New directions in floating-point arithmetic

Nelson H. F. Beebe
Research Professor
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Email: beebe@math.utah.edu, beebe@acm.org,
beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe
Telephone: +1 8015815254
FAX: +1 8015814148

26 September 2007

Historical floating-point arithmetic

Konrad Zuse's Z1, Z3, and Z4 (1936-1945): 22-bit (Z1 and Z3) and 32-bit $Z 4$ with exponent range of $2^{ \pm 63} \approx 10^{ \pm 19}$

Historical floating-point arithmetic

Konrad Zuse's Z1, Z3, and Z4 (1936-1945): 22-bit (Z1 and Z3) and 32-bit $Z 4$ with exponent range of $2^{ \pm 63} \approx 10^{ \pm 19}$
B Burks, Goldstine, and von Neumann (1946) argued against floating-point arithmetic

Historical floating-point arithmetic

K Konrad Zuse's Z1, Z3, and Z4 (1936-1945): 22-bit (Z1 and Z3) and 32-bit Z4 with exponent range of $2^{ \pm 63} \approx 10^{ \pm 19}$
\square Burks, Goldstine, and von Neumann (1946) argued against floating-point arithmetic
\square It is difficult today to appreciate that probably the biggest problem facing programmers in the early 1950s was scaling numbers so as to achieve acceptable precision from a fixed-point machine, Martin Campbell-Kelly (1980)

Historical floating-point arithmetic

. Konrad Zuse's Z1, Z3, and Z4 (1936-1945): 22-bit (Z1 and Z3) and 32-bit Z4 with exponent range of $2^{ \pm 63} \approx 10^{ \pm 19}$
\square Burks, Goldstine, and von Neumann (1946) argued against floating-point arithmetic
\square It is difficult today to appreciate that probably the biggest problem facing programmers in the early 1950s was scaling numbers so as to achieve acceptable precision from a fixed-point machine, Martin Campbell-Kelly (1980)
\square IBM mainframes from mid-1950s supplied floating-point arithmetic

Historical floating-point arithmetic

. Konrad Zuse's Z1, Z3, and Z4 (1936-1945): 22-bit (Z1 and Z3) and 32-bit Z4 with exponent range of $2^{ \pm 63} \approx 10^{ \pm 19}$

- Burks, Goldstine, and von Neumann (1946) argued against floating-point arithmetic
\square It is difficult today to appreciate that probably the biggest problem facing programmers in the early 1950s was scaling numbers so as to achieve acceptable precision from a fixed-point machine, Martin Campbell-Kelly (1980)
\square IBM mainframes from mid-1950s supplied floating-point arithmetic
\square IEEE 754 Standard (1985) proposed a new design for binary floating-point arithmetic that has since been widely adopted

Historical floating-point arithmetic

. Konrad Zuse's Z1, Z3, and Z4 (1936-1945): 22-bit (Z1 and Z3) and 32-bit Z4 with exponent range of $2^{ \pm 63} \approx 10^{ \pm 19}$

- Burks, Goldstine, and von Neumann (1946) argued against floating-point arithmetic
\square It is difficult today to appreciate that probably the biggest problem facing programmers in the early 1950s was scaling numbers so as to achieve acceptable precision from a fixed-point machine, Martin Campbell-Kelly (1980)
IBM mainframes from mid-1950s supplied floating-point arithmetic
\square IEEE 754 Standard (1985) proposed a new design for binary floating-point arithmetic that has since been widely adopted
\square IEEE 754 design first implemented in Intel 8087 coprocessor (1980)

Historical flaws on some systems

Floating-point arithmetic can make error analysis difficult, with behavior like this in some older designs:
$\square \neq 1.0 \times u$

Historical flaws on some systems

Floating-point arithmetic can make error analysis difficult, with behavior like this in some older designs:
$\square \neq 1.0 \times u$
$\square u+u \neq 2.0 \times u$

Historical flaws on some systems

Floating-point arithmetic can make error analysis difficult, with behavior like this in some older designs:
$\square \neq 1.0 \times u$
$\square u+u \neq 2.0 \times u$
$\square u \times 0.5 \neq u / 2.0$

Historical flaws on some systems

Floating-point arithmetic can make error analysis difficult, with behavior like this in some older designs:
$\square \neq 1.0 \times u$
$\square u+u \neq 2.0 \times u$
$\square u \times 0.5 \neq u / 2.0$
$\square u \neq v$ but $u-v=0.0$, and $1.0 /(u-v)$ raises a zero-divide error

Historical flaws on some systems

Floating-point arithmetic can make error analysis difficult, with behavior like this in some older designs:
$\square \neq 1.0 \times u$
$\square u+u \neq 2.0 \times u$
$\square u \times 0.5 \neq u / 2.0$
$\square \quad u \neq v$ but $u-v=0.0$, and $1.0 /(u-v)$ raises a zero-divide error
$\square u \neq 0.0$ but $1.0 / u$ raises a zero-divide error

Historical flaws on some systems

Floating-point arithmetic can make error analysis difficult, with behavior like this in some older designs:
$\square \neq 1.0 \times u$
$\square u+u \neq 2.0 \times u$
$\square u \times 0.5 \neq u / 2.0$
$\square \quad u \neq v$ but $u-v=0.0$, and $1.0 /(u-v)$ raises a zero-divide error
$\square u \neq 0.0$ but $1.0 / u$ raises a zero-divide error
$\square u \times v \neq v \times u$

Historical flaws on some systems

Floating-point arithmetic can make error analysis difficult, with behavior like this in some older designs:
$\square \neq 1.0 \times u$
$\square u+u \neq 2.0 \times u$
$\square u \times 0.5 \neq u / 2.0$
$\square \quad u \neq v$ but $u-v=0.0$, and $1.0 /(u-v)$ raises a zero-divide error
$\square u \neq 0.0$ but $1.0 / u$ raises a zero-divide error
$\square u \times v \neq v \times u$
\square underflow wraps to overflow, and vice versa

Historical flaws on some systems

Floating-point arithmetic can make error analysis difficult, with behavior like this in some older designs:
$\square \neq 1.0 \times u$
$\square u+u \neq 2.0 \times u$
$\square u \times 0.5 \neq u / 2.0$
$\square \quad u \neq v$ but $u-v=0.0$, and $1.0 /(u-v)$ raises a zero-divide error
$\square u \neq 0.0$ but $1.0 / u$ raises a zero-divide error
$u \times v \neq v \times u$
\square underflow wraps to overflow, and vice versa
\square division replaced by reciprocal approximation and multiply

Historical flaws on some systems

Floating-point arithmetic can make error analysis difficult, with behavior like this in some older designs:
$\square \neq 1.0 \times u$
$\square u+u \neq 2.0 \times u$
$\square u \times 0.5 \neq u / 2.0$
$\square u \neq v$ but $u-v=0.0$, and $1.0 /(u-v)$ raises a zero-divide error
$\square u \neq 0.0$ but $1.0 / u$ raises a zero-divide error
$u \times v \neq v \times u$
\square underflow wraps to overflow, and vice versa
\square division replaced by reciprocal approximation and multiply
\square poor rounding practices increase cumulative rounding error

IEEE 754 binary floating-point arithmetic

$\square s$ is sign bit (0 for,+ 1 for -)

IEEE 754 binary floating-point arithmetic

	S	exp		significand		
bit	0	1	9		31	single
	0	1	12		63	double
	0	1	16		79	extended
	0	1	16		127	quadruple
	0	1	22		255	octuple

$\square s$ is sign bit (0 for,+ 1 for -)
\square exp is unsigned biased exponent field

IEEE 754 binary floating-point arithmetic

	S		exp		significand		
bit	0	1		9		31	single
	0	1		12		63	double
	0	1		16		79	extended
	0	1		16		127	quadruple
	0			22		255	octuple

$\square s$ is sign bit (0 for,+ 1 for -)
\square exp is unsigned biased exponent field
smallest exponent: zero and subnormals (formerly, denormalized)

IEEE 754 binary floating-point arithmetic

	S	\exp		significand		
bit	0	1	9		31	single
	0	1	12		63	double
	0	1	16		79	extended
	0		16		127	quadruple
	0	1	22		255	octuple

$\square s$ is sign bit (0 for,+ 1 for -)
\square exp is unsigned biased exponent field
smallest exponent: zero and subnormals (formerly, denormalized)
\square largest exponent: Infinity and NaN (Not a Number)

