
Pseudo-random numbers:︷ ︸︸ ︷
mostly

a line
of code︸ ︷︷ ︸

at a time

Nelson H. F. Beebe

Research Professor
University of Utah

Department of Mathematics, 110 LCB
155 S 1400 E RM 233

Salt Lake City, UT 84112-0090
USA

Email: beebe@math.utah.edu, beebe@acm.org,
beebe@computer.org (Internet)

WWW URL: http://www.math.utah.edu/~beebe
Telephone: +1 801 581 5254

FAX: +1 801 581 4148

11 October 2005

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 1 / 82

What are random numbers good for?

o Decision making (e.g., coin flip).

o Generation of numerical test data.

o Generation of unique cryptographic keys.

o Search and optimization via random walks.

o Selection: quicksort (C. A. R. Hoare, ACM Algorithm 64:
Quicksort, Comm. ACM. 4(7), 321, July 1961) was the first
widely-used divide-and-conquer algorithm to reduce an O(N2)
problem to (on average) O(N lg(N)). Cf. Fast Fourier Transform
(Gauss (1866) (Latin), Runge (1906), Danielson and Lanczos
(crystallography) (1942), Cooley and Tukey (1965)).

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 2 / 82

What are random numbers good for?

o Decision making (e.g., coin flip).

o Generation of numerical test data.

o Generation of unique cryptographic keys.

o Search and optimization via random walks.

o Selection: quicksort (C. A. R. Hoare, ACM Algorithm 64:
Quicksort, Comm. ACM. 4(7), 321, July 1961) was the first
widely-used divide-and-conquer algorithm to reduce an O(N2)
problem to (on average) O(N lg(N)). Cf. Fast Fourier Transform
(Gauss (1866) (Latin), Runge (1906), Danielson and Lanczos
(crystallography) (1942), Cooley and Tukey (1965)).

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 2 / 82

What are random numbers good for?

o Decision making (e.g., coin flip).

o Generation of numerical test data.

o Generation of unique cryptographic keys.

o Search and optimization via random walks.

o Selection: quicksort (C. A. R. Hoare, ACM Algorithm 64:
Quicksort, Comm. ACM. 4(7), 321, July 1961) was the first
widely-used divide-and-conquer algorithm to reduce an O(N2)
problem to (on average) O(N lg(N)). Cf. Fast Fourier Transform
(Gauss (1866) (Latin), Runge (1906), Danielson and Lanczos
(crystallography) (1942), Cooley and Tukey (1965)).

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 2 / 82

What are random numbers good for?

o Decision making (e.g., coin flip).

o Generation of numerical test data.

o Generation of unique cryptographic keys.

o Search and optimization via random walks.

o Selection: quicksort (C. A. R. Hoare, ACM Algorithm 64:
Quicksort, Comm. ACM. 4(7), 321, July 1961) was the first
widely-used divide-and-conquer algorithm to reduce an O(N2)
problem to (on average) O(N lg(N)). Cf. Fast Fourier Transform
(Gauss (1866) (Latin), Runge (1906), Danielson and Lanczos
(crystallography) (1942), Cooley and Tukey (1965)).

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 2 / 82

What are random numbers good for?

o Decision making (e.g., coin flip).

o Generation of numerical test data.

o Generation of unique cryptographic keys.

o Search and optimization via random walks.

o Selection: quicksort (C. A. R. Hoare, ACM Algorithm 64:
Quicksort, Comm. ACM. 4(7), 321, July 1961) was the first
widely-used divide-and-conquer algorithm to reduce an O(N2)
problem to (on average) O(N lg(N)). Cf. Fast Fourier Transform
(Gauss (1866) (Latin), Runge (1906), Danielson and Lanczos
(crystallography) (1942), Cooley and Tukey (1965)).

