
Extending TEX andMETAFONT with
Floating-Point Arithmetic

Nelson H. F. Beebe

Department of Mathematics

University of Utah

Salt Lake City, UT 84112-0090

USA
TEX Users Group Conference 2007 talk. . . – p. 1/33

Dedication
T E

X
a

n
d

M
ETA

FO
N
T

Professor Donald Knuth (Stanford)

Professor William Kahan (Berkeley)

TEX Users Group Conference 2007 talk. . . – p. 2/33

Arithmetic in TEX and METAFONT
T E

X
a

n
d

M
ETA

FO
N
T

Binary integer arithmetic with ≥ 32 bits (TEX \count

registers)

Fixed-point arithmetic with sign bit, overflow bit, ≥ 14
integer bits, and 16 fractional bits (TEX \dimen,
\muskip, and \skip registers)

Overflow detected on division and multiplication but not
on addition (flaw (NHFB), feature (DEK))

Gyrations sometimes needed in METAFONT to work
with fixed-point numbers

Uh, oh. A little while ago one of the quantities

that I was computing got too large, so I’m afraid

your answers will be somewhat askew. You’ll

probably have to adopt different tactics next

time. But I shall try to carry on anyway.
TEX Users Group Conference 2007 talk. . . – p. 3/33

Arithmetic in METAFONT
T E

X
a

n
d

M
ETA

FO
N
T

METAFONT restricts input numbers to 12 integer bits:

% mf expr

gimme an expr: 4095 >> 4095

gimme an expr: 4096

! Enormous number has been reduced.

>> 4095.99998

gimme an expr: infinity >> 4095.99998

gimme an expr: epsilon >> 0.00002

gimme an expr: 1/epsilon

! Arithmetic overflow.

>> 32767.99998

gimme an expr: 1/3 >> 0.33333

gimme an expr: 3*(1/3) >> 0.99998

gimme an expr: 1.2 2.3 >> 1.1

gimme an expr: 1.2 2.4 >> 1.2

gimme an expr: 1.3 2.4 >> 1.09999
TEX Users Group Conference 2007 talk. . . – p. 4/33

Historical remarks
T E

X
a

n
d

M
ETA

FO
N
T

It is difficult today to appreciate
that probably the biggest problem facing

programmers in the early 1950s was
scaling numbers so as to achieve

acceptable precision from a fixed-point machine.

Martin Campbell-Kelly
Programming the Mark I:

Early Programming Activity
at the University of Manchester

Annals of the History of Computing
2(2) 130–168 (1980)

TEX Users Group Conference 2007 talk. . . – p. 5/33

Historical remarks [cont]
T E

X
a

n
d

M
ETA

FO
N
T

Floating Point Arithmetic . . . The subject
is not at all as trivial as most people think,

and it involves a surprising amount of
interesting information.

Donald E. Knuth
The Art of Computer Programming:

Seminumerical Algorithms, (1998)

TEX Users Group Conference 2007 talk. . . – p. 6/33

Historical remarks [cont]
T E

X
a

n
d

M
ETA

FO
N
T

Computer hardware designers can make their
machines much more pleasant to use,

for example by providing
floating-point arithmetic

which satisfies simple mathematical laws.

The facilities presently available on most
machines make the job of rigorous error

analysis hopelessly difficult, but properly
designed operations would encourage

numerical analysts to provide better
subroutines which have certified accuracy.

Donald E. Knuth
Computer Programming as an Art

ACM Turing Award Lecture (1973)

TEX Users Group Conference 2007 talk. . . – p. 7/33

Why no floating-point arithmetic?
T E

X
a

n
d

M
ETA

FO
N
T

System dependence in precision, range, rounding,
underflow, overflow

Base varies: 2, 3 (Setun), 4 (Illiac II), 8 (Burroughs),
10, 16 (IBM S/360), 256 (Illiac III), 10000 (Maple)

Bizarre behavior when TEX was developed:

x × y 6= y × x (early Crays)

x 6= 1.0 × x (Pr1me)

x + x 6= 2 × x (Pr1me)

x 6= y but 1.0/(x − y) gets zero-divide error

wrap between underflow and overflow (PDP-10)

job termination on overflow or zero-divide (most)