IEEE 754 binary floating-point arithmetic

	S	exp		significand		
bit	0	1	9		31	single
	0	1	12		63	double
	0	1	16		79	extended
	0	1	16		127	quadruple
	0	1	22		255	octuple

$\square s$ is sign bit (0 for,+ 1 for -)
\square exp is unsigned biased exponent field
smallest exponent: zero and subnormals (formerly, denormalized)
\square largest exponent: Infinity and NaN (Not a Number)
\square significand has implicit leading 1-bit in all but 80-bit format

IEEE 754 binary floating-point arithmetic

	S	exp		significand		
bit	0	1	9		31	single
	0	1	12		63	double
	0	1	16		79	extended
	0	1	16		127	quadruple
	0	1	22		255	octuple

$\square s$ is sign bit (0 for,+ 1 for -)
\square exp is unsigned biased exponent field
smallest exponent: zero and subnormals (formerly, denormalized)
\square largest exponent: Infinity and NaN (Not a Number)
significand has implicit leading 1-bit in all but 80-bit format
$\square 0, \pm \infty$, signaling and quiet NaN

IEEE 754 binary floating-point arithmetic

$\square \mathrm{NaN}$ from $0 / 0, \infty-\infty, f(\mathrm{NaN}), x$ op NaN, \ldots

IEEE 754 binary floating-point arithmetic

$\square \mathrm{NaN}$ from $0 / 0, \infty-\infty, f(\mathrm{NaN}), x$ op NaN, \ldots
$\square \mathrm{NaN} \neq \mathrm{NaN}$ is distinguishing property, but botched by 10% of compilers

IEEE 754 binary floating-point arithmetic

$\square \mathrm{NaN}$ from $0 / 0, \infty-\infty, f(\mathrm{NaN}), x$ op NaN, \ldots
$\square \mathrm{NaN} \neq \mathrm{NaN}$ is distinguishing property, but botched by 10% of compilers
$\square \pm \infty$ from big/small, including nonzero/zero

IEEE 754 binary floating-point arithmetic

$\square \mathrm{NaN}$ from $0 / 0, \infty-\infty, f(\mathrm{NaN}), x$ op NaN, \ldots
$\square \mathrm{NaN} \neq \mathrm{NaN}$ is distinguishing property, but botched by 10% of compilers

- $\pm \infty$ from big/small, including nonzero/zero
\square precisions in bits: $24,53,64,113,235$

IEEE 754 binary floating-point arithmetic

$\square \mathrm{NaN}$ from $0 / 0, \infty-\infty, f(\mathrm{NaN}), x$ op NaN, \ldots
$\square \mathrm{NaN} \neq \mathrm{NaN}$ is distinguishing property, but botched by 10% of compilers
$\square \pm \infty$ from big/small, including nonzero/zero
\square precisions in bits: 24, 53, 64, 113, 235
\square approximate precisions in decimal digits: $7,15,19,34,70$

IEEE 754 binary floating-point arithmetic

$\square \mathrm{NaN}$ from $0 / 0, \infty-\infty, f(\mathrm{NaN}), x$ op NaN, \ldots
$\square \mathrm{NaN} \neq \mathrm{NaN}$ is distinguishing property, but botched by 10% of compilers
$\square \pm \infty$ from big/small, including nonzero/zero
precisions in bits: 24, 53, 64, 113, 235
\square approximate precisions in decimal digits: $7,15,19,34,70$
\square approximate ranges (powers of 10): [-45, 38], $[-324,308]$, [-4951, 4932], $[4966,4932],[-315723,315652]$

IEEE 754 binary floating-point arithmetic

\square nonstop computing model

IEEE 754 binary floating-point arithmetic

nonstop computing model
five sticky flags record exceptions: underflow, overflow, zero divide, invalid, and inexact

IEEE 754 binary floating-point arithmetic

nonstop computing model
\square five sticky flags record exceptions: underflow, overflow, zero divide, invalid, and inexact
\square four rounding modes: to-nearest-with-ties-to-even (default), to-plus-infinity, to-minus-infinity, and to-zero

IEEE 754 binary floating-point arithmetic

\square nonstop computing model
\square five sticky flags record exceptions: underflow, overflow, zero divide, invalid, and inexact

- four rounding modes: to-nearest-with-ties-to-even (default), to-plus-infinity, to-minus-infinity, and to-zero
\square traps versus exceptions

