
Extending TEX and METAFONT with floating-point arithmetic

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
WWW URL: http://www.math.utah.edu/~beebe
Telephone: +1 801 581 5254
FAX: +1 801 581 4148
Internet: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org

Abstract

The article surveys the state of arithmetic in TEX and METAFONT, suggests that they
could usefully be extended to support floating-point arithmetic, and shows how this
could be done with a relatively small effort, without loss of the important feature of
platform-independent results from those programs, and without invalidating any ex-
isting documents, or software written for those programs, including output drivers.

Contents

1 Dedication 501

2 Introduction 501

3 Arithmetic in TEX and METAFONT 501

4 Historical remarks 503

5 Why no floating-point arithmetic? 503

6 IEEE 754 binary floating-point standard 504

7 IEEE 754R precision and range 504

8 Remarks on floating-point arithmetic 505

9 Binary versus decimal 505

10 Problems with IEEE 754 arithmetic 506

11 How decimal arithmetic is different 506

12 Software floating-point arithmetic 506

13 How much work is needed? 508

14 Summary 508

1 Dedication

This article is dedicated to Professors Donald Knuth
(Stanford University) and William Kahan (University of
California, Berkeley), with thanks for their many scien-
tific and technical contributions, and for their writing.

2 Introduction

Arithmetic is a fundamental feature of computer pro-
gramming languages, and for some of us, the more
we use computers, the more inadequate we find their
computational facilities. The arithmetic in TEX and
METAFONT is particularly limiting, and this article ex-
plains why this is so, why it was not otherwise, and
what can be done about it now that these two impor-
tant programs are in their thirtieth year of use.

3 Arithmetic in TEX and METAFONT

Before we look at issues of arithmetic in general, it is
useful to summarize what kinds of numbers TEX and
METAFONT can handle, and how they do so.

TEX provides binary integer and fixed-point arith-
metic. Integer arithmetic is used to count things,
such as with TEX’s \count registers. Fixed-point arith-
metic is needed for values that have fractional parts,
such as the \dimen dimension registers, the \muskip
and \skip glue registers, and scale factors, as in
0.6\hsize.

For portability reasons, TEX requires that the host
computer support an integer data type of at least 32
bits. It uses that type for the integer arithmetic avail-
able to TEX programs. For fixed-point numbers, it re-
serves the lower 16 bits for the fractional part, and all
but two of the remaining bits for the integer part. Thus,
on the 32-bit processors that are commonly found in
personal computers, 14 bits are available for the inte-
ger part. One of the remaining two bits is chosen as a
sign bit, and the other is used to detect overflow, that is,
generation of a number that is too large to represent.

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 501

Nelson H. F. Beebe

When fractional numbers represent TEX dimen-
sions, the low-order fraction bit represents the value
2−16 pt. While printer’s points have been a common
unit of measurement since well before the advent of
computer-based typesetting, this tiny value is new
with TEX, and has the special name scaled point. The
value 1 sp is so small that approximately 100 sp is about
the wavelength of visible light. This ensures that differ-
ences of a few scaled points in the positioning of ob-
jects on the printed page are completely invisible to
human eyes.

The problem with fixed-point numbers in TEX is
at the other end: 14 integer bits can only represent
numbers up to 16383. As a dimension, that many
points is about 5.75 m, which is probably adequate for
printed documents, but is marginal if you are typeset-
ting a billboard. The PDP-10 computers on which TEX
and METAFONT were developed had 36-bit words: the
four extra bits raised the maximum dimension by a fac-
tor of 16. Nevertheless, if TEX’s fixed-point numbers are
used for purposes other than page dimensions, then it
is easy to exceed their limits.

TEX is a macro-extensible language for type-
setting, and arithmetic is expected to be relatively
rare. TEX has little support for numerical expressions,
just verbose low-level operators, forcing the TEX pro-
grammer to write code such as this fragment from
layout.tex to accomplish the multiply-add opera-
tion noted in the comment:

% MRGNOTEYA = 0.75*TEXTHEIGHT + FOOTSKIP
\T = \TEXTHEIGHT
\multiply \T by 75 % possible overflow!
\divide \T by 100
\advance \T by \FOOTSKIP
\xdef \MRGNOTEYA {\the \T}

Notice that the scale factor 0.75 could have been re-
duced from 75/100 to 3/4 in this example, but that is
not in general possible. Similarly, here we could have
written \T = 0.75 \TEXTHEIGHT, but that is not pos-
sible if the constant 0.75 is replaced by a variable in a
register. The multiplication by 75 can easily provoke an
overflow if \T is even as big as a finger length:

*\dimen1 = 220pt

*\dimen2 = 75\dimen1
! Dimension too large.

*\multiply \dimen1 by 75
! Arithmetic overflow.

See the LATEX calc package for more horrors of fixed-
point arithmetic.

TEX has, however, also seen use a scripting lan-
guage, chosen primarily because of its superb quality,

stability, reliability, and platform independence. TEX
distributions now contain macro packages and utilities
written in TEX for generating complex font tables, for
packing and unpacking document archives, for scan-
ning PostScript graphics files, and even for parsing
SGML and XML.

TEX’s arithmetic does not go beyond the four ba-
sic operations of add, subtract, multiply, and divide.
In particular, no elementary functions (square root,
exponential, logarithm, trigonometric and hyperbolic
functions, and so on) are provided in TEX itself, even
though, in principle, they can be provided with macro
packages.

In TEX, overflow is detected in division and multi-
plication but not in addition and subtraction, as I de-
scribed in my TUG 2003 keynote address [4].