No standardization: almost every vendor had unique
floating-point system

TEX Users Group Conference 2007 talk. . . – p. 8/33

Why no floating-point . . . [cont]?
T E

X
a

n
d

M
ETA

FO
N
T

Language dependence:

Algol, Pascal, and SAIL (real)

Fortran (REAL, DOUBLE PRECISION, and sometimes
REAL*16)

C/C++ (double, float added in 1989, long double

in 1999)

Java and C# (only float and double, but
arithmetic system is badly botched: see Kahan and
Darcy’s How Java’s Floating-Point Hurts
Everyone Everywhere)

Compiler dependence: multiple precisions mapped to
just one

BSD compilers still provide no 80-bit format after 27
years in hardware

TEX Users Group Conference 2007 talk. . . – p. 9/33

Why no floating-point . . . [cont]?
T E

X
a

n
d

M
ETA

FO
N
T

Input/output problem requires base conversion, and is
hard (e.g., conversion from 128-bit binary format can
require more than 11 500 decimal digits)

DEK wrote A simple program whose proof isn’t
(1990) about TEX’s conversions between fixed-point
binary and decimal

Most languages do not guarantee exact base
conversion

TEX guarantees identical line-breaking and
page-breaking across all platforms (floating-point
arithmetic used only for interword glue calculations)METAFONT has no floating-point at all, and generates
identical fonts on all systems

TEX Users Group Conference 2007 talk. . . – p. 10/33

IEEE 754 binary standard (1985)
T E

X
a

n
d

M
ETA

FO
N
T

Preliminary version first implemented in Intel 8087 chip
(1980)

Three formats defined: 32-bit, 64-bit, and 80-bit.
128-bit format available on some Alpha, IA-64,
PA-RISC, and SPARC systems.

Nonzero normal numbers are rational:
x = (−1)sf × 2p, where f ∈ [1, 2)

Signed zero

Largest stored exponent represents Infinity when
f = 0, quiet and signaling NaN (Not-a-Number) when
f 6= 0

Smallest stored exponent allows f to have leading
zeros with gradual underflow to subnormal values

TEX Users Group Conference 2007 talk. . . – p. 11/33

IEEE 754 binary standard [cont]
T E

X
a

n
d

M
ETA

FO
N
T

Nonstop computing model: sticky flags record
exceptions

Four rounding modes:

to nearest with ties to even (default)

to +∞
to −∞
to zero (historical chopping)

±∞ generated from large/small and finite/0

NaN generated from 0/0, ∞ − ∞, ∞/∞, and any
operation with a NaN operand

NaN returned from functions when result is undefined
in real arithmetic (e.g.,

√
−1)

TEX Users Group Conference 2007 talk. . . – p. 12/33

IEEE 754R Precision and range
T E

X
a

n
d

M
ETA

FO
N
T

Binary

32-bit 24b (≈ 7D) 1e-45 1e-38 3e+38

64-bit 53b (≈ 15D) 4e-324 2e-308 1e+308

80-bit 64b (≈ 19D) 3e-4951 3e-4932 1e+4932

128-bit 113b (≈ 34D) 6e-4966 3e-4932 1e+4932

256-bit 234b (≈ 70D) 2e-315 723 5e-315 653 3e+315 652

Decimal

32-bit 7D 1e-101 1e-95 1e+96

64-bit 16D 1e-398 1e-383 1e+384

128-bit 34D 1e-6176 1e-6143 1e+6144

256-bit 70D 1e-1 572 932 1e-1 572 863 1e+1 572 864

TEX Users Group Conference 2007 talk. . . – p. 13/33

Remarks on floating-point arithmetic
T E

X
a

n
d

M
ETA

FO
N
T

Contrary to popular misconception, even in some books
and compilers, floating-point arithmetic is not fuzzy.