IEEE 754 binary floating-point arithmetic

nonstop computing model
\square five sticky flags record exceptions: underflow, overflow, zero divide, invalid, and inexact
\square four rounding modes: to-nearest-with-ties-to-even (default), to-plus-infinity, to-minus-infinity, and to-zero
] traps versus exceptions
\square fixups in trap handlers impossible on heavily-pipelined or parallel architectures (since IBM System/360 Model 91 in 1968)

IEEE 754 binary floating-point arithmetic

nonstop computing model
\square five sticky flags record exceptions: underflow, overflow, zero divide, invalid, and inexact
\square four rounding modes: to-nearest-with-ties-to-even (default), to-plus-infinity, to-minus-infinity, and to-zero
] traps versus exceptions
fixups in trap handlers impossible on heavily-pipelined or parallel architectures (since IBM System/360 Model 91 in 1968)
\square no language support for advanced features until 1999 ISO C Standard

IEEE 754 binary floating-point arithmetic

nonstop computing model
five sticky flags record exceptions: underflow, overflow, zero divide, invalid, and inexact

- four rounding modes: to-nearest-with-ties-to-even (default), to-plus-infinity, to-minus-infinity, and to-zero
] traps versus exceptions
\square fixups in trap handlers impossible on heavily-pipelined or parallel architectures (since IBM System/360 Model 91 in 1968)
\square no language support for advanced features until 1999 ISO C Standard
\square some architectures implement only subsets (e.g., no subnormals, or only one rounding mode, or only one kind of NaN , or in embedded systems, neither Infinity nor NaN)

IEEE 754 binary floating-point arithmetic

\square nonstop computing model
\square five sticky flags record exceptions: underflow, overflow, zero divide, invalid, and inexact
b four rounding modes: to-nearest-with-ties-to-even (default), to-plus-infinity, to-minus-infinity, and to-zero
] traps versus exceptions
fixups in trap handlers impossible on heavily-pipelined or parallel architectures (since IBM System/360 Model 91 in 1968)
\square no language support for advanced features until 1999 ISO C Standard
\square some architectures implement only subsets (e.g., no subnormals, or only one rounding mode, or only one kind of NaN , or in embedded systems, neither Infinity nor NaN)
\square some platforms have nonconforming rounding behavior

Why the base matters

\square accuracy and run-time cost of conversion between internal and external (usually decimal) bases

Why the base matters

accuracy and run-time cost of conversion between internal and external (usually decimal) bases
\square effective precision varies when the floating-point representation uses a radix larger than 2 or 10

Why the base matters

\square accuracy and run-time cost of conversion between internal and external (usually decimal) bases
\square effective precision varies when the floating-point representation uses a radix larger than 2 or 10
\square reducing the exponent width makes digits available for increased precision

Why the base matters

\square accuracy and run-time cost of conversion between internal and external (usually decimal) bases
\square effective precision varies when the floating-point representation uses a radix larger than 2 or 10
\square reducing the exponent width makes digits available for increased precision
\square for a fixed number of exponent digits, larger bases provide a wider exponent range

Why the base matters

\square accuracy and run-time cost of conversion between internal and external (usually decimal) bases
\square effective precision varies when the floating-point representation uses a radix larger than 2 or 10
\square reducing the exponent width makes digits available for increased precision

- for a fixed number of exponent digits, larger bases provide a wider exponent range
\square for a fixed storage size, granularity (the spacing between successive representable numbers) increases as the base increases

Why the base matters

\square accuracy and run-time cost of conversion between internal and external (usually decimal) bases
\square effective precision varies when the floating-point representation uses a radix larger than 2 or 10
\square reducing the exponent width makes digits available for increased precision

- for a fixed number of exponent digits, larger bases provide a wider exponent range
\square for a fixed storage size, granularity (the spacing between successive representable numbers) increases as the base increases
\square in the absence of underflow and overflow, multiplication by a power of the base is an exact operation, and this feature is essential for many computations, in particular, for accurate elementary and special functions

Base conversion problem

exact in one base may be inexact in others (e.g., decimal 0.9 is hexadecimal $0 x 1 . c . . . p-1)$

Base conversion problem

exact in one base may be inexact in others (e.g., decimal 0.9 is hexadecimal $0 \times 1 . c . . . p-1)$

