	Historical floating-point arithmetic
New directions in floating-point arithmetic Nelson H. F. Beebe Research Professor University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Email: beebe@cmputer.org (Internet) WWW URL: http://www.math.utah.edu/beebe Telephone: +1 801 581 5254 FAX: +1 801 581 4148 26 September 2007	 Konrad Zuse's Z1, Z3, and Z4 (1936–1945): 22-bit (Z1 and Z3) and 32-bit Z4 with exponent range of 2^{±63} ≈ 10^{±19} Burks, Goldstine, and von Neumann (1946) argued against floating-point arithmetic <i>It is difficult today to appreciate that probably the biggest problem facing programmers in the early 1950s was scaling numbers so as to achieve acceptable precision from a fixed-point machine, Martin Campbell-Kelly (1980)</i> IBM mainframes from mid-1950s supplied floating-point arithmetic IEEE 754 Standard (1985) proposed a new design for binary floating-point arithmetic that has since been widely adopted IEEE 754 design first implemented in Intel 8087 coprocessor (1980)
iverson n. r. beebe (University of Utan) ivew directions in noating-point arithmetic 26 September 2007 1/12	Neison R. P. beebe (University of Utan) New directions in noating-point arithmetic 26 September 2007 2 / 12

Historical flaws on some systems	IEEE 754 binary floating-point arithmetic
Floating-point arithmetic can make error analysis difficult, with behavior like this in some older designs: $u \neq 1.0 \times u$ $u \neq 1.0 \times u$ $u \neq 0.0 \times u$ $u \neq v$ but $u - v = 0.0$, and $1.0/(u - v)$ raises a zero-divide error $u \neq v$ but $u - v = 0.0$, and $1.0/(u - v)$ raises a zero-divide error $u \neq 0.0$ but $1.0/u$ raises a zero-divide error $u \times v \neq v \times u$ u underflow wraps to overflow, and vice versa division replaced by reciprocal approximation and multiply poor rounding practices increase cumulative rounding error	ILLE 754 binary hoating-point antimeticsexpsignificandbit 0 1 931 single0 1 1263 double0 1 1679 extended0 1 16127 quadruple0 1 22255 octuple a s is sign bit (0 for +, 1 for -) exp is unsigned biased exponent field a smallest exponent: zero and subnormals (formerly, denormalized) a largest exponent: Infinity and NaN (Not a Number) a circle for the singlisit leading 1 bits for the point for the singlisit leading 1 bits for the singlisit lead
Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 3 / 12	 □ ±0, ±∞, signaling and quiet NaN Nelson H. F. Besbe (University of Utah) New directions in floating-point arithmetic 26 September 2007 4 / 12

IEEE 754 binary floating-point arithmetic	IEEE 754 binary floating-point arithmetic
 NaN from 0/0, ∞ - ∞, f(NaN), x op NaN, NaN ≠ NaN is distinguishing property, but botched by 10% of compilers ±∞ from big/small, including nonzero/zero precisions in bits: 24, 53, 64, 113, 235 approximate precisions in decimal digits: 7, 15, 19, 34, 70 approximate ranges (powers of 10): [-45, 38], [-324, 308], [-4951, 4932], [4966, 4932], [-315 723, 315 652] 	 nonstop computing model five sticky flags record exceptions: <u>underflow</u>, <u>overflow</u>, <u>zero divide</u>, <u>invalid</u>, and <u>inexact</u> four rounding modes: <u>to-nearest-with-ties-to-even</u> (default), <u>to-plus-infinity</u>, <u>to-minus-infinity</u>, and <u>to-zero</u> traps versus exceptions fixups in trap handlers impossible on heavily-pipelined or parallel architectures (since IBM System/360 Model 91 in 1968) no language support for advanced features until 1999 ISO C Standard some architectures implement only subsets (e.g., no subnormals, or only one rounding mode, or only one kind of NaN, or in embedded systems, neither Infinity nor NaN) some platforms have nonconforming rounding behavior
Neison H. F. Beebe (University of Utan) New directions in floating-point arithmetic 26 September 2007 5 / 12	Neison H. F. Beebe (University of Utan) New directions in floating-point arithmetic 26 September 2007 6 / 12