Input numbers in METAFONT are restricted to 12
integer bits, and the result of even trivial expressions
can be quite surprising to users:

% mf expr
gimme an expr: 4095 >> 4095
gimme an expr: 4096
! Enormous number has been reduced.
>> 4095.99998
gimme an expr: infinity >> 4095.99998
gimme an expr: epsilon >> 0.00002
gimme an expr: 1/epsilon
! Arithmetic overflow.
>> 32767.99998
gimme an expr: 1/3 >> 0.33333
gimme an expr: 3*(1/3) >> 0.99998
gimme an expr: 1.2 - 2.3 >> -1.1
gimme an expr: 1.2 - 2.4 >> -1.2
gimme an expr: 1.3 - 2.4 >> -1.09999

Notice that although 4096 is considered an overflow,
internally METAFONT can generate a number almost
eight times as large. Binary-to-decimal conversion is-
sues produce the anomaly in 3 × (1/3). The last line
shows that even apparently simple operations are not
so simple after all.

Overflows in METAFONT can also produce a re-
port like this:

Uh, oh. A little while ago one of the
quantities that I was computing got
too large, so I’m afraid your answers
will be somewhat askew. You’ll
probably have to adopt different
tactics next time. But I shall try to
carry on anyway.

METAFONT provides a few elementary functions:
++ (Pythagoras), abs, angle, ceiling, cosd, dir,
floor, length, mexp, mlog, normaldeviate, round,

502 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting

Extending TEX and METAFONT with floating-point arithmetic

sind, sqrt, and uniformdeviate. They prove useful
in the geometric operations required in font design.

4 Historical remarks

TEX and METAFONT are not the only systems that suf-
fer from the limitations of fixed-point arithmetic. Most
early computers were inadequate as well:

It is difficult today to appreciate that
probably the biggest problem facing
programmers in the early 1950s was scaling
numbers so as to achieve acceptable
precision from a fixed-point machine.

Martin Campbell-Kelly
Programming the Mark I: Early Programming
Activity at the University of Manchester
Annals of the History of Computing,
2(2) 130–168 (1980)

Scaling problems can be made much less severe if
numbers carry an exponent as well as integer and frac-
tional parts. We then have:

Floating Point Arithmetic . . . The subject is
not at all as trivial as most people think, and
it involves a surprising amount of interesting
information.

Donald E. Knuth
The Art of Computer Programming:
Seminumerical Algorithms (1998)

However, more than just an exponent is needed; the
arithmetic system also has to be predictable:

Computer hardware designers can make
their machines much more pleasant
to use, for example by providing
floating-point arithmetic which satisfies
simple mathematical laws.

The facilities presently available on most
machines make the job of rigorous error
analysis hopelessly difficult, but properly
designed operations would encourage
numerical analysts to provide better
subroutines which have certified accuracy.

Donald E. Knuth
Computer Programming as an Art
ACM Turing Award Lecture (1973)

5 Why no floating-point arithmetic?

Neither TEX nor METAFONT have floating-point arith-
metic natively available, and as I discussed in my Prac-
tical TEX 2005 keynote address [3], there is a very good
reason why this is the case. Their output needs to be
identical on all platforms, and when they were devel-
oped, there were many different computer vendors,
some of which had several incompatible product lines.

This diversity causes several problems, some of which
still exist:

• There is system dependence in precision, range,
rounding, underflow, and overflow.

• The number base varies from 2 on most, to 3
(Setun), 4 (Illiac II), 8 (Burroughs), 10, 16 (IBM
S/360), 256 (Illiac III), and 10000 (Maple).

• Floating-point arithmetic exhibits bizarre
behavior on some systems:

– x × y 6= y ×x (early Crays);

– x 6= 1.0×x (Pr1me);

– x +x 6= 2×x (Pr1me);

– x 6= y but 1.0/(x − y) gets zero-divide error;

– wrap between underflow and overflow
(e.g., C on PDP-10);

– job termination on overflow or zero-divide
(most).

• No standardization: almost every vendor had
one or more distinct floating-point systems.

• Programming language dependence on
available precisions:

– Algol, Pascal, and SAIL (only real):
recall that SAIL was the implementation
language for the 1977–78 prototypes of TEX
and METAFONT;

– Fortran (REAL, DOUBLE PRECISION, and on
some systems, REAL*10 or REAL*16);

– C/C++ (originally only double, but float
added in 1989, and long double in 1999);

– C# and Java have only float and double
data types, but their arithmetic is badly
botched: see Kahan and Darcy’s How
Java’s Floating-Point Hurts Everyone
Everywhere [28].

• Compiler dependence: multiple precisions can
be mapped to just one, without warning.

• BSD compilers on IA-32 still provide no 80-bit
format after 27 years in hardware.

• Input/output problem requires base conversion,
and is hard (e.g., conversion from 128-bit
binary format can require more than 11500
decimal digits).

• Most languages do not guarantee exact base
conversion.

Donald Knuth wrote an interesting article with
the intriguing title A simple program whose proof
isn’t [29] about how TEX handles conversions between
fixed-point binary and decimal. The restriction to
fixed-point arithmetic with 16-bit fractional parts sim-
plifies the base-conversion problem, and allows TEX to

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 503

Nelson H. F. Beebe

guarantee exact round-trip conversions of such num-
bers.

TEX produces the same line- and page-breaking
across all platforms, because floating-point arithmetic
is used only for interword glue calculations that could
change the horizontal position of a letter by at most a
few scaled points, but as we noted earlier, that is invis-
ible.

METAFONT has no floating-point at all, and gen-
erates identical fonts on all systems.