- 5% sales-tax example: binary arithmetic: $0.70 \times 1.05=0.734999999 \ldots$, which rounds to 0.73 ; correct decimal result 0.735 may round to 0.74

Base conversion problem

exact in one base may be inexact in others (e.g., decimal 0.9 is hexadecimal $0 \times 1 . c . . . p-1)$

- 5% sales-tax example: binary arithmetic:
$0.70 \times 1.05=0.734999999 \ldots$, which rounds to 0.73 ; correct decimal result 0.735 may round to 0.74
\square Goldberg (1967) and Matula (1968) showed how many digits needed for exact round-trip conversion

Base conversion problem

- exact in one base may be inexact in others (e.g., decimal 0.9 is hexadecimal $0 \times 1 . c . . . p-1)$
- 5% sales-tax example: binary arithmetic: $0.70 \times 1.05=0.734999999 \ldots$, which rounds to 0.73 ; correct decimal result 0.735 may round to 0.74
\square Goldberg (1967) and Matula (1968) showed how many digits needed for exact round-trip conversion
\square exact conversion may require many digits: more than 11500 decimal digits for binary-to-decimal conversion of 128-bit format,

Base conversion problem

\square exact in one base may be inexact in others (e.g., decimal 0.9 is hexadecimal $0 \times 1 . c . . . p-1)$

- 5% sales-tax example: binary arithmetic: $0.70 \times 1.05=0.734999999 \ldots$, which rounds to 0.73 ; correct decimal result 0.735 may round to 0.74
\square Goldberg (1967) and Matula (1968) showed how many digits needed for exact round-trip conversion
\square exact conversion may require many digits: more than 11500 decimal digits for binary-to-decimal conversion of 128-bit format,
\square base-conversion problem not properly solved until 1990s

Base conversion problem

- exact in one base may be inexact in others (e.g., decimal 0.9 is hexadecimal $0 \times 1 . c . . . p-1)$
- 5% sales-tax example: binary arithmetic: $0.70 \times 1.05=0.734999999 \ldots$, which rounds to 0.73 ; correct decimal result 0.735 may round to 0.74
\square Goldberg (1967) and Matula (1968) showed how many digits needed for exact round-trip conversion
\square exact conversion may require many digits: more than 11500 decimal digits for binary-to-decimal conversion of 128-bit format,
\square base-conversion problem not properly solved until 1990s
few (if any) languages guarantee accurate base conversion

Decimal floating-point arithmetic

\square Absent in most computers from mid-1960s to 2007

Decimal floating-point arithmetic

Absent in most computers from mid-1960s to 2007
\square IBM Rexx and NetRexx scripting languages supply decimal arithmetic with arbitrary precision (10^{9} digits) and huge exponent range ($\left.10^{ \pm 999999999}\right)$

Decimal floating-point arithmetic

Absent in most computers from mid-1960s to 2007
IBM Rexx and NetRexx scripting languages supply decimal arithmetic with arbitrary precision (10^{9} digits) and huge exponent range ($\left.10^{ \pm 999999999}\right)$
\square IBM decNumber library provides portable decimal arithmetic, and leads to hardware designs in IBM zSeries (2006) and PowerPC (2007)

Decimal floating-point arithmetic

Absent in most computers from mid-1960s to 2007

- IBM Rexx and NetRexx scripting languages supply decimal arithmetic with arbitrary precision (10^{9} digits) and huge exponent range ($\left.10^{ \pm 999999999}\right)$
IBM decNumber library provides portable decimal arithmetic, and leads to hardware designs in IBM zSeries (2006) and PowerPC (2007)
\square GNU compilers implement low-level support in late 2006

Decimal floating-point arithmetic

Absent in most computers from mid-1960s to 2007
IBM Rexx and NetRexx scripting languages supply decimal arithmetic with arbitrary precision (10^{9} digits) and huge exponent range ($\left.10^{ \pm 999999999}\right)$

- IBM decNumber library provides portable decimal arithmetic, and leads to hardware designs in IBM zSeries (2006) and PowerPC (2007)
\square GNU compilers implement low-level support in late 2006
\square business processing traditionally require 18D fixed-point decimal, but COBOL 2003 mandates 32D, and requires floating-point as well