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 2 / 82

Historical note: al-Khwarizmi

Abu ’Abd Allah Muhammad ibn Musa al-Khwarizmi (ca. 780–850) is the
father of algorithm and of algebra, from his book Hisab Al-Jabr wal
Mugabalah (Book of Calculations, Restoration and Reduction). He is
celebrated in a 1200-year anniversary Soviet Union stamp:

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 3 / 82

What are random numbers good for? . . .

o Simulation.

o Sampling: unbiased selection of random data in statistical
computations (opinion polls, experimental measurements, voting,
Monte Carlo integration, . . .). The latter is done like this (xk is
random in (a, b)):

∫ b

a
f (x) dx ≈

(
(b− a)

N

N

∑
k=1

f (xk)

)
+O(1/

√
N)

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 4 / 82

What are random numbers good for? . . .

o Simulation.

o Sampling: unbiased selection of random data in statistical
computations (opinion polls, experimental measurements, voting,
Monte Carlo integration, . . .). The latter is done like this (xk is
random in (a, b)):

∫ b

a
f (x) dx ≈

(
(b− a)

N

N

∑
k=1

f (xk)

)
+O(1/

√
N)

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 4 / 82

Monte Carlo integration

Here is an example of a simple, smooth, and exactly integrable function,
and the relative error of its Monte Carlo integration:

0.000

0.050

0.100

0.150

0.200

-10 -8 -6 -4 -2 0 2 4 6 8 10

f(
x)

N

f(x) = 1/sqrt(x2 + c2) [c = 5]

-7
-6
-5
-4
-3
-2
-1
0

0 20 40 60 80 100

lo
g(

R
el

E
rr

)

N

Convergence of Monte Carlo integration

-7
-6
-5
-4
-3
-2
-1
0

0 1 2 3 4 5

lo
g(

R
el

E
rr

)

log(N)

Convergence of Monte Carlo integration

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 5 / 82

When is a sequence of numbers random?

o Computer numbers are rational, with limited precision and range.
Irrational and transcendental numbers are not represented.

o Truly random integers would have occasional repetitions, but most
pseudo-random number generators produce a long sequence, called
the period, of distinct integers: these cannot be random.

o It isn’t enough to conform to an expected distribution: the order that
values appear in must be haphazard.

o Mathematical characterization of randomness is possible, but difficult.

o The best that we can usually do is compute statistical measures of
closeness to particular expected distributions.

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 6 / 82

When is a sequence of numbers random?

o Computer numbers are rational, with limited precision and range.
Irrational and transcendental numbers are not represented.

o Truly random integers would have occasional repetitions, but most
pseudo-random number generators produce a long sequence, called
the period, of distinct integers: these cannot be random.

o It isn’t enough to conform to an expected distribution: the order that
values appear in must be haphazard.

o Mathematical characterization of randomness is possible, but difficult.

o The best that we can usually do is compute statistical measures of
closeness to particular expected distributions.

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 6 / 82

When is a sequence of numbers random?

o Computer numbers are rational, with limited precision and range.
Irrational and transcendental numbers are not represented.

o Truly random integers would have occasional repetitions, but most
pseudo-random number generators produce a long sequence, called
the period, of distinct integers: these cannot be random.

o It isn’t enough to conform to an expected distribution: the order that
values appear in must be haphazard.

o Mathematical characterization of randomness is possible, but difficult.

o The best that we can usually do is compute statistical measures of
closeness to particular expected distributions.

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 6 / 82

When is a sequence of numbers random?

o Computer numbers are rational, with limited precision and range.
Irrational and transcendental numbers are not represented.

o Truly random integers would have occasional repetitions, but most
pseudo-random number generators produce a long sequence, called
the period, of distinct integers: these cannot be random.

o It isn’t enough to conform to an expected distribution: the order that
values appear in must be haphazard.

o Mathematical characterization of randomness is possible, but difficult.

o The best that we can usually do is compute statistical measures of
closeness to particular expected distributions.

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 6 / 82

When is a sequence of numbers random?

o Computer numbers are rational, with limited precision and range.
Irrational and transcendental numbers are not represented.

o Truly random integers would have occasional repetitions, but most
pseudo-random number generators produce a long sequence, called
the period, of distinct integers: these cannot be random.

o It isn’t enough to conform to an expected distribution: the order that
values appear in must be haphazard.

o Mathematical characterization of randomness is possible, but difficult.

o The best that we can usually do is compute statistical measures of
closeness to particular expected distributions.

