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Abstract. This article briefly describes the history of floating-point arithmetic, the development and features of IEEE
standards for such arithmetic, desirable features of new implementations of floating-point hardware, and discusses work-
in-progress aimed at making decimal floating-point arithmetic widely available across many architectures, operating systems,
and programming languages.
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WHAT IS FLOATING-POINT ARITHMETIC?

Floating-point arithmeticis a technique for storing and operating on numbers in a computer where the base, range,
and precision of the number system are usually fixed by the computer design.

Conceptually, a floating-point number has asign, an exponent, and asignificand (the older termmantissais
now deprecated), allowing a representation of the form.�1/sign� significand� baseexponent. The base pointin
the significand may be at the left, or after the first digit, or at the right. The point and the base are implicit in the
representation: neither is stored.

The sign can be compactly represented by a single bit, and the exponent is most commonly a biased unsigned
bitfield, although some historical architectures used a separate exponent sign and an unbiased exponent. Once the
sizes of the sign and exponent fields are fixed, all of the remaining storage is available for the significand, although
in some older systems, part of this storage is unused, and usually, ignored. On modern systems, the storage order is
conceptually sign, exponent, and significand, but addressing conventions on byte-addressable systems (thebig endian
versuslittle endiantheologies) can alter that order, and some historical designs reordered them, and sometimes split the
exponent and significand fields into two interleaved parts. Except when the low-level storage format must be examined
by software, such as for binary data exchange, these differences are handled by hardware, and are rarely of concern to
programmers.

The data size is usually closely related to the computer word size. Indeed, the venerable Fortran programming
language mandates asingle-precisionfloating-point format occupying the same storage as an integer, and adouble-
precisionformat occupying exactly twice the space. This requirement is heavily relied on by Fortran software for array
dimensioning, argument passing, and inCOMMONandEQUIVALENCEstatements for storage alignment and layout.
Some vendors later added support for a third format, calledquadruple-precision, occupying four words. Wider formats
have yet to be offered by commercially-viable architectures, although we address this point later in this article.

Floating-point arithmetic can be contrasted withfixed-pointarithmetic, where there is no exponent field, and it is the
programmer’s responsibility to keep track of where the base point lies. Address arithmetic, and signed and unsigned



integer arithmetic, are special cases of fixed-point arithmetic where the base point is always at the right, so only whole
numbers can be represented, and for address and unsigned integer arithmetic, the storage occupied by the sign is given
to the number field.

Floating-point number systems have limited precision and range, and their arithmetic isnot associative. These
properties are at odds with mathematical arithmetic, and often require great care to handle correctly in software. They
often produce large gaps between a problem’s mathematical solution and a practical, and accurate, computational
solution.

Also, compiler optimizations, instruction reordering, and use of higher precision for intermediate computations,
can all produce unpleasant surprises in floating-point software. Consequently, numerical programmers must be highly
experienced, eternally vigilant, and fanatic about testing on every accessible platform.

EARLY FLOATING-POINT ARITHMETIC

Konrad Zuse designed and built the Z1, Z2, Z3, and Z4 computers in Germany during the period 1936–1945. The Z3 is
believed to be the world’s first working programmable computer, albeit electromechanical rather than fully electronic.
The Z1, Z2, and Z3 had a 22-bit memory word, and the Z4 had a 32-bit word. Memory size was only 64 words, and
was reserved for data: instructions were read from punched cards. All but the Z2 had floating-point arithmetic, with
an approximate nonzero magnitude range of2˙63 � 10˙19. In addition, the arithmetic had special representations
for infinity andundefined, so that the machine could continue working when results were generated that could not be
represented as normal floating-point numbers.

