
New directions in floating-point arithmetic [Extended
abstract]

Nelson H. F. Beebe

University of Utah
Department of Mathematics, 110 LCB

155 S 1400 E RM 233
Salt Lake City, UT 84112-0090

USA

Abstract. This article briefly describes the history of floating-point arithmetic, the development and features of IEEE
standards for such arithmetic, desirable features of new implementations of floating-point hardware, and discusses work-
in-progress aimed at making decimal floating-point arithmetic widely available across many architectures, operating systems,
and programming languages.

Keywords: binary arithmetic; decimal arithmetic; elementary functions; fixed-point arithmetic; floating-point arithmetic; interval arithmetic;
mathcw library; range arithmetic; special functions; validated numerics
PACS: 02.30.Gp Special functions

DEDICATION

This article is dedicated to N. Yngve Öhrn, my mentor, thesis co-advisor, and long-time friend, on the occasion of his
retirement from academia. It is also dedicated to William Kahan, Michael Cowlishaw, and the late James Wilkinson,
with much thanks for inspiration.

WHAT IS FLOATING-POINT ARITHMETIC?

Floating-point arithmeticis a technique for storing and operating on numbers in a computer where the base, range,
and precision of the number system are usually fixed by the computer design.

Conceptually, a floating-point number has asign, an exponent, and asignificand (the older termmantissais
now deprecated), allowing a representation of the form.�1/sign� significand� baseexponent. The base pointin
the significand may be at the left, or after the first digit, or at the right. The point and the base are implicit in the
representation: neither is stored.

The sign can be compactly represented by a single bit, and the exponent is most commonly a biased unsigned
bitfield, although some historical architectures used a separate exponent sign and an unbiased exponent. Once the
sizes of the sign and exponent fields are fixed, all of the remaining storage is available for the significand, although
in some older systems, part of this storage is unused, and usually, ignored. On modern systems, the storage order is
conceptually sign, exponent, and significand, but addressing conventions on byte-addressable systems (thebig endian
versuslittle endiantheologies) can alter that order, and some historical designs reordered them, and sometimes split the
exponent and significand fields into two interleaved parts. Except when the low-level storage format must be examined
by software, such as for binary data exchange, these differences are handled by hardware, and are rarely of concern to
programmers.

The data size is usually closely related to the computer word size. Indeed, the venerable Fortran programming
language mandates asingle-precisionfloating-point format occupying the same storage as an integer, and adouble-
precisionformat occupying exactly twice the space. This requirement is heavily relied on by Fortran software for array
dimensioning, argument passing, and inCOMMONandEQUIVALENCEstatements for storage alignment and layout.
Some vendors later added support for a third format, calledquadruple-precision, occupying four words. Wider formats
have yet to be offered by commercially-viable architectures, although we address this point later in this article.



Floating-point arithmetic can be contrasted withfixed-pointarithmetic, where there is no exponent field, and it is the
programmer’s responsibility to keep track of where the base point lies. Address arithmetic, and signed and unsigned
integer arithmetic, are special cases of fixed-point arithmetic where the base point is always at the right, so only whole
numbers can be represented, and for address and unsigned integer arithmetic, the storage occupied by the sign is given
to the number field.

Floating-point number systems have limited precision and range, and their arithmetic isnot associative. These
properties are at odds with mathematical arithmetic, and often require great care to handle correctly in software. They
often produce large gaps between a problem’s mathematical solution and a practical, and accurate, computational
solution.

Also, compiler optimizations, instruction reordering, and use of higher precision for intermediate computations,
can all produce unpleasant surprises in floating-point software. Consequently, numerical programmers must be highly
experienced, eternally vigilant, and fanatic about testing on every accessible platform.

DECIMAL ARITHMETIC

The Rexx and NetRexx scripting languages [1, 2] developed by IBM Fellow Michael Cowlishaw provide a software
implementation of decimal floating-point arithmetic with up to a billion (109) digits, and a huge exponent range of
10˙999;999;999. Based on long experience with those languages, in 2006, IBM researchers developed a firmware
implementation of IEEE-like decimal arithmetic for the z9 mainframe [3, 4], and on May 21, 2007, IBM announced
the POWER6 processor with the first hardware implementation since the 1960s, outside of handheld calculators, of
decimal floating-point arithmetic. For a survey of historical decimal systems, see [5].

In 2005, ISO committees for the standardization of the C and C++ languages received proposals [6, 7, 8, 9] for
the incorporation of decimal floating-point arithmetic. In late 2006, GNU developers of compilers for those languages
added preliminary support on one CPU platform for the new data types, and in 2007, more CPU platforms followed.
The underlying arithmetic is supplied by Cowlishaw’sdecNumber library [10], but no debugger or library support
for I/O and mathematical functions is included. The decimal formats are 32-bit, 64-bit, and 128-bit, with precisions of
7, 16, and34 digits, respectively. Their nonzero magnitude ranges are approximatelyŒ10�101;1097�, Œ10�398;10385�,
andŒ10�6176;106145�, somewhat wider than the corresponding binary formats.

ThedecNumber library provides a superset of the features of the IBM hardware implementation, including support
for eightrounding modes (additional modes are needed to meet rounding rules in financial computations mandated by
various legal jurisdictions), along with all of the other features of IEEE 754 arithmetic.

Unlike the binary format, where the point lies after the first digit, the decimal significand is aninteger coefficient,
and thus, trailing zeros allow multiple representations of the same numeric value. This design choice was intentional,
because it allows decimal fixed-point arithmetic, historically required for financial computations, to be done in decimal
floating-point arithmetic, and additional library functions make it possible to get and set, the scale, orquantization. In
financial work, these operations are expected to be common.

One important ramification for programmers is that multiplication by1:, 1:0, 1:00, . . . each produce different
quantization, and similarly, multiplication by1000 differs in quantization from multiplication by1�103. Since most
people are taught in school to write at least one digit following a decimal point, programmers of decimal arithmetic
need to learn to avoid introducing unwanted trailing zeros so as to preserve quantization.

Another significant point is that financial computations need large numbers of digits: older COBOL standards
required support for18 decimal digits, and the 2002 ISO COBOL Standard [11] mandates32 digits. Thus, the 128-bit
format is expected to be widely used, and market pressure will force it to be in hardware, rather than in software as is
currently the case for the binary format of that size on several platforms.

The IBM hardware and software implementations of decimal arithmetic use an encoding calledDPD (Densely-
Packed Decimal)[10, 12], which represents three decimal digits in ten bits. DPD is more compact than older schemes,
such as Binary-Coded Decimal (BCD), that have long been used for fixed-point decimal arithmetic in many processors.

Intel researchers have developed a competing encoding calledBID (Binary Integer Decimal)and implemented it in
a prototype reference library [13]. BID is designed to allow chip designers to reuse circuitry from integer arithmetic
units, but appears to make correct decimal rounding difficult. Fortunately, detailed analysis has made it possible
to develop computational algorithms that can guarantee correct decimal rounding for the basic operations of add,
subtract, multiply, and divide. From the programmer’s point of view, the two encodings offer identical floating-point
characteristics, but there are small differences in the representable range that could make it possible for software to
distinguish between them, and thus, make assumptions that limit portability.



In mid 2007, the GNU compilers were extended to generate code for both the IBM and Intel libraries, and it is
expected that Intel’s own compilers will soon have support for decimal arithmetic as well. It seems likely that future
Intel processors will provide decimal arithmetic in hardware, once sufficient software experience with both BID and
DPD encodings has been accumulated to guide the final choice of encoding. Since most desktop computers use CPUs
from the Intel architecture families, in just a few years, decimal floating-point arithmetic may be widespread, and
competitive with binary floating-point arithmetic in efficiency.

Since 2005, this author has been developing a large highly-portable elementary function library, called themathcw
library, that includes all of the mathematical repertoire of the 1999 ISO C Standard, plus a great deal more. This
library has been designed to provide a comfortable C99 environment on all current platforms, as well as to run on
historical architectures of the 1970s, such as the PDP-10, PDP-11, and VAX, which remain available via software
virtual machines that, thanks to advances in processor technology, can be an order of magnitude faster than the
hardware ever was. The library currently supports six binary types, and four decimal types, covering almost every
significant computing platform of the last thirty years.

In addition, themathcw library is designed to pave the way for futureoctuple-precisionarithmetic in a256-bit
format offering a significand of235 bits in binary, and70 digits in decimal. The approximate nonzero magnitude
ranges areŒ10�315653;10315652� in binary andŒ10�1572932;101572863� in decimal.

While it is relatively straightforward to add support for new data types and machine instructions (or interfaces to
software implementations thereof) in modern compilers, there is a huge hurdle to overcome in providing a powerful
run-time library for I/O and mathematical functions. Themathcw library removes that obstacle, and makes decimal
arithmetic as comfortable, and accessible, as binary arithmetic.

Fast and compact implementations of many of the elementary and special functions are based on a combination
of range reduction, and evaluation of a rational polynomial that accurately represents the function itself, or more
commonly, an auxiliary function from which the desired function can be easily obtained, but only over a limited
argument interval. In particular, this means that the polynomial approximation must be adapted to both the interval,
and the required precision, and it is then impossible to port the software to systems with differing precision, or to
modify it for use on a different interval, without having the means to generate new polynomial approximations. To
eliminate this problem, which is widespread in previous mathematical software libraries, themathcw library uses
polynomials output in formats suitable for use in C, Fortran, andhoc by auxiliary software written in the Maple
symbolic-algebra language. The Maple output is manually copied into the library’s header files. To facilitate algorithm
modification, and use with even higher precision in the distant future, all of the Maple programs are included in the
mathcw software distribution.

The I/O part of the library includes important extensions to allow handling of numbers in any base from2 to 36 (e.g.,
8@3.11037554@e+0, 10@3.14159265@e+0, 16@3.243f6c@e+0 , and36@3.53i5g@e+0 all represent 32-
bit approximations to�), control over exponent widths (a feature available in Fortran since the 1978 ISO Standard, but
still lacking in the most-recent C, C++, and Java run-time libraries), and digit grouping with separating underscores,
making long digit strings much more readable, so that

static const decimal_long_double PI = 3.141_592_653_589_793_238_462_643_383_279_503;

becomes a valid initialization in C or C++. Such numbers can be used in input and output files, and once compilers are
trivially extended, also in programming-language source code.

The mathcw library includes an extensive collection of functions forpair-precision arithmetic, which simulates
double-length significands in every supported precision. It is sometimes the case that somewhat higher precision in
just a small part of a large computation can make a dramatic improvement in overall accuracy, and these functions fill
that need.

Themathcw library can interfaced to many other programming languages, and interfaces to Ada, C#, C++, Fortran,
Java, and Pascal are provided with the system.

As additional proof of concept,fivescripting language compilers/interpreters (three forawk, plushoc and lua )
have been adapted to use decimal, rather than binary, floating-point arithmetic, and allow digit-separating underscores
in source code. All of them pass their full validation suites as well as they do for the original versions that use binary
arithmetic. In each case, less than 3% of the source code needed changes for decimal arithmetic, so this author is
confident that the scores of other popular scripting languages implemented in C or C++, such asicon , javascript ,
perl , php , python , ruby , the Unix shells, and so on, can be similarly updated, each in less than a day’s work,
making decimal floating-point arithmetic the norm almost everywhere within just a few years. With highly-portable
underpinnings in the form of themathcw library, these languages could easily offer a much richer mathematical



function repertoire, including access to all of the features in the IEEE 754 Standard, instead of the rather limited
function set chosen for Fortran more than 50 years ago.

Themathcw library is described in a forthcoming book [14], and is to be released under a software license that
ensures free and unrestricted source-code access to everyone, in the tradition of the numerical mathematics community,
and the free software movement.

FURTHER READING

Overton’s 100-page book [15] provides a useful introduction to more details of floating-point arithmetic than we can
provide in this short article. This author’s book [14] gives much more information, including guidance for creating
numerical programs that are independent of precision and range, and usually independent of base.

There are numerous other books and technical papers on the subject of computer arithmetic, and the best advice is
to consult the comprehensive on-line bibliography that is actively maintained by this author athttp://www.math.
utah.edu/pub/tex/bib/index-table.html#fparith .