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 6 / 82

Distributions of pseudo-random numbers

o Uniform (most common).

o Exponential.

o Normal (bell-shaped curve).

o Logarithmic: if ran() is uniformly-distributed in (a, b), define
randl(x) = exp(x ran()). Then a randl(ln(b/a)) is logarithmically
distributed in (a, b). [Important use: sampling in floating-point
number intervals.]

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 7 / 82

Distributions of pseudo-random numbers

o Uniform (most common).

o Exponential.

o Normal (bell-shaped curve).

o Logarithmic: if ran() is uniformly-distributed in (a, b), define
randl(x) = exp(x ran()). Then a randl(ln(b/a)) is logarithmically
distributed in (a, b). [Important use: sampling in floating-point
number intervals.]

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 7 / 82

Distributions of pseudo-random numbers

o Uniform (most common).

o Exponential.

o Normal (bell-shaped curve).

o Logarithmic: if ran() is uniformly-distributed in (a, b), define
randl(x) = exp(x ran()). Then a randl(ln(b/a)) is logarithmically
distributed in (a, b). [Important use: sampling in floating-point
number intervals.]

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 7 / 82

Distributions of pseudo-random numbers

o Uniform (most common).

o Exponential.

o Normal (bell-shaped curve).

o Logarithmic: if ran() is uniformly-distributed in (a, b), define
randl(x) = exp(x ran()). Then a randl(ln(b/a)) is logarithmically
distributed in (a, b). [Important use: sampling in floating-point
number intervals.]

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 7 / 82

Distributions of pseudo-random numbers . . .

Sample logarithmic distribution:

% hoc
a = 1
b = 1000000
for (k = 1; k <= 10; ++k) printf "%16.8f\n", a*randl(ln(b/a))

664.28612484
199327.86997895
562773.43156449
91652.89169494

34.18748767
472.74816777
12.34092778
2.03900107

44426.83813202
28.79498121

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 9 / 82

Uniform distribution

Here are three ways to visualize a pseudo-random number distribution,
using the Dyadkin-Hamilton generator function rn01(), which produces
results uniformly distributed on (0, 1]:

0.0

0.2

0.4

0.6

0.8

1.0

0 2500 5000 7500 10000

rn
01

()

output n

Uniform Distribution

0.0

0.2

0.4

0.6

0.8

1.0

0 2500 5000 7500 10000

rn
01

()

sorted n

Uniform Distribution

0

50

100

150

0.0 0.2 0.4 0.6 0.8 1.0

co
un

t

x

Uniform Distribution Histogram

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 11 / 82

Exponential distribution

Here are visualizations of computations with the Dyadkin-Hamilton
generator rnexp(), which produces results exponentially distributed on
[0, ∞):

0

2

4

6

8

10

0 2500 5000 7500 10000

rn
ex

p(
)

output n

Exponential Distribution

0

2

4

6

8

10

0 2500 5000 7500 10000

rn
ex

p(
)

sorted n

Exponential Distribution

0

200

400

600

800

1000

0 1 2 3 4 5 6

co
un

t

x

Exponential Distribution Histogram

Even though the theoretical range is [0, ∞), the results are practically
always modest: the probability of a result as big as 50 is smaller than
2× 10−22. At one result per microsecond, it could take 164 million years
of computing to encounter such a value!

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 13 / 82

Normal distribution

Here are visualizations of computations with the Dyadkin-Hamilton
generator rnnorm(), which produces results normally distributed on
(−∞, +∞):

-4
-3
-2
-1
0
1
2
3
4

0 2500 5000 7500 10000

rn
no

rm
()

output n

Normal Distribution

-4
-3
-2
-1
0
1
2
3
4

0 2500 5000 7500 10000

rn
no

rm
()

sorted n

Normal Distribution

0
50

100
150
200
250
300
350
400

-4 -3 -2 -1 0 1 2 3 4

co
un

t

x

Normal Distribution Histogram

Results are never very large: a result as big as 7 occurs with probability
smaller than 5× 10−23. At one result per microsecond, it could take
757 million years of computing to encounter such a value.