Zuse’s pioneering work was not widely known until decades later, and most of the computers built in Britain and
the US during the 1940s and 1950s had fixed-point arithmetic, rather than floating-point arithmetic. This has been
attributed to an influential early study of computer arithmetic [1] that argued

There is, of course, no denying the fact that human time is consumed in arranging for the introduction of
suitable scale factors. We only argue that the time so consumed is a very small percentage of the total time
we will spend in preparing an interesting problem for our machine. In order to have such a floating point,
one must waste memory capacity which could otherwise be used for carrying more digits per word.
Arthur W. Burks, Herman H. Goldstine, and John von Neumann,
Preliminary discussion of the logical design of an electronic computing instrument(1946).

Later experience demonstrated the error of this view [2]:

It is difficult today to appreciate that probably the biggest problem facing programmers in the early 1950s
was scaling numbers so as to achieve acceptable precision from a fixed-point machine.
Martin Campbell-Kelly,
Programming the Mark I: Early Programming Activity at the University of Manchester(1980).

Consequently, by the early 1960s, most computers built for engineering and scientific computation included floating-
point arithmetic, and for the majority, this arithmetic used base2, although a few designs used base3, 4, 8, 10,
16, or 256. The most important from this second group is the ground-breaking, and extraordinarily long-lived and
commercially successful, IBM System/360 family, introduced in 1964, and still marketed today as the IBM zSeries
mainframes. Except as noted later, this architecture uses hexadecimal (base-16) floating-point arithmetic, with 32-bit,
64-bit, and 128-bit formats, each with a7-bit power-of-16 exponent, corresponding to a nonzero magnitude range
of Œ16�64;1663� � Œ10�77;1075�. An excellent description of many of these early architectures can be found in the
treatise by IBM System/360 architects Blaauw and Brooks [3], which covers computers up to about 1980, or roughly,
the start of the desktop microcomputer era.

Decimal (base-10) floating-point arithmetic was offered by only a few vendors, and largely disappeared from
the market by the mid 1960s, although it reappeared in hand-held electronic calculators made possible by the
microprocessor revolution that began with the Intel 4004 in 1971.

WHY THE BASE MATTERS

Most programmers give little thought to the choice of the floating-point base, and indeed, on most systems, that choice
has already been made for them by the computer architects. Nevertheless, the basedoesmatter, for at least these



reasons:

• complexity, efficiency, and speed of chip circuitry;
• accuracy and run-time cost of conversion between internal and external (usually decimal) bases;
• effective precision varies when the floating-point representation uses a radix larger than2 or 10;
• reducing the exponent width makes digits available for increased precision;
• for a fixed number of exponent digits, larger bases provide a wider exponent range;
• for a fixed storage size, granularity (the spacing between successive representable numbers) increases as the base

increases;
• in the absence of underflow and overflow (that is, results outside of the representable range), multiplication by

a power of the base is anexactoperation, and this feature isessentialfor many computations, in particular, for
accurate elementary and special functions.

THE BASE-CONVERSION PROBLEM

When the internal and external bases differ, data conversion is required, and it may be impossible to represent the
target result exactly (for example, decimal0:9 has an infinite binary expansion0:1110011001100110 : : :2). Goldberg
[4] and Matula [5, 6] showed in the late 1960s how many digits are required for accurate round-trip conversion between
two bases, although few programmers or textbook authors appear to be aware of that work. Producing anexactdecimal
output representation of an internal binary floating-point number, and the correctly-rounded reverse conversion, can
require a surprisingly large number of digits: more than 11,000 decimal digits in the quadruple-precision format. The
base-conversion problem seems to be viewed by many as trivial, but it is not: it took more than 50 years of computer
use before the problem was properly solved in the 1990s [7, 8, 9, 10, 11, 12, 13]. Even today, more than 15 years after
the earliest of those papers, most vendors, and most programming languages, fail to guarantee correct base conversion
in source code, input, and output. This in turn makes accurate specification of numeric data difficult [13]:

While working on the BEEF tests for transcendental functions, it was discovered that the Turbo C 1.0
compiler did not convert 11.0 exactly into a floating point number equal to 11!
Guy L. Steele Jr. and Jon L. White,
Retrospective: How to Print Floating-Point Numbers Accurately(2003).