Decimal floating-point arithmetic

Absent in most computers from mid-1960s to 2007

- IBM Rexx and NetRexx scripting languages supply decimal arithmetic with arbitrary precision (10^{9} digits) and huge exponent range ($\left.10^{ \pm 999999999}\right)$
- IBM decNumber library provides portable decimal arithmetic, and leads to hardware designs in IBM zSeries (2006) and PowerPC (2007)
- GNU compilers implement low-level support in late 2006
\square business processing traditionally require 18D fixed-point decimal, but COBOL 2003 mandates 32D, and requires floating-point as well
\square four additional rounding modes for legal/tax/financial requirements

Decimal floating-point arithmetic

Absent in most computers from mid-1960s to 2007

- IBM Rexx and NetRexx scripting languages supply decimal arithmetic with arbitrary precision (10^{9} digits) and huge exponent range ($\left.10^{ \pm 999999999}\right)$
- IBM decNumber library provides portable decimal arithmetic, and leads to hardware designs in IBM zSeries (2006) and PowerPC (2007)
- GNU compilers implement low-level support in late 2006
\square business processing traditionally require 18D fixed-point decimal, but COBOL 2003 mandates 32D, and requires floating-point as well
four additional rounding modes for legal/tax/financial requirements
\square integer, rather than fractional, coefficient means redundant representation, but allows emulating fixed-point arithmetic

Decimal floating-point arithmetic

A Absent in most computers from mid-1960s to 2007
\square IBM Rexx and NetRexx scripting languages supply decimal arithmetic with arbitrary precision (10^{9} digits) and huge exponent range ($\left.10^{ \pm 999999999}\right)$

- IBM decNumber library provides portable decimal arithmetic, and leads to hardware designs in IBM zSeries (2006) and PowerPC (2007)
- GNU compilers implement low-level support in late 2006
\square business processing traditionally require 18D fixed-point decimal, but COBOL 2003 mandates 32D, and requires floating-point as well
four additional rounding modes for legal/tax/financial requirements
\square integer, rather than fractional, coefficient means redundant representation, but allows emulating fixed-point arithmetic
\square quantization primitives can distinguish between 1, 1.0, 1.00, 1.000, etc.

Decimal floating-point arithmetic

A Absent in most computers from mid-1960s to 2007

- IBM Rexx and NetRexx scripting languages supply decimal arithmetic with arbitrary precision (10^{9} digits) and huge exponent range ($\left.10^{ \pm 999999999}\right)$
- IBM decNumber library provides portable decimal arithmetic, and leads to hardware designs in IBM zSeries (2006) and PowerPC (2007)
- GNU compilers implement low-level support in late 2006
\square business processing traditionally require 18D fixed-point decimal, but COBOL 2003 mandates 32D, and requires floating-point as well
four additional rounding modes for legal/tax/financial requirements
\square integer, rather than fractional, coefficient means redundant representation, but allows emulating fixed-point arithmetic
quantization primitives can distinguish between 1, 1.0, 1.00, 1.000, etc.
\square trailing zeros significant: they change quantization

Decimal floating-point arithmetic

Decimal floating-point arithmetic

	S		cf		ec		CC		
bit	0	1		6		9		31	single
	0	1		6		12		63	double
	0	1		6		16		127	quadruple
	0	1		6		22		255	octuple

\square IBM Densely-Packed Decimal (DPD) and Intel Binary-Integer Decimal (BID) in 32-bit, 64-bit, 128-bit, and 256-bit formats provide $3 n+1$ digits: $7,16,34$, and 70
wider exponent ranges in decimal than binary: [$-101,97]$, [$-398,385],[-6176,6145]$, and $[-1572863,1572865]$

Decimal floating-point arithmetic

\square IBM Densely-Packed Decimal (DPD) and Intel Binary-Integer Decimal (BID) in 32-bit, 64-bit, 128-bit, and 256-bit formats provide $3 n+1$ digits: $7,16,34$, and 70
\square wider exponent ranges in decimal than binary: $[-101,97]$, [-398, 385], [$-6176,6145]$, and $[-1572863,1572$ 865]
$\square c f$ (combination field), ec (exponent continuation field), (cc) (coefficient combination field)