6 IEEE 754 binary floating-point standard

With the leadership of William Kahan, a group of re-
searchers in academic, government, and industry be-
gan a collaborative effort in the mid-1970s to design a
new and much improved floating-point architecture.
The history of this project is chronicled in an interview
with Kahan [37, 38].

A preliminary version of this design was first im-
plemented in the Intel 8087 chip in 1980, although the
design was not finalized until its publication as IEEE

Standard 754 in 1985 [23].
Entire books have beeen written about floating-

point arithmetic: see, for example, Sterbenz [41] for
historical systems, Overton [35] for modern ones,
Omondi [34] and Parhami [36] for hardware, Gold-
berg [15, 17] for an excellent tutorial, and Knuth [30,
Chap. 4] for theory. I am hard at work on writing two
more books in this area. However, here we need only
summarize important features of the IEEE 754 system:

• Three formats are defined: 32-bit, 64-bit, and
80-bit. A 128-bit format was subsequently
provided on some Alpha, IA-64, PA-RISC, and
SPARC systems.

• Nonzero normal numbers are rational:
x = (−1)s f ×2p , where the significand, f , lies in
[1,2).

• Signed zero allows recording the direction
from which an underflow occurred, and is
particularly useful for arithmetic with complex
(real + imaginary) numbers. The IEEE Standard
requires that

p−0 evaluate to −0.

• The largest stored exponent represents Infinity
if f = 0, and either quiet or signaling NaN
(Not-a-Number) if f 6= 0. A vendor-chosen
significand bit distinguishes between the two
kinds of NaN.

• The smallest stored exponent allows leading
zeros in f for gradual underflow to subnormal
values.

• The arithmetic supports a model of fast nonstop
computing. Sticky flags record exceptions, and
Infinity, NaN, and zero values automatically

replace out-of-range values, without the need
to invoke an exception handler, although that
capability may also be available.

• Four rounding modes are provided:

– to nearest with ties to even (default);

– to +∞;

– to −∞;

– to zero (historical chopping).

• Values of ±∞ are generated from huge/tiny and
finite/0.

• NaN values are generated from 0/0, ∞−∞,
∞/∞, and any operation with a NaN operand.

• A NaN is returned from functions when the
result is undefined in real arithmetic (e.g.,p−1), or when an argument is a NaN.

• NaNs have the property that they are unequal
to anything, even themselves. Thus, the
C-language inequality test x != x is true if,
and only if, x is a NaN, and should be readily
expressible in any programming language.
Sadly, several compilers botch this, and get the
wrong answer.

7 IEEE 754R precision and range

In any computer arithmetic system, it is essential to
know the available range and precision. The precisions
of the four IEEE 754 binary formats are equivalent to
approximately 7, 15, 19, and 34 decimal digits. The ap-
proximate ranges as powers of ten, including subnor-
mal numbers, are [−45,38], [−324,308], [−4951,4932],
and [−4966,4932]. A future 256-bit binary format will
supply about 70 decimal digits, and powers-of-ten in
[−315723,315652].

A forthcoming revision of the IEEE Standard will
include decimal arithmetic as well, in 32-, 64-, and 128-
bit storage sizes, and we can imagine a future 256-bit
size. Their precisions are 7, 16, 34, and 70 decimal dig-
its, where each doubling in size moves from n digits to
2n + 2 digits. Their ranges are wider than the binary
formats, with powers of ten in [−101,96], [−398,384],
[−6176,6144], and [−1572932,1572864].

In each case, the range and precision are deter-
mined by the number of bits allocated for the sign and
the significand, and for the decimal formats, by restric-
tions imposed by the compact encodings chosen for
packing decimal digits into strings of bits.

It is highly desirable that each larger storage size
increase the exponent range (many older designs did
not), and at least double the significand length, since
that guarantees that products evaluated in the next
higher precision cannot overflow, and are exact. For ex-
ample, the Euclidean distance

√
x2 + y2 is then trivial

504 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting

Extending TEX and METAFONT with floating-point arithmetic

to compute; otherwise, its computation requires care-
ful rescaling to avoid premature underflow and over-
flow.

8 Remarks on floating-point arithmetic

Contrary to popular misconception, even present in
some books and compilers, floating-point arithmetic
is not fuzzy:

• Results are exact if they are representable.

• Multiplication by a power of base is always
exact, in the absence of underflow and
overflow.

• Subtracting numbers of like signs and
exponents is exact.

Bases other than 2 or 10 suffer from wobbling pre-
cision caused by the requirement that significands be
normalized. For example, in hexadecimal arithmetic,
π/2 ≈ 1.571 ≈ 1.92216 has three fewer bits (almost one
decimal digit) than π/4 ≈ 0.7854 ≈ c.91016. Careful
coders on such systems account for this in their pro-
grams by writing

y = (x + quarter_pi) + quarter_pi;

instead of

y = x + half_pi;

Because computer arithmetic systems have finite
range and precision, they are not associative, so com-
monly-assumed mathematical transformations do not
hold. In particular, it is often necessary to control
evaluation order, and this may be at odds with what
the compiler, or even a high-performance CPU with
dynamic instruction reordering, does with the code.

The presence of multiple rounding modes also in-
validates common assumptions. For example, the Tay-
lor series for the sine function begins

sin(x) = x − (1/3!)x3 + (1/5!)x5 −·· · .
If x is small enough, because of finite precision, one
might expect that sin(x) could be computed simply as
x. However, that is only true for the default rounding
mode; in other modes, the correct answer could be one
ulp (unit in the last place) higher or lower, so at least
two terms must be summed. Similarly, the mathemat-
ical equivalence −(x y + z) ≡ (−x y − z) does not hold in
some rounding modes. Except for some special num-
bers, it is not in general permissible to replace slow di-
vision with fast multiplication by the reciprocal, even
though many optimizing compilers do that.