This author has experienced similar flawed behavior in a few other compilers and run-time libraries that refuse
to handle a number with more than some limited number of digits, or produce a wildly-incorrect conversion when
additional digits are appended.

Since the external base is almost always10, the floating-point conversion problem can be eliminated if computers
use decimal floating-point arithmetic internally. We return to this later.

FLAWS OF EARLY FLOATING-POINT DESIGNS

There have been commercially-successful historical computers with floating-point arithmetic that produced unex-
pected behavior like these examples:

• u¤ 1:0�u;
• uCu¤ 2:0�u;
• u�0:5¤ u=2:0;
• u¤ v butu�vD 0:0, and1:0=.u�v/ raises a zero-divide error;
• u¤ 0:0 but1:0=u raises a zero-divide error;
• u�v¤ v�u;
• underflow wraps to overflow, and vice versa.

In older floating-point designs, rounding behavior was often suboptimal, using truncation, rather than rounding-to-
nearest, increasing cumulative rounding error.



THE IEEE 754 AND 854 STANDARDS

The deficiencies of older computer arithmetic systems, and the important leadership of distinguished mathematician,
numerical analyst, and computer scientist, William Kahan at the University of California, Berkeley [14, 15] [Kahan
received the prestigious 1990ACM Turing Awardfor this work] resulted in the collaborative development in the late
1970s of a new floating-point design with these important features:

• binary (base-2) arithmetic;
• four dynamically-accessible rounding modes, defaulting to round-to-nearest, with ties going to the adjacent even

value;
• representations of signed zero, signedInfinity, and two kinds ofNaN (Not a Number, Zuse’sundefined);
• 32-bit, 64-bit, and 80-bit formats offering24, 53, and64 bits of significand precision (about7, 15, and19 decimal

digits), and nonzero magnitude ranges of aboutŒ10�45;1038�, Œ10�324;10308�, andŒ10�4951;104932�;
• gradual underflow tosubnormal(formerly,denormalized, but that term is now deprecated) numbers, by relaxation

of the normalization requirement when the smallest exponent is reached;
• hidden (not stored) bit for normalized values in the32- and64-bit formats;
• default nonstop computation in the presence of exceptional values, instead of the traditional behaviors of raising

an exception and terminating the job, or simple getting a radically-wrong answer and continuing without warning;
• program-accessible sticky exception flags that record the occurrence ofdivide by zero, invalid operation or

operand,inexactresult,overflow, andunderflow, and on some processors, as many as a dozen more.

Almost all new CPU architectures introduced since the mid 1980s with floating-point arithmetic are based on this
design.

Rounding-direction control allows implementation ofinterval arithmetic, a computational method that retains
rigorous upper and lower bounds for all numerical results. It is sometimes calledrange arithmeticor validated
numerics. This small, but increasingly important, area deserves to be much more widely appreciated, taught, and
used; there has even been a serious call [16] for mandating its use in US government projects and general scientific
research. In late 2005, Sun Microsystems released freely-available C++ and Fortran compilers with support for interval
arithmetic; they run on Solaris on SPARC, AMD64, and IA-32 CPUs, and also on GNU/Linux on AMD64 and IA-32
CPUs.

A preliminary version of the new floating-point design was first implemented in the Intel 8087 numeric coprocessor
chip in 1980, and continues today in the Intel IA-32, EM64T, and IA-64 architecture families, and the AMD AMD64
family whose success forced Intel to introduce the compatible EM64T family that is now provided by most new Intel
processors. The final version was issued as IEEE Standard 754 in 1985 [17]. IEEE Standard 854-1987 later extended
the design to a general base [18]. A significant revision that combines these standards has been underway for over
a decade, and may be completed in 2008. One significant change in the 754 design after the 8087 chip was in wide
use was the introduction of two kinds of NaN: quiet and signaling. The IA-32 processors provide only a single NaN,
although the AMD64 and EM64T in 32-bit and 64-bit formats, and the IA-64 in all three formats, provide both NaNs.