Results are exact if they are representable

Multiplication by power of base is always exact, in
absence of underflow and overflow

Subtraction of numbers of like signs and exponents is
exact

Bases other than 2 or 10 suffer from wobbling precision: in

hexadecimal arithmetic, π/2 ≈ 1.571 ≈ 1.92216 has 3
fewer bits (almost one decimal digit) than
π/4 ≈ 0.7854 ≈ c.91016.

TEX Users Group Conference 2007 talk. . . – p. 14/33

Binary versus decimal
T E

X
a

n
d

M
ETA

FO
N
T

humans less uncomfortable with decimal arithmetic

sales tax: 5% of 0.70 = 0.0349999 . . . in all binary
precisions, instead of exact decimal 0.035. Thus,
significant cumulative rounding errors in businesses
with many small transactions (food, telephone, . . .)

financial computations need fixed-point decimal
arithmetic

hand calculators use decimal arithmetic

additional decimal rounding rules (8 instead of 4)

decimal arithmetic eliminates most base-conversion
problems

TEX Users Group Conference 2007 talk. . . – p. 15/33

Binary versus decimal [cont]
T E

X
a

n
d

M
ETA

FO
N
T

IEEE 854 Standard for Radix-Independent
Floating-Point Arithmetic (1987, 1994)

older Cobol standards require 18D fixed-point

Cobol 2002 requires 32D fixed-point and floating-point

Proposals to add decimal arithmetic to C and C++
(2005, 2006)

25 years of Rexx and NetRexx scripting languages
give valuable experience in arbitrary-precision decimal
arithmetic

excellent IBM decNumber library provides open source

decimal floating-point arithmetic with a billion (109)
digits of precision and exponent magnitudes up to
999 999 999

TEX Users Group Conference 2007 talk. . . – p. 16/33

Binary versus decimal [cont]
T E

X
a

n
d

M
ETA

FO
N
T

Preliminary support in gcc for +, −, ×, and / (late
2006) based on subset of IBM decNumber library

mathcw package provides C99-compliant run-time
library for binary, and also for decimal, arithmetic
(NHFB 2005–2007)

Three sizes defined for IEEE 754R: 32-bit (7D), 64-bit
(16D), and 128-bit (34D)

IBM zSeries mainframes get IEEE 754 binary f.p.
(1999), and decimal f.p. in firmware (2006)

IBM PowerPC chips add hardware decimal arithmetic
(21 May 2007)

Hardware support likely in future Intel IA-32 and
EM64T (x86_64)

TEX Users Group Conference 2007 talk. . . – p. 17/33

Problems with IEEE 754 arithmetic
T E

X
a

n
d

M
ETA

FO
N
T

Language access to features slow: 27+ years and still
waiting!

Programmer unfamiliarity, ignorance, and inexperience

Deficient educational system

Partial implementations by some vendors (e.g.,
subnormals flush to zero, IA-32 has only one NaN,
IA-32 and IA-64 have imperfect rounding, Java and C#
lack rounding modes and higher precisions)

Long internal registers generally beneficial, but also
produce many computational surprises and double
rounding, compromising portability

Rounding behavior at underflow and overflow limits
unspecified, and vendor dependent

TEX Users Group Conference 2007 talk. . . – p. 18/33

How decimal arithmetic is different
T E

X
a

n
d

M
ETA

FO
N
T

Nonzero normal numbers x = (−1)sf × 2p, where f
is an integer : can simulate fixed-point arithmetic

Lack of normalization means multiple storage forms,
but 1., 1.0, 1.00, 1.000, . . . compare equal

Quantization detectable (e.g., for financial
computations, 1.00 differs from 1.000)

Signed zero and Infinity, plus quiet and signaling NaNs
detectable from first byte (binary formats require
examination of all bits)

Eight rounding modes (legal and tax mandates)

Compact storage formats — Densely-Packed Decimal
(DPD) [IBM] and Binary-Integer Decimal (BID) [Intel]
— need fewer than BCD’s four bits per decimal digit