Some of the common elementary functions are
odd ones: they satisfy f (x) = − f (−x). This relation
does not in general hold computationally if a round-
ing direction of other than round-to-nearest is in effect.
Software designers are then forced to decide whether

obeying computer rounding modes is more impor-
tant than preserving fundamental mathematical sym-
metries: in well-designed software, symmetry wins.
Nevertheless, in some applications, like interval arith-
metic, which computes upper and lower bounds for
every numeric operation, precise control of rounding
is imperative, and overrides symmetry.

See Monniaux [33] for a recent discussion of some
of the many problems of floating-point evaluation. A
good part of the difficulties described there arise be-
cause of higher intermediate precision in the Intel IA-
32 architecture, the most common desktop CPU family
today. Other problems come from unexpected instruc-
tion reordering or multiple threads of execution, and
the incidence of these issues increases with each new
generation of modern processors.

9 Binary versus decimal

Why should we care whether a computer uses binary
or decimal arithmetic? Here are some reasons why a
switch to decimal arithmetic has advantages:

• Humans are less uncomfortable with decimal
arithmetic.

• In some case, binary arithmetic always gets
the wrong answer. Consider this sales tax
computation: 5% of 0.70 = 0.0349999. . . in all
binary precisions, instead of the exact decimal
0.035. Thus, there can be significant cumulative
rounding errors in businesses with many
small transactions (food, music downloading,
telephone, . . .).

• Financial computations need fixed-point
decimal arithmetic.

• Hand calculators use decimal arithmetic.

• Additional decimal rounding rules (eight
instead of four) handle the financial and legal
requirements of some jurisdictions.

• Decimal arithmetic eliminates most
base-conversion problems.

• There is a specification of decimal arithmetic
subsumed in the IEEE 854-1987 Standard for
Radix-Independent Floating-Point Arithmetic
[21].

• Older Cobol standards require 18D fixed-point.

• Cobol 2002 requires 32D fixed-point and
floating-point.

• Proposals to add decimal arithmetic to C
and C++ were submitted to the ISO language
committees in 2005 and 2006.

• Twenty-five years of Rexx and NetRexx
scripting languages give valuable experience in
arbitrary-precision decimal arithmetic.

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 505

Nelson H. F. Beebe

• The excellent IBM decNumber library provides
open source decimal floating-point arithmetic
with a billion (109) digits of precision and
exponent magnitudes up to 999 999 999.

• Preliminary support in gcc for +, −, ×, and
/ became available in late 2006, based on a
subset of the IBM decNumber library.

• The author’s mathcw package [5] provides a
C99-compliant run-time library for binary,
and also for decimal, arithmetic (2005–2008),
with hundreds of additional functions, and
important and useful extensions of the I/O

functions.

• IBM zSeries mainframes got IEEE 754 binary
floating-point arithmetic in 1999, and decimal
floating-point arithmetic in firmware in 2006.

• The IBM PowerPC version 6 chips announced
on 21 May 2007 add hardware decimal
arithmetic, probably the first mainstream
processor to do so in more than four decades.

• Hardware support seems likely in future Intel
IA-32 and EM64T (x86_64) processors, and the
current family members are among the most
widely-used in the world for general-purpose
computing. Other chip vendors will have to
offer similar facilities to remain competitive.

10 Problems with IEEE 754 arithmetic

Despite the many benefits of IEEE 754 floating-point
arithmetic, there are many impediments to its effective
use:

• Language access to features has been slow:
more than 27 years have passed since the Intel
8087, and we are still waiting!

• Programmer unfamiliarity, ignorance, and
inexperience.

• A deficient educational system, both in
academia, and in textbooks, leaves most
programmers with little or no training in
floating-point arithmetic.

• Partial implementations by some vendors deny
access to important features (e.g., subnormals
may flush to zero, IA-32 has only one NaN,
IA-32 and IA-64 have imperfect rounding,
Java and C# lack rounding modes and higher
precisions).

• Long internal registers are generally beneficial,
but also produce many computational surprises
and double rounding [33], compromising
portability.

• Rounding behavior at underflow and overflow
limits is unspecified by the IEEE standards, and
thus, is vendor dependent.

• Overeager, or incorrect, optimizations by
compilers may produce wrong results, and
prevent obtaining similar results across
different platforms, or between different
compilers on the same system, or even from
the same compiler with different options.

• Despite decades of availability of IEEE 754
arithmetic, some compilers still mishandle
signed zeros and NaNs, and it can be
difficult to convince compiler vendors of the
significance of such errors (I know, because I’ve
tried, and failed).

11 How decimal arithmetic is different

Programmers in science and engineering have usually
only had experience with binary floating-point arith-
metic, and some relearning is needed for the move to
decimal arithmetic:

• Nonzero normal floating-point numbers take
the form x = (−1)s f ×10p , where f is an integer,
allowing simulation of fixed-point arithmetic.

• Lack of normalization means multiple storage
forms, but 1., 1.0, 1.00, 1.000, . . . compare
equal, as long as floating-point instructions,
rather than bitwise integer comparisons, are
used.

• Quantization is detectable (e.g., for financial
computations, 1.00 differs from 1.000).

• Signed zero and infinity, plus quiet and
signaling NaNs, are detectable from the
first byte, whereas binary formats require
examination of all bits.