Some vendors subsequently added support for a 128-bit format, providing a113-bit significand (about34 decimal
digits), and about the same exponent range as the 80-bit format. In most cases, this is implemented in software, rather
than hardware.

In 1999, the new IBM mainframe G5 processor added hardware support for IEEE 754 arithmetic (32-bit, 64-bit,
and 128-bit formats) [12], while retaining the older hexadecimal arithmetic with its problems ofwobbling precision
and limited exponent range.

Sadly, despite the existence of hundreds of millions of desktop computers, mobile phones, and other embedded
devices offering IEEE 754 arithmetic (although sometimes only subsets thereof), standardized vendor-independent
software access to many of the feature of the system remains unavailable. The 1999 ISO C Standard defines a complete
interface, but compilers and libraries conforming to that standard are still inaccessible to many users, and few other
languages provide any access whatsoever, pretending that hardware details are an irrelevant, or at least nonstandard,
abstraction.

Equally sadly, the lack of understanding of the behavior and needs of floating-point computation on the part of some
language designers, notably those of Java and C#, resulted in severely, and utterly needlessly, crippled floating-point
systems in those languages, which deserve the scathing commentary offered by Kahan and Darcy [19].



FUSED MULTIPLY-ADD OPERATION

The IBM POWER architecture introduced in 1990 included a new floating-point instruction that has since been found
to be of critical importance for efficiency, accuracy, and correctness of many important algorithms:fused multiply-add
(FMA). This operation computes the value ofu� vCw with anexactdouble-length productu� v, followed by the
addition ofw with a singlerounding to a normal-length result.

Sequences of interleaved multiplications and additions are extremely common in numerical computation, including
matrix multiplication, solving linear equations and eigenvalue problems, computing dot products, and evaluating
polynomials.

The FMA operation makes possible dot products that are provably correct to the next-to-last bit [20], software-
pipelined division and square root that are provably correctly rounded [21], and significantly simplifies many elemen-
tary and special functions [21].

The 1999 ISO C Standard includes a library function,fma(u,v,w) , to provide platform-independent access to the
fused multiply-add operation. Unfortunately, the function is difficult to implement in software, and then likely to be
slow. It is not yet widely available, and on most GNU/Linux systems, is defective. There are also incorrect hardware
implementations, such as in some CPU models of the MIPS architecture.

Hardware implementations of FMA are fast, and can sometimes double performance of numerical code. Some CPUs
even implement multiply asfma(u,v,0) and add asfma(u,1,w) , dispensing with separate implementations of
those two instructions entirely.

The biggest floating-point deficiency of several current architectures based on the IEEE 754 model is their lack
of hardware FMA, and it is regrettable that now that its supreme importance is widely understood by floating-point
experts and numerical analysts, it has not been scheduled for the next revision of every CPU chip.

DECIMAL ARITHMETIC

The Rexx and NetRexx scripting languages [22, 23] developed by IBM Fellow Michael Cowlishaw provide a software
implementation of decimal floating-point arithmetic with up to a billion (109) digits, and a huge exponent range of
10˙999;999;999. Based on long experience with those languages, in 2006, IBM researchers developed a firmware
implementation of IEEE-like decimal arithmetic for the z9 mainframe [24, 25], and on May 21, 2007, IBM announced
the POWER6 processor with the first hardware implementation since the 1960s, outside of handheld calculators, of
decimal floating-point arithmetic. For a survey of historical decimal systems, see [26].