Decimal floating-point arithmetic

	S		cf		ec		CC		
bit	0	1		6		9		31	single
	0	1		6		12		63	double
	0	1		6		16		127	quadruple
	0	1		6		22		255	octuple

- IBM Densely-Packed Decimal (DPD) and Intel Binary-Integer Decimal (BID) in 32-bit, 64-bit, 128-bit, and 256-bit formats provide $3 n+1$ digits: $7,16,34$, and 70
\square wider exponent ranges in decimal than binary: $[-101,97]$, [$-398,385],[-6176,6145]$, and $[-1572863,1572$ 865]
\square cf (combination field), ec (exponent continuation field), (cc) (coefficient combination field)
\square Infinity and NaN recognizable from first byte (not true in binary formats)

Library problem

\square Need much more than ADD, SUB, MUL, and DIV operations

Library problem

. Need much more than ADD, SUB, MUL, and DIV operations
\square mathcw library provides full C99 repertoire, including printf and scanf families, plus hundreds more

Library problem

D Need much more than ADD, SUB, MUL, and DIV operations
mathcw library provides full C99 repertoire, including printf and scanf families, plus hundreds more
code is portable across all current platforms, and several historical ones (PDP-10, VAX, S/360, ...)

Library problem

D Need much more than ADD, SUB, MUL, and DIV operations
mathcw library provides full C99 repertoire, including printf and scanf families, plus hundreds more
code is portable across all current platforms, and several historical ones (PDP-10, VAX, S/360, ...)
\square supports six binary and four decimal floating-point datatypes

Library problem

. Need much more than ADD, SUB, MUL, and DIV operations
mathcw library provides full C99 repertoire, including printf and scanf families, plus hundreds more
] code is portable across all current platforms, and several historical ones (PDP-10, VAX, S/360, ...)
supports six binary and four decimal floating-point datatypes
\square separate algorithms cater to base variations: $2,8,10$, and 16

Library problem

Need much more than ADD, SUB, MUL, and DIV operations
mathcw library provides full C99 repertoire, including printf and scanf families, plus hundreds more
code is portable across all current platforms, and several historical ones (PDP-10, VAX, S/360, ...)
\square supports six binary and four decimal floating-point datatypes
separate algorithms cater to base variations: $2,8,10$, and 16
\square pair-precision functions for even higher precision

Library problem

Need much more than ADD, SUB, MUL, and DIV operations
mathcw library provides full C99 repertoire, including printf and scanf families, plus hundreds more
] code is portable across all current platforms, and several historical ones (PDP-10, VAX, S/360, ...)
supports six binary and four decimal floating-point datatypes
\square separate algorithms cater to base variations: $2,8,10$, and 16
p pair-precision functions for even higher precision
\square fused multiply-add (FMA) via pair-precision arithmetic

Library problem

Need much more than ADD, SUB, MUL, and DIV operations
mathcw library provides full C99 repertoire, including printf and scanf families, plus hundreds more
\square code is portable across all current platforms, and several historical ones (PDP-10, VAX, S/360, ...)
supports six binary and four decimal floating-point datatypes
separate algorithms cater to base variations: $2,8,10$, and 16
\square pair-precision functions for even higher precision
f fused multiply-add (FMA) via pair-precision arithmetic
\square programming languages: Ada, C, C++, C\#, Fortran, Java, Pascal

Library problem

Need much more than ADD, SUB, MUL, and DIV operations
mathcw library provides full C99 repertoire, including printf and scanf families, plus hundreds more
\square code is portable across all current platforms, and several historical ones (PDP-10, VAX, S/360, ...)
supports six binary and four decimal floating-point datatypes
I separate algorithms cater to base variations: $2,8,10$, and 16
\square pair-precision functions for even higher precision
fused multiply-add (FMA) via pair-precision arithmetic
\square programming languages: Ada, C, C ++ , C \#, Fortran, Java, Pascal
scripting languages: gawk, hoc, lua, mawk, nawk

Virtual platforms

MMIX STATION: NEW AND IIMPROVED FOR 2OO9!

「\$ MMIX INSIDE!

Whatever your figurework requirements, there's a MMIX Station exactly suited to your needs. Designed by Prof. D. E. Knuth of Stanford, this ingenious all electric machine has more than two hundred registers and is the fastest producer of useful, accurate answers just when business is needing more and more figures. Available in a broad color range.