REFERENCES

1. M. F. Cowlishaw,The REXX language: a practical approach to programming, Prentice-Hall, Upper Saddle River, NJ 07458,
USA, 1985, ISBN 0-13-780735-X (paperback).

2. M. F. Cowlishaw,The NetRexx language, Prentice-Hall, Upper Saddle River, NJ 07458, USA, 1997, ISBN 0-13-806332-X,
see also supplement [16].

3. Preliminary Decimal-Floating-Point Architecture, IBM Corporation, San Jose, CA, USA (2006), URLhttp:
//publibz.boulder.ibm.com/epubs/pdf/a2322320.pdf;http://www-03.ibm.com/servers/
eserver/zseries/zos/bkserv/r3pdf/zarchpops.html , form number SA23-2232-00.

4. A. Y. Duale, M. H. Decker, H.-G. Zipperer, M. Aharoni, and T. J. Bohizic,IBM Journal of Research and Development51,
217–227 (2007), ISSN 0018-8646, URLhttp://www.research.ibm.com/journal/rd/511/duale.html .

5. M. F. Cowlishaw, “Decimal floating-point: algorism for computers,” in16th IEEE Symposium on Computer Arithmetic:
ARITH-16 2003: proceedings: Santiago de Compostela, Spain, June 15–18, 2003, edited by J. C. Bajard, and M. Schulte,
IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2003, pp. 104–111, ISBN
0-7695-1894-X, ISSN 1063-6889, URLhttp://www.dec.usc.es/arith16/papers/paper-107.pdf .

6. R. Klarer, Decimal types for C++: Second draft, Report C22/WG21/N1839 J16/05-0099, IBM Canada, Ltd., Toronto, ON,
Canada (2005), URLhttp://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1839.html .

7. ISO, ISO/IEC JTC1 SC22 WG14 N1154: Extension for the programming language C to support decimal floating-point
arithmetic, World-Wide Web document (2006), URLhttp://www.open-std.org/jtc1/sc22/wg14/www/docs/
n1154.pdf .

8. ISO, ISO/IEC JTC1 SC22 WG14 N1161: Rationale for TR 24732: Extension to the programming language C: Decimal
floating-point arithmetic, World-Wide Web document (2006), URLhttp://www.open-std.org/jtc1/sc22/
wg14/www/docs/n1161.pdf .

9. ISO, ISO/IEC JTC1 SC22 WG14 N1176: Extension for the programming language c to support decimal floating-point
arithmetic, World-Wide Web document (2006), URLhttp://open-std.org/jtc1/sc22/wg14/www/docs/
n1176.pdf .

10. M. Cowlishaw,The decNumber C library, IBM Corporation, San Jose, CA, USA (2007), URLhttp://download.
icu-project.org/ex/files/decNumber/decNumber-icu-340.zip , version 3.40.

11. International Organization for Standardization,ISO/IEC 1989:2002: Information technology — Programming languages
— COBOL, International Organization for Standardization, Geneva, Switzerland, 2002, ISBN ????, URLhttp:
//www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=28805 .

12. M. F. Cowlishaw,IEE Proceedings. Computers and Digital Techniques149, 102–104 (2002), ISSN 1350-2387.
13. Anonymous, Reference software implementation of the IEEE 754R decimal floating-point arithmetic, World-Wide Web

document (2006), URLhttp://cache-www.intel.com/cd/00/00/29/43/294339_294339.pdf .
14. N. H. F. Beebe,Themathcw Portable Elementary Function Library, 2008, in preparation.
15. M. Overton,Numerical Computing with IEEE Floating Point Arithmetic, Including One Theorem, One Rule of

Thumb, and One Hundred and One Exercises, Society for Industrial and Applied Mathematics, Philadelphia,
PA, USA, 2001, ISBN 0-89871-482-6, URLhttp://www.siam.org/catalog/mcc07/ot76.htm,http:
//www.cs.nyu.edu/cs/faculty/overton/book/ .

16. M. F. Cowlishaw,NetRexx Language Supplement, IBM UK Laboratories, Hursley Park, Winchester, England (2000), URL
http://www-306.ibm.com/software/awdtools/netrexx/nrlsupp.pdf , version 2.00. This document is a
supplement to [2].