In 2005, ISO committees for the standardization of the C and C++ languages received proposals [27, 28, 29, 30] for
the incorporation of decimal floating-point arithmetic. In late 2006, GNU developers of compilers for those languages
added preliminary support on one CPU platform for the new data types, and in 2007, more CPU platforms followed.
The underlying arithmetic is supplied by Cowlishaw’sdecNumber library [31], but no debugger or library support
for I/O and mathematical functions is included. The decimal formats are 32-bit, 64-bit, and 128-bit, with precisions of
7, 16, and34 digits, respectively. Their nonzero magnitude ranges are approximatelyŒ10�101;1097�, Œ10�398;10385�,
andŒ10�6176;106145�, somewhat wider than the corresponding binary formats.

ThedecNumber library provides a superset of the features of the IBM hardware implementation, including support
for eightrounding modes (additional modes are needed to meet rounding rules in financial computations mandated by
various legal jurisdictions), along with all of the other features of IEEE 754 arithmetic.

Unlike the binary format, where the point lies after the first digit, the decimal significand is aninteger coefficient,
and thus, trailing zeros allow multiple representations of the same numeric value. This design choice was intentional,
because it allows decimal fixed-point arithmetic, historically required for financial computations, to be done in decimal
floating-point arithmetic, and additional library functions make it possible to get and set, the scale, orquantization. In
financial work, these operations are expected to be common.

One important ramification for programmers is that multiplication by1:, 1:0, 1:00, . . . each produce different
quantization, and similarly, multiplication by1000 differs in quantization from multiplication by1�103. Since most
people are taught in school to write at least one digit following a decimal point, programmers of decimal arithmetic
need to learn to avoid introducing unwanted trailing zeros so as to preserve quantization.

Another significant point is that financial computations need large numbers of digits: older COBOL standards
required support for18 decimal digits, and the 2002 ISO COBOL Standard [32] mandates32 digits. Thus, the 128-bit
format is expected to be widely used, and market pressure will force it to be in hardware, rather than in software as is
currently the case for the binary format of that size on several platforms.



The IBM hardware and software implementations of decimal arithmetic use an encoding calledDPD (Densely-
Packed Decimal)[31, 33], which represents three decimal digits in ten bits. DPD is more compact than older schemes,
such as Binary-Coded Decimal (BCD), that have long been used for fixed-point decimal arithmetic in many processors.

Intel researchers have developed a competing encoding calledBID (Binary Integer Decimal)and implemented it in
a prototype reference library [34]. BID is designed to allow chip designers to reuse circuitry from integer arithmetic
units, but appears to make correct decimal rounding difficult. Fortunately, detailed analysis has made it possible
to develop computational algorithms that can guarantee correct decimal rounding for the basic operations of add,
subtract, multiply, and divide. From the programmer’s point of view, the two encodings offer identical floating-point
characteristics, but there are small differences in the representable range that could make it possible for software to
distinguish between them, and thus, make assumptions that limit portability.

In mid 2007, the GNU compilers were extended to generate code for both the IBM and Intel libraries, and it is
expected that Intel’s own compilers will soon have support for decimal arithmetic as well. It seems likely that future
Intel processors will provide decimal arithmetic in hardware, once sufficient software experience with both BID and
DPD encodings has been accumulated to guide the final choice of encoding. Since most desktop computers use CPUs
from the Intel architecture families, in just a few years, decimal floating-point arithmetic may be widespread, and
competitive with binary floating-point arithmetic in efficiency.

Since 2005, this author has been developing a large highly-portable elementary function library, called themathcw
library, that includes all of the mathematical repertoire of the 1999 ISO C Standard, plus a great deal more. This
library has been designed to provide a comfortable C99 environment on all current platforms, as well as to run on
historical architectures of the 1970s, such as the PDP-10, PDP-11, and VAX, which remain available via software
virtual machines that, thanks to advances in processor technology, can be an order of magnitude faster than the
hardware ever was. The library currently supports six binary types, and four decimal types, covering almost every
significant computing platform of the last thirty years.

In addition, themathcw library is designed to pave the way for futureoctuple-precisionarithmetic in a256-bit
format offering a significand of235 bits in binary, and70 digits in decimal. The approximate nonzero magnitude
ranges areŒ10�315653;10315652� in binary andŒ10�1572932;101572863� in decimal.