TEX Users Group Conference 2007 talk. . . – p. 19/33

Software floating-point arithmetic
T E

X
a

n
d

M
ETA

FO
N
T

TEX and METAFONT must continue to guarantee
identical results across platforms

Unspecified behavior of low-level arithmetic
guarantees platform dependence

Floating-point not associative, so instruction ordering
(e.g., compiler optimization) affects results

Long internal registers alter precision, and results

Multiply-add computes x × y + z with exact product
and single rounding, getting different result from
separate operations

Conclusion: only a single software floating-point
arithmetic system in TEX and METAFONT can
guarantee platform-independent results

TEX Users Group Conference 2007 talk. . . – p. 20/33

Side excursion
T E

X
a

n
d

M
ETA

FO
N
T

What if you could provide a seamlessly
integrated, fully dynamic language with a

conventional syntax while increasing your
application’s size by less than 200K on an

x86? You can do it with Lua!

Keith Fieldhouse

TEX Users Group Conference 2007 talk. . . – p. 21/33

Software floating-point [cont.]
T E

X
a

n
d

M
ETA

FO
N
T

No need to modify TEX beyond what has already been
done: LuaTEX interfaces TEX to a clean and
well-designed scripting language — just need to
change arithmetic and library inside lua

Scripting languages usually offer a single floating-point
datatype, typically equivalent to IEEE 754 64-bit
double (that is all C used to have)

qawk and dnawk: awk for 128-bit binary and decimal

Machines are fast and memories are big: adopt 34D
128-bit format, or better, 70D 256-bit format, instead as
default numeric type.

mathcw has highly-portable open-source library
support for ten floating-point precisions, including
256-bit binary and decimal.

TEX Users Group Conference 2007 talk. . . – p. 22/33

Software floating-point [cont.]
T E

X
a

n
d

M
ETA

FO
N
T

The convenient accessibility of
double-precision in many Fortran and

some Algol compilers indicates that
double-precision will soon be universally

acceptable as a substitute for ingenuity
in the solution of numerical problems.

W. Kahan
Further Remarks on

Reducing Truncation Errors
Comm. ACM 8(1) 40, January (1965)

TEX Users Group Conference 2007 talk. . . – p. 23/33

Software floating-point [cont.]
T E

X
a

n
d

M
ETA

FO
N
T

No general way exists to predict how many
extra digits will have to be carried to

compute a transcendental expression and
round it correctly to some preassigned
number of digits. Even the fact (if true)
that a finite number of extra digits will

ultimately suffice may be a deep theorem.

W. Kahan
Wikipedia entry

TEX Users Group Conference 2007 talk. . . – p. 24/33

Software floating-point [cont.]
T E

X
a

n
d

M
ETA

FO
N
T

Table Maker’s Dilemma (Kahan) is the problem of
always getting exactly-rounded results when
computing the elementary functions:
log(+0x1.ac50b409c8aeep+8) =
0x60f52f37aecfcfffffffffffffffeb...p200

(62 consecutive 1’s)

Higher-than-needed-precision arithmetic provides a
practical solution, as Kahan quote observes

Random-number generation is a portability problem,
since algorithms are platform-dependent and vary in
quality

mathcw library provides platform-independent results
for decimal floating-point arithmetic

TEX Users Group Conference 2007 talk. . . – p. 25/33

How much work?
T E

X
a

n
d

M
ETA

FO
N
T

Changing scripting languages from binary to decimal
floating-point arithmetic took two to four hours each, with
relatively few modifications:

Program Lines Deleted Added

dgawk 40 717 109 165

dlua 16 882 25 94

dmawk 16 275 73 386

dnawk 9 478 182 296METAFONT in C 30 190 0 0

TEX in C 25 215 0 0

TEX Users Group Conference 2007 talk. . . – p. 26/33

Floating-point arithmetic and typesetting
T E

X
a

n
d

M
ETA

FO
N
T

TEX’s smallest dimension is 2−16pt = 1sp, while
wavelength of visible light is about 100sp (TEXbook,
p. 58): rounding errors are invisible

TEX’s largest dimension is 214pt = 5.75m, not quite
billboard size

macro notation painful (layout.tex):

% MARGINNOTEYA = 0.75 * TEXTHEIGHT + FOOTSKIP

\T = \TEXTHEIGHT

\multiply \T by 75 % possible overflow!