• There are eight rounding modes because of
legal and tax mandates.

• Compact storage formats — Densely-Packed
Decimal (DPD) [IBM] and Binary-Integer
Decimal (BID) [Intel] — need fewer than BCD’s
four bits per decimal digit.

12 Software floating-point arithmetic

It may be better in some applications to have floating-
point arithmetic entirely in software, as Apple once did
with the no-longer-supported SANE (Standard Apple
Numerics Environment) system. Here are some rea-
sons why:

• TEX and METAFONT must continue to
guarantee identical results across platforms.

• Unspecified behavior of low-level arithmetic
guarantees platform dependence.

• Floating-point arithmetic is not associative,
so instruction ordering (e.g., compiler
optimization) affects results.

506 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting

Extending TEX and METAFONT with floating-point arithmetic

• Long internal registers on some platforms, and
not on others, alter precision, and results.

• Multiply-add computes x × y + z with exact
product and single rounding, getting different
result from separate operations.

• Conclusion: only a single software
floating-point arithmetic system in
TEX and METAFONT can guarantee
platform-independent results.

Software is often best enhanced by connecting two or
more systems with a clean and simple interface:

What if you could provide a seamlessly
integrated, fully dynamic language with a
conventional syntax while increasing your
application’s size by less than 200K on an
x86? You can do it with Lua !

Keith Fieldhouse

If we want to have floating-point arithmetic in TEX
and METAFONT, then rather than modify those stable
and reliable programs, including adding convenient
expression syntax, and a substantial function library,
there is a cleaner, and easier, approach:

• There is no need to modify TEX beyond what
has already been done: LuaTEX interfaces TEX
to a clean and well-designed scripting language
— we just need to change the arithmetic and
library inside lua.

• Scripting languages usually offer a single
floating-point datatype, typically equivalent to
IEEE 754 64-bit double (that is all that the C
language used to have).

• qawk and dnawk are existing extensions by the
author of awk for 128-bit binary and decimal
arithmetic, respectively.

• Modern machines are fast and memories are
big. We could adopt a 34D 128-bit format, or
better, a 70D 256-bit format, instead as default
numeric type.

• The author’s mathcw package [5] is a
highly-portable open-source library with
support for ten floating-point precisions,
including 256-bit binary and decimal.

Two more quotes from the father of the IEEE 754
design lead into our next points:

The convenient accessibility of double-
precision in many Fortran and some Algol
compilers indicates that double-precision will
soon be universally acceptable as a substitute
for ingenuity in the solution of numerical
problems.

W. Kahan

Further Remarks on Reducing Truncation
Errors
Comm. ACM 8(1) 40, January (1965)

Nobody knows how much it would cost to
compute y w correctly rounded for every two
floating-point arguments at which it does
not over/underflow. Instead, reputable math
libraries compute elementary transcendental
functions mostly within slightly more than
half an ulp and almost always well within
one ulp. Why can’t y w be rounded within
half an ulp like SQRT? Because nobody knows
how much computation it would cost. . . . No
general way exists to predict how many extra
digits will have to be carried to compute
a transcendental expression and round it
correctly to some preassigned number of
digits. Even the fact (if true) that a finite
number of extra digits will ultimately suffice
may be a deep theorem.

W. Kahan
Wikipedia entry

We need more than just the basic four operations
of arithmetic: several dozen elementary functions, and
I/O support, are essential.

• The Table Maker’s Dilemma (Kahan) is the
problem of always getting exactly-rounded
results when computing the elementary
functions. Here is an example of a hard case:
log(+0x1.ac50b409c8aeep+8) =

0x60f52f37aecfcfffffffffffffffeb...p-200
There are 62 consecutive 1-bits in that number,
and at least 4×13+62+1 = 115 bits must be
computed correctly in order to determine the
correctly-rounded 53-bit result.

• Higher-than-needed-precision arithmetic
provides a practical solution to the dilemma, as
the Kahan quote observes.

• Random-number generation is a common
portability problem, since algorithms for that
computation are platform-dependent and vary
in quality. Fortunately, several good ones are
now known, and can be supplied in libraries,
although careful attention still needs to be
given to computer wordsize.

• The mathcw library gives platform-independent
results for decimal floating-point arithmetic,
since evaluation order is completely under
programmer control, and identical everywhere,
and the underlying decimal arithmetic is too.

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 507

Nelson H. F. Beebe

13 How much work is needed?

I argue that decimal floating-point arithmetic in soft-
ware, isolated in a separate scripting language, is an
effective and reasonable way to extend TEX and META-
FONT so that they can have access to floating-point
arithmetic, and remove the limitations and nuisance
of fixed-point arithmetic that they currently suffer.

It is therefore appropriate to ask what kind of ef-
fort would be needed to do this. In four separate exper-
iments with three implementations of awk, and one of
lua, I took two to four hours each, with less than 3% of
the code requiring changes:

Program Lines Deleted Added
dgawk 40 717 109 165
dlua 16 882 25 94
dmawk 16 275 73 386
dnawk 9 478 182 296
METAFONT in C 30 190 0 0
TEX in C 25 215 0 0

14 Summary

Had the IEEE 754 design been developed before TEX
and METAFONT, it is possible that Donald Knuth
would have chosen a software implementation of bi-
nary floating-point arithmetic, as he later provided for
the MMIX virtual machine [2, 31, 32] that underlies the
software analyses in newer editions of his famous book
series, The Art of Computer Programming.

That did not happen, so in this article, I have
shown how a different approach might introduce deci-
mal floating-point arithmetic to TEX and METAFONT

through a suitable scripting language, for which Lua
[26, 25, 27] seems eminently suited, and has already
been interfaced to TEX and is now in limited use for
production commercial typesetting, and also for docu-
ment style-file design. By selecting high working preci-
sion, at least 34 decimal digits and preferably 70, many
numerical issues that otherwise compromise portabil-
ity and reproducibility of typeset documents simply
disappear, or at least, become highly improbable.

To make this workable, the compilers, the basic
software arithmetic library, the elementary function li-
brary, and the I/O library need to be highly portable.
The combination of the GNU gcc compiler family with
the IBM decNumber library and the author’s mathcw li-
brary satisfy all of these requirements. Within a year
or two, we may therefore expect that decimal floating-
point arithmetic in C could be available on all of the
common platforms, allowing future TEX Live releases
to build upon that foundation, and LuaTEX could be-
come the TEX version of choice in many environments.
LuaMETAFONT and LuaMETAPOST could soon fol-
low.

References

[1] P. H. Abbott, D. G. Brush, C. W. Clark III, C. J. Crone,
J. R. Ehrman, G. W. Ewart, C. A. Goodrich, M. Hack,
J. S. Kapernick, B. J. Minchau, W. C. Shepard, R. M.
Smith, Sr., R. Tallman, S. Walkowiak, A. Watanabe,
and W. R. White. Architecture and software support
in IBM S/390 Parallel Enterprise Servers for IEEE
floating-point arithmetic. IBM Journal of Research
and Development, 43(5/6):723–760, 1999. ISSN
0018-8646. URL http://www.research.ibm.
com/journal/rd/435/abbott.html. Besides
important history of the development of the
S/360 floating-point architecture, this paper has
a good description of IBM’s algorithm for exact
decimal-to-binary conversion, complementing earlier
ones [39, 7, 29, 6, 40].

[2] Heidi Anlauff, Axel Böttcher, and Martin Ruckert.
Das MMIX-Buch: ein praxisnaher Zugang zur
Informatik. (German) [The MMIX Book: A practical
introduction to computer science]. Springer-Lehrbuch.
Springer-Verlag, Berlin, Germany / Heidelberg,
Germany / London, UK / etc., 2002. ISBN
3-540-42408-3. xiv + 327 pp. EUR 24.95. URL
http://www.informatik.fh-muenchen.de/~mmix/
MMIXBuch/.

[3] Nelson Beebe. The design of TEX and METAFONT:
A retrospective. TUGboat, 26(1):33–41, 2005. ISSN
0896-3207.

[4] Nelson H. F. Beebe. 25 Years of TEX and METAFONT:
Looking back and looking forward — TUG 2003
keynote address. TUGboat, 25(1):7–30, 2004. ISSN
0896-3207.

[5] Nelson H. F. Beebe. The mathcw Portable Elementary
Function Library. 2008. In preparation.

[6] Robert G. Burger and R. Kent Dybvig. Printing
floating-point numbers quickly and accurately.
ACM SIGPLAN Notices, 31(5):108–116, May 1996.
ISSN 0362-1340. URL http://www.acm.org:
80/pubs/citations/proceedings/pldi/231379/
p108-burger/. This paper offers a significantly
faster algorithm than that of [39], together with a
correctness proof and an implementation in Scheme.
See also [7, 1, 40, 8].

[7] William D. Clinger. How to read floating point
numbers accurately. ACM SIGPLAN Notices, 25
(6):92–101, June 1990. ISBN 0-89791-364-7.
ISSN 0362-1340. URL http://www.acm.org:
80/pubs/citations/proceedings/pldi/93542/
p92-clinger/. See also output algorithms in
[29, 39, 6, 1, 40].

[8] William D. Clinger. Retrospective: How to read
floating point numbers accurately. ACM SIGPLAN
Notices, 39(4):360–371, April 2004. ISSN 0362-1340.
Best of PLDI 1979–1999. Reprint of, and retrospective
on, [7].

[9] William J. Cody, Jr. Analysis of proposals for the
floating-point standard. Computer, 14(3):63–69,
March 1981. ISSN 0018-9162. See [23, 24].

508 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting

Extending TEX and METAFONT with floating-point arithmetic

[10] Jerome T. Coonen. An implementation guide to a
proposed standard for floating-point arithmetic.
Computer, 13(1):68–79, January 1980. ISSN
0018-9162. See errata in [11]. See [23, 24].

[11] Jerome T. Coonen. Errata: An implementation guide
to a proposed standard for floating point arithmetic.
Computer, 14(3):62, March 1981. ISSN 0018-9162. See
[10, 23, 24].

[12] Jerome T. Coonen. Underflow and the denormalized
numbers. Computer, 14(3):75–87, March 1981. ISSN
0018-9162. See [23, 24].

[13] Charles B. Dunham. Surveyor’s Forum: “What every
computer scientist should know about floating-point
arithmetic”. ACM Computing Surveys, 24(3):319,
September 1992. ISSN 0360-0300. See [15, 16, 45].

[14] W. H. J. Feijen, A. J. M. van Gasteren, D. Gries, and
J. Misra, editors. Beauty is our business: a birthday
salute to Edsger W. Dijkstra. Springer-Verlag, Berlin,
Germany / Heidelberg, Germany / London, UK / etc.,
1990. ISBN 0-387-97299-4. xix + 453 pp. LCCN QA76
.B326 1990.

[15] David Goldberg. What every computer scientist
should know about floating-point arithmetic. ACM
Computing Surveys, 23(1):5–48, March 1991. ISSN
0360-0300. URL http://www.acm.org/pubs/toc/
Abstracts/0360-0300/103163.html. See also
[16, 13, 45].

[16] David Goldberg. Corrigendum: “What every
computer scientist should know about floating-point
arithmetic”. ACM Computing Surveys, 23(3):413,
September 1991. ISSN 0360-0300. See [15, 13, 45].

[17] David Goldberg. Computer arithmetic. In
Computer Architecture—A Quantitative Approach,
chapter H, pages H–1–H–74. Morgan Kaufmann
Publishers, Los Altos, CA 94022, USA, third
edition, 2002. ISBN 1-55860-596-7. LCCN
QA76.9.A73 P377 2003. US$89.95. URL http:
//books.elsevier.com/companions/1558605967/
appendices/1558605967-appendix-h.pdf.
The complete Appendix H is not in the printed
book; it is available only at the book’s Web site:
http://www.mkp.com/CA3.

[18] David Gries. Binary to decimal, one more time. In
Feijen et al. [14], chapter 16, pages 141–148. ISBN
0-387-97299-4. LCCN QA76 .B326 1990. This paper
presents an alternate proof of Knuth’s algorithm [29]
for conversion between decimal and fixed-point
binary numbers.

[19] David Hough. Applications of the proposed IEEE-754
standard for floating point arithmetic. Computer, 14
(3):70–74, March 1981. ISSN 0018-9162. See [23, 24].

[20] IEEE. IEEE standard for binary floating-point
arithmetic. ACM SIGPLAN Notices, 22(2):9–25,
February 1985. ISSN 0362-1340. See [23].

[21] IEEE. 854-1987 (R1994) IEEE Standard for
Radix-Independent Floating-Point Arithmetic. IEEE,
New York, NY, USA, 1987. ISBN 1-55937-859-X.

16 pp. US$44.00. URL http://standards.ieee.
org/reading/ieee/std_public/description/
busarch/854-1987_desc.html. Revised 1994.

[22] IEEE Computer Society Standards Committee.
Working group of the Microprocessor Standards
Subcommittee and American National Standards
Institute. IEEE standard for binary floating-point
arithmetic. ANSI/IEEE Std 754-1985. IEEE Computer
Society Press, 1109 Spring Street, Suite 300, Silver
Spring, MD 20910, USA, 1985. 18 pp. See [23].

[23] IEEE Task P754. ANSI/IEEE 754-1985, Standard
for Binary Floating-Point Arithmetic. IEEE,
New York, NY, USA, August 12, 1985. ISBN
1-55937-653-8. 20 pp. US$35.00. URL http:
//standards.ieee.org/reading/ieee/std_
public/description/busarch/754-1985_desc.
html; http://standards.ieee.org/reading/
ieee/std/busarch/754-1985.pdf; http:
//www.iec.ch/cgi-bin/procgi.pl/www/iecwww.
p?wwwlang=E&wwwprog=cat-det.p&wartnum=
019113; http://ieeexplore.ieee.org/iel1/
2355/1316/00030711.pdf. Revised 1990. A
preliminary draft was published in the January
1980 issue of IEEE Computer, together with several
companion articles [9, 12, 10, 11, 19, 42, 43]. The
final version was republished in [20, 22]. See also
[44]. Also standardized as IEC 60559 (1989-01) Binary
floating-point arithmetic for microprocessor systems.

[24] IEEE Task P754. ANSI/IEEE 754-1985, Standard
for Binary Floating-Point Arithmetic. IEEE, New
York, August 12 1985. A preliminary draft was
published in the January 1980 issue of IEEE
Computer, together with several companion articles
[9, 12, 10, 11, 19, 42, 43]. Available from the IEEE
Service Center, Piscataway, NJ, USA.

[25] Roberto Ierusalimschy. Programming in Lua.
Lua.Org, Rio de Janeiro, Brazil, 2006. ISBN
85-903798-2-5. 328 (est.) pp.

[26] Roberto Ierusalimschy, Luiz Henrique de Figueiredo,
and Waldemar Celes. Lua 5.1 Reference Manual.
Lua.Org, Rio de Janeiro, Brazil, 2006. ISBN
85-903798-3-3. 112 (est.) pp.

[27] Kurt Jung and Aaron Brown. Beginning Lua
programming. Wiley, New York, NY, USA, 2007. ISBN
(paperback), 0-470-06917-1 (paperback). 644 (est.)
pp. LCCN QA76.73.L82 J96 2007. URL http://www.
loc.gov/catdir/toc/ecip074/2006036460.html.

[28] W. Kahan and Joseph D. Darcy. How Java’s
floating-point hurts everyone everywhere. Technical
report, Department of Mathematics and Department
of Electrical Engineering and Computer Science,
University of California, Berkeley, Berkeley, CA,
USA, June 18, 1998. 80 pp. URL http://www.cs.
berkeley.edu/~wkahan/JAVAhurt.pdf; http:
//www.cs.berkeley.edu/~wkahan/JAVAhurt.ps.

[29] Donald E. Knuth. A simple program whose proof
isn’t. In Feijen et al. [14], chapter 27, pages 233–242.
ISBN 0-387-97299-4. LCCN QA76 .B326 1990.

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 509

Nelson H. F. Beebe

This paper discusses the algorithm used in TEX for
converting between decimal and scaled fixed-point
binary values, and for guaranteeing a minimum
number of digits in the decimal representation. See
also [7, 8] for decimal to binary conversion, [39, 40]
for binary to decimal conversion, and [18] for an
alternate proof of Knuth’s algorithm.