While it is relatively straightforward to add support for new data types and machine instructions (or interfaces to
software implementations thereof) in modern compilers, there is a huge hurdle to overcome in providing a powerful
run-time library for I/O and mathematical functions. Themathcw library removes that obstacle, and makes decimal
arithmetic as comfortable, and accessible, as binary arithmetic.

Fast and compact implementations of many of the elementary and special functions are based on a combination
of range reduction, and evaluation of a rational polynomial that accurately represents the function itself, or more
commonly, an auxiliary function from which the desired function can be easily obtained, but only over a limited
argument interval. In particular, this means that the polynomial approximation must be adapted to both the interval,
and the required precision, and it is then impossible to port the software to systems with differing precision, or to
modify it for use on a different interval, without having the means to generate new polynomial approximations. To
eliminate this problem, which is widespread in previous mathematical software libraries, themathcw library uses
polynomials output in formats suitable for use in C, Fortran, andhoc by auxiliary software written in the Maple
symbolic-algebra language. The Maple output is manually copied into the library’s header files. To facilitate algorithm
modification, and use with even higher precision in the distant future, all of the Maple programs are included in the
mathcw software distribution.

The I/O part of the library includes important extensions to allow handling of numbers in any base from2 to 36 (e.g.,
8@3.11037554@e+0, 10@3.14159265@e+0, 16@3.243f6c@e+0 , and36@3.53i5g@e+0 all represent 32-
bit approximations to�), control over exponent widths (a feature available in Fortran since the 1978 ISO Standard, but
still lacking in the most-recent C, C++, and Java run-time libraries), and digit grouping with separating underscores,
making long digit strings much more readable, so that

static const decimal_long_double PI = 3.141_592_653_589_793_238_462_643_383_279_503;

becomes a valid initialization in C or C++. Such numbers can be used in input and output files, and once compilers are
trivially extended, also in programming-language source code.

The mathcw library includes an extensive collection of functions forpair-precision arithmetic, which simulates
double-length significands in every supported precision. It is sometimes the case that somewhat higher precision in
just a small part of a large computation can make a dramatic improvement in overall accuracy, and these functions fill
that need.



Themathcw library can interfaced to many other programming languages, and interfaces to Ada, C#, C++, Fortran,
Java, and Pascal are provided with the system.

As additional proof of concept,fivescripting language compilers/interpreters (three forawk, plushoc and lua )
have been adapted to use decimal, rather than binary, floating-point arithmetic, and allow digit-separating underscores
in source code. All of them pass their full validation suites as well as they do for the original versions that use binary
arithmetic. In each case, less than 3% of the source code needed changes for decimal arithmetic, so this author is
confident that the scores of other popular scripting languages implemented in C or C++, such asicon , javascript ,
perl , php , python , ruby , the Unix shells, and so on, can be similarly updated, each in less than a day’s work,
making decimal floating-point arithmetic the norm almost everywhere within just a few years. With highly-portable
underpinnings in the form of themathcw library, these languages could easily offer a much richer mathematical
function repertoire, including access to all of the features in the IEEE 754 Standard, instead of the rather limited
function set chosen for Fortran more than 50 years ago.

Themathcw library is described in a forthcoming book [35], and is to be released under a software license that
ensures free and unrestricted source-code access to everyone, in the tradition of the numerical mathematics community,
and the free software movement.

FURTHER READING

Overton’s 100-page book [36] provides a useful introduction to more details of floating-point arithmetic than we can
provide in this short article. This author’s book [35] gives much more information, including guidance for creating
numerical programs that are independent of precision and range, and usually independent of base.

There are numerous other books and technical papers on the subject of computer arithmetic, and the best advice is
to consult the comprehensive on-line bibliography that is actively maintained by this author athttp://www.math.
utah.edu/pub/tex/bib/index-table.html#fparith .
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