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 15 / 82

Logarithmic distribution

Here are visualizations of computations with the hoc generator
randl(ln(1000000)), which produces results normally distributed on
(1, 1000000):

0

200000

400000

600000

800000

1000000

0 2500 5000 7500 10000

ra
nd

l()

output n

Logarithmic Distribution

0

200000

400000

600000

800000

1000000

0 2500 5000 7500 10000

ra
nd

l()

sorted n

Logarithmic Distribution

0

100

200

300

400

500

0 50 100 150 200 250

co
un

t

x

Logarithmic Distribution Histogram

The graphs are similar to those for the exponential distribution, but here,
the result range is controlled by the argument of randl().

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 17 / 82

Goodness of fit: the χ2 measure

Given a set of n independent observations with measured values Mk and
expected values Ek , then ∑n

k=1 |(Ek −Mk)| is a measure of goodness of
fit. So is ∑n

k=1(Ek −Mk)2. Statisticians use instead a measure introduced
in 1900 by one of the founders of modern statistics, the English
mathematician Karl Pearson (1857–1936):

(1880)

χ2 measure =
n

∑
k=1

(Ek −Mk)2

Ek

Equivalently, if we have s categories expected to occur
with probability pk , and if we take n samples, counting
the number Yk in category k, then

χ2 measure =
s

∑
k=1

(npk − Yk)2

npk

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 18 / 82

Goodness of fit: the χ2 measure . . .

The theoretical χ2 distribution depends on the number of degrees of
freedom, and table entries look like this (highlighted entries are referred to
later):

D.o.f. p = 1% p = 5% p = 25% p = 50% p = 75% p = 95% p = 99%
ν = 1 0.00016 0.00393 0.1015 0.4549 1.323 3.841 6.635

ν = 5 0.5543 1.1455 2.675 4.351 6.626 11.07 15.09

ν = 10 2.558 3.940 6.737 9.342 12.55 18.31 23.21
ν = 50 29.71 34.76 42.94 49.33 56.33 67.50 76.15

For example, this table says:

For ν = 10 , the probability that the χ2 measure

is no larger than 23.21 is 99%.

In other words, χ2 measures larger than 23.21
should occur only about 1% of the time.

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 20 / 82

Goodness of fit: coin-toss experiments

Coin toss has one degree of freedom, ν = 1 , because if it is not heads,
then it must be tails.

% hoc

for (k = 1; k <= 10; ++k) print randint(0,1), ""

0 1 1 1 0 0 0 0 1 0

This gave four 1s and six 0s:

χ2 measure =
(10× 0.5− 4)2 + (10× 0.5− 6)2

10× 0.5
= 2/5

= 0.40

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 22 / 82

Goodness of fit: coin-toss experiments . . .

From the table, for ν = 1 , we expect a χ2 measure no larger than

0.4549 half of the time, so our result is reasonable.
On the other hand, if we got nine 1s and one 0, then we have

χ2 measure =
(10× 0.5− 9)2 + (10× 0.5− 1)2

10× 0.5
= 32/5

= 6.4

This is close to the tabulated value 6.635 at p = 99%. That is,
we should only expect nine-of-a-kind about once in every
100 experiments.
If we had all 1s or all 0s, the χ2 measure is 10 (probability p = 0.998)
[twice in 1000 experiments].
If we had equal numbers of 1s and 0s, then the χ2 measure is 0, indicating
an exact fit.

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 23 / 82

Goodness of fit: coin-toss experiments . . .

Let’s try 100 similar experiments, counting the number of 1s in each
experiment:

% hoc
for (n = 1; n <= 100; ++n) {

sum = 0
for (k = 1; k <= 10; ++k) \

sum += randint(0,1)
print sum, ""

}
4 4 7 3 5 5 5 2 5 6 6 6 3 6 6 7 4 5 4 5 5 4
3 6 6 9 5 3 4 5 4 4 4 5 4 5 5 4 6 3 5 5 3 4
4 7 2 6 5 3 6 5 6 7 6 2 5 3 5 5 5 7 8 7 3 7
8 4 2 7 7 3 3 5 4 7 3 6 2 4 5 1 4 5 5 5 6 6
5 6 5 5 4 8 7 7 5 5 4 5

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 25 / 82

Goodness of fit: coin-toss experiments . . .