Why the base matters	Base conversion problem
 accuracy and run-time cost of conversion between internal and external (usually decimal) bases effective precision varies when the floating-point representation uses a radix larger than 2 or 10 reducing the exponent width makes digits available for increased precision for a fixed number of exponent digits, larger bases provide a wider exponent range for a fixed storage size, granularity (the spacing between successive representable numbers) increases as the base increases in the absence of underflow and overflow, multiplication by a power of the base is an <i>exact</i> operation, and this feature is <i>essential</i> for many computations, in particular, for accurate elementary and special functions 	 exact in one base may be inexact in others (e.g., decimal 0.9 is hexadecimal 0x1.cccccccccccccccccccccccccccccccccccc
Iversion FL. FL. beede (University of Utan) Ivew directions in noating-point arithmetic 26 September 2007 7 / 12	rveison n. r. beebe (University of Utan) ivew directions in noating-point arithmétic 20 September 2007 8 / 12

Decimal floating-point arithmetic	Decimal floating-point arithmetic
 Absent in most computers from mid-1960s to 2007 IBM Rexx and NetRexx scripting languages supply decimal arithmetic with arbitrary precision (10⁹ digits) and huge exponent range (10^{±999 999 999}) 	s cf ec cc bit 0 1 6 9 31 single
 IBM decNumber library provides portable decimal arithmetic, and leads to hardware designs in IBM zSeries (2006) and PowerPC (2007) GNU compilers implement low-level support in late 2006 	0 1 6 12 63 double 0 1 6 16 127 quadruple 0 1 6 22 255 octuple
 business processing traditionally require 18D fixed-point decimal, but COBOL 2003 mandates 32D, and requires floating-point as well four additional rounding modes for legal/tax/financial requirements <i>integer</i>, rather than <i>fractional</i>, coefficient means redundant representation, but allows emulating fixed-point arithmetic quantization primitives can distinguish between 1, 1.0, 1.00, 1.000, etc. trailing zeros significant: they change quantization 	 IBM Densely-Packed Decimal (DPD) and Intel Binary-Integer Decimal (BID) in 32-bit, 64-bit, 128-bit, and 256-bit formats provide 3n + 1 digits: 7, 16, 34, and 70 wider exponent ranges in decimal than binary: [-101, 97], [-398, 385], [-6176, 6145], and [-1572 863, 1572 865] cf (combination field), cc (exponent continuation field), (cc) (coefficient combination field) Infinity and NaN recognizable from first byte (not true in binary formats)

Virtual platforms Library problem MMIX STATION: NEW AND IMPROVED FOR 2009! □ Need much more than ADD, SUB, MUL, and DIV operations □ mathcw library provides full C99 repertoire, including printf and scanf families, plus hundreds more $\hfill\square$ code is portable across all current platforms, and several historical ones (PDP-10, VAX, S/360, ...) □ supports *six* binary and *four* decimal floating-point datatypes S MMIX INSIDE! \Box separate algorithms cater to base variations: 2, 8, 10, and 16 Whatever your figurework requirements, there's a MMIX Station exactly suited to your needs. Designed by Prof. D. E. Knuth of **D** pair-precision functions for even higher precision □ fused multiply-add (FMA) via pair-precision arithmetic Stanford, this ingenious all electric machine □ programming languages: Ada, C, C++, C#, Fortran, Java, Pascal has more than two hundred registers and is the fastest producer of useful, accurate □ scripting languages: gawk, hoc, lua, mawk, nawk answers just when business is needing more and more figures. Available in a broad color range.

26 September 2007 11 / 12 Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic

26 September 2007 12 / 12

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic