithmetic fully supported

o Ten floating-point formats, including single (7D), double (16D),
quadruple (34D), and octuple precision (70D)

o IEEE 754 (1985 and 2008) and 854 feature access

o Free software and documentation under GNU licenses

o Documented in manual pages and forthcoming treatise

o Interactive access in hoc

o Interfaces to Ada, C, C++, C#, Fortran, Java, Pascal

o Replace native binary arithmetic in all scripting languages with
high-precision decimal arithmetic
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MathCW design goals [cont.]

o Separate data from code

o Abstract data types: fp t and hp t, and FP() and FUNC() wrappers

o Make algorithm files base-, precision-, and range-independent when
feasible

o No platform software configuration needed

o Offer static, shared, fat (multi-architecture), and wrapper libraries

o Provide high relative accuracy: target is two ulps (units in the last
place), but exponential, log, root, and trigonometric families return
results that are (almost) always correctly rounded (and much better
than Intel IA-32 rounding of 80-bit to 64-bit results)

o Provide exact function argument reduction [Payne/Hanek at DEC
(1982) and Corbett at Berkeley (1983)]
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Error plots
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Error plots
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Error plots
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Q&A and discussion
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