The measured frequencies of the sums are:

100 experiments
k 0 1 2 3 4 5 6 7 8 9 10

Yk 0 1 5
1
2

1
9

3
1

1
6

1
2 3 1 0

Notice that nine-of-a-kind occurred once each for 0s and 1s, as predicted.

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 27 / 82

Goodness of fit: coin-toss experiments . . .

A simple one-character change on the outer loop limit produces the next
experiment:

1000 experiments
k 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65

Yk 1 2 3 3 8 7
1
6

1
4

2
9

5
1

4
3

6
2

6
2

7
9

8
4

9
3

8
4

7
6

5
4

5
9

2
9

4
3

3
1

2
1

1
8

1
0 7 6 1 1 0

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 29 / 82

Goodness of fit: coin-toss experiments . . .

Another one-character change gives us this:

10 000 experiments
k 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

Yk 0 0 3 1 7 7
1
2

2
7

3
0

8
5

9
9

1
6
8

2
2
4

2
9
5

4
2
0

4
8
4

5
8
8

6
6
3

7
6
6

7
9
9

8
0
4

7
5
5

7
6
6

6
2
8

5
5
9

4
7
0

4
1
3

2
9
8

2
0
7

1
5
0

9
3

7
0

4
8

2
0

1
5

1
2 8 4 1 0 0

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 31 / 82

Goodness of fit: coin-toss experiments . . .

A final one-character change gives us this result for one million coin tosses:

100 000 experiments
k 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

Yk 1 4
1
2

3
4

4
7

7
0

1
1
8

2
4
2

4
1
8

8
0
2

1
0
8
6

1
6
3
3

2
2
5
9

3
1
1
2

3
9
8
7

4
8
8
0

5
6
0
9

6
5
8
7

7
3
2
0

8
1
1
3

8
2
2
7

7
8
2
8

7
1
7
1

6
6
0
7

5
6
0
4

4
7
4
0

3
9
6
2

3
0
2
9

2
2
1
2

1
5
4
4

9
9
6

6
5
4

4
7
4

2
5
7

1
4
1

1
0
7

4
3

3
7

2
1 5 5

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 33 / 82

Are the digits of π random?

Here are χ2 results for the digits of π from recent computational records

(χ2(ν = 9, p = 0.99) ≈ 21.67):

π

Digits Base χ2 p(χ2)
6B 10 9.00 0.56

50B 10 5.60 0.22
200B 10 8.09 0.47

1T 10 14.97 0.91
1T 16 7.94 0.46

1/π

Digits Base χ2 p(χ2)
6B 10 5.44 0.21

50B 10 7.04 0.37
200B 10 4.18 0.10

Whether the fractional digits of π, and most other transcendentals, are
normal (≈ equally likely to occur) is an outstanding unsolved problem in
mathematics.

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 34 / 82

The Central-Limit Theorem

The famous Central-Limit Theorem (de Moivre (1718), Laplace
(1810), and Cauchy (1853)), says:

A suitably normalized sum of independent random variables
is likely to be normally distributed, as the number of vari-
ables grows beyond all bounds. It is not necessary that the
variables all have the same distribution function or even that
they be wholly independent.

— I. S. Sokolnikoff and R. M. Redheffer
Mathematics of Physics and Modern Engineering, 2nd ed.

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 35 / 82

The Central-Limit Theorem . . .

In mathematical terms, this is

P(nµ + r1
√

n ≤ X1 + X2 + · · ·+ Xn ≤ nµ + r2
√

n)

≈ 1

σ
√

2π

∫ r2

r1
exp(−t2/(2σ2))dt

where the Xk are independent, identically distributed, and bounded
random variables, µ is their mean value, σ is their standard deviation,
and σ2 is their variance.

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 36 / 82

The Central-Limit Theorem . . .

The integrand of this probability function looks like this:

0.0

0.5

1.0

1.5

2.0

-10.0 -5.0 0.0 5.0 10.0

N
or

m
al

(x
)

x

The Normal Distribution

σ = 0.2

σ = 0.5

σ = 1.0

σ = 2.0

σ = 5.0

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 37 / 82

The Central-Limit Theorem . . .

The normal curve falls off very rapidly. We can compute its area in
[−x , +x] with a simple midpoint quadrature rule like