\divide \T by 100

\advance \T by \FOOTSKIP

\xdef \MARGINNOTEYA {\the \T}

reduction 75/100 → 1/4 × 3 possible here, but not in
general

TEX Users Group Conference 2007 talk. . . – p. 27/33

Floating-point arithmetic [cont]
T E

X
a

n
d

M
ETA

FO
N
T

Overflow detection unreliable in TEX (integer arithmetic
in most programming languages is worse!)

No elementary functions available in TEX, not even
square rootMETAFONT offers ++ (Pythagoras), abs, angle,
ceiling, cosd, dir, floor, length, mexp, mlog,
normaldeviate, round, sind, sqrt, and
uniformdeviate

Floating-point simplifies computation of fractions,
scaling, and rotation: see LATEX calc package for
horrors of fixed-point arithmetic

Interface from TEX to scripting language allows
conventional numeric programming

TEX Users Group Conference 2007 talk. . . – p. 28/33

MMIX and NNIX
T E

X
a

n
d

M
ETA

FO
N
T

Whenever anybody has asked if I will be
writing a book about operating systems, my
reply has always been “Nix.” Therefore the

name of MMIX’s operating system,
NNIX, should come as no surprise.

Donald E. Knuth
MMIXware:

A RISC Computer for the Third Millenium

TEX Users Group Conference 2007 talk. . . – p. 29/33

MMIX and NNIX [cont]
T E

X
a

n
d

M
ETA

FO
N
T

TEX Users Group Conference 2007 talk. . . – p. 30/33

MMIX and NNIX [cont]
T E

X
a

n
d

M
ETA

FO
N
T

TEX Users Group Conference 2007 talk. . . – p. 31/33

MMIX and NNIX [cont]
T E

X
a

n
d

M
ETA

FO
N
T

MMIX is a modern virtual machine used in recent
volumes of DEK’s famous series The Art of Computer
Programming

MMIX is written as literate program in published books

arithmetic is IEEE 754 64-bit binary in software using
only 32-bit unsigned integers

17 floating-point instructions: FADD, FCMP, FCMPE, FDIV,
FEQL, FEQLE, FINT, FIX, FIXU, FLOT, FLOTU, FMUL, FREM,
FSQRT, FSUB, FUN, and FUNE

gcc version 3.2 can be built for MMIX system

NNIX is a (still virtual) Unix-like O/S for MMIX

mathcw library port to MMIX: 10 new + 12 header bug
workaround, out of 250,000 lines

TEX Users Group Conference 2007 talk. . . – p. 32/33

T E
X

a
n

d
M
ETA

FO
N
T

The End
THE BEATLES

JULY/AUGUST 1969
[1969 = YEAR OF FIRST EDITION OF

DONALD KNUTH’S
Seminumerical Algorithms

(TAOCP VOLUME 2)]

TEX Users Group Conference 2007 talk. . . – p. 33/33

	Dedication
	Arithmetic in TeX {} and MF {}
	Arithmetic in MF {}
	Historical remarks
	Historical remarks [cont]
	Historical remarks [cont]
	Why no floating-point arithmetic?
	Why no floating-point ldots {} [cont]?
	Why no floating-point ldots {} [cont]?
	IEEE 754 binary standard (1985)
	IEEE 754 binary standard [cont]
	IEEE 754R Precision and range
	Remarks on floating-point arithmetic
	Binary versus decimal
	Binary versus decimal [cont]
	Binary versus decimal [cont]
	Problems with IEEE 754 arithmetic
	How decimal arithmetic is different
	Software floating-point arithmetic
	Side excursion
	Software floating-point [cont.]
	Software floating-point [cont.]
	Software floating-point [cont.]
	Software floating-point [cont.]
	How much work?
	Floating-point arithmetic and typesetting
	Floating-point arithmetic [cont]
	MMIX and NNIX
	MMIX and NNIX [cont]
	MMIX and NNIX [cont]
	MMIX and NNIX [cont]