[30] Donald E. Knuth. Seminumerical Algorithms,
volume 2 of The Art of Computer Programming.
Addison-Wesley, Reading, MA, USA, third edition,
1997. ISBN 0-201-89684-2. xiii + 762 pp. LCCN
QA76.6 .K64 1997. US$52.75.

[31] Donald Ervin Knuth. MMIXware: A RISC computer
for the third millennium, volume 1750 of Lecture
Notes in Computer Science. Springer-Verlag, Berlin,
Germany / Heidelberg, Germany / London, UK /
etc., 1999. ISBN 3-540-66938-8 (softcover). ISSN
0302-9743. viii + 550 pp. LCCN QA76.9.A73 K62 1999.

[32] Donald Ervin Knuth. The art of computer
programming: Volume 1, Fascicle 1. MMIX, a RISC
computer for the new millennium. Addison-Wesley,
Reading, MA, USA, 2005. ISBN 0-201-85392-2. 134
pp. LCCN QA76.6 .K64 2005.

[33] David Monniaux. The pitfalls of verifying
floating-point computations. Technical report
HAL-00128124, CNRS/École Normale Supérieure, 45,
rue d’Ulm 75230 Paris cedex 5, France, June 29, 2007.
44 pp. URL http://hal.archives-ouvertes.fr/
docs/00/15/88/63/PDF/floating-point.pdf.

[34] Amos R. Omondi. Computer Arithmetic Systems:
Algorithms, Architecture, and Implementation.
Prentice-Hall, Upper Saddle River, NJ 07458, USA,
1994. ISBN 0-13-334301-4. xvi + 520 pp. LCCN
QA76.9.C62 O46 1994. US$40.00.

[35] Michael Overton. Numerical Computing with
IEEE Floating Point Arithmetic, Including One
Theorem, One Rule of Thumb, and One Hundred and
One Exercises. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 2001. ISBN
0-89871-482-6. xiv + 104 pp. LCCN QA76.9.M35
O94 2001. US$40.00. URL http://www.cs.
nyu.edu/cs/faculty/overton/book/; http:
//www.siam.org/catalog/mcc07/ot76.htm.

[36] Behrooz Parhami. Computer Arithmetic: Algorithms
and Hardware Designs. Oxford University Press,
Walton Street, Oxford OX2 6DP, UK, 2000. ISBN
0-19-512583-5. xx + 490 pp. LCCN QA76.9.C62P37
1999. US$85.00.

[37] C. Severance. An interview with the old man
of floating-point: Reminiscences elicited from
William Kahan. World-Wide Web document., 1998.
URL http://www.cs.berkeley.edu/~wkahan/
ieee754status/754story.html. A shortened
version appears in [38].

[38] Charles Severance. Standards: IEEE 754: An
interview with William Kahan. Computer, 31(3):
114–115, March 1998. ISSN 0018-9162. URL

http://pdf.computer.org/co/books/co1998/
pdf/r3114.pdf.

[39] Guy L. Steele Jr. and Jon L. White. How to print
floating-point numbers accurately. ACM SIGPLAN
Notices, 25(6):112–126, June 1990. ISSN 0362-1340.
See also input algorithm in [7, 8], and a faster output
algorithm in [6] and [29], IBM S/360 algorithms
in [1] for both IEEE 754 and S/360 formats, and a
twenty-year retrospective [40]. In electronic mail
dated Wed, 27 Jun 1990 11:55:36 EDT, Guy Steele
reported that an intrepid pre-SIGPLAN 90 conference
implementation of what is stated in the paper
revealed 3 mistakes:

1. Table 5 (page 124):

insert k <-- 0 after assertion, and also delete
k <-- 0 from Table 6.

2. Table 9 (page 125):
for -1:USER!("");
substitute -1:USER!("0");

and delete the comment.

3. Table 10 (page 125):
for fill(-k, "0")
substitute fill(-k-1, "0")

[40] Guy L. Steele Jr. and Jon L. White. Retrospective:
How to print floating-point numbers accurately. ACM
SIGPLAN Notices, 39(4):372–389, April 2004. ISSN
0362-1340. Best of PLDI 1979–1999. Reprint of, and
retrospective on, [39].

[41] Pat H. Sterbenz. Floating-point computation.
Prentice-Hall series in automatic computation.
Prentice-Hall, Upper Saddle River, NJ 07458, USA,
1973. ISBN 0-13-322495-3. xiv + 316 pp. LCCN
QA76.8.I12 S77 1974.

[42] David Stevenson. A proposed standard for binary
floating-point arithmetic. Computer, 14(3):51–62,
March 1981. ISSN 0018-9162. See [23, 24].

[43] David Stevenson. A proposed standard for binary
floating-point arithmetic: draft 8.0 of IEEE Task P754.
IEEE Computer Society Press, 1109 Spring Street,
Suite 300, Silver Spring, MD 20910, USA, 1981. 36 pp.
See [23, 24].

[44] Shlomo Waser and Michael J. Flynn. Introduction
to Arithmetic for Digital Systems Designers. Holt,
Reinhart, and Winston, New York, NY, USA, 1982.
ISBN 0-03-060571-7. xvii + 308 pp. LCCN TK7895
A65 W37 1982. Master copy output on Alphatype
CRS high-resolution phototypesetter. This book went
to press while the IEEE 754 Floating-Point Standard
was still in development; consequently, some of the
material on that system was invalidated by the final
Standard (1985) [23].

[45] Brian A. Wichmann. Surveyor’s Forum: “What every
computer scientist should know about floating-point
arithmetic”. ACM Computing Surveys, 24(3):319,
September 1992. ISSN 0360-0300. See [15, 16, 13].

510 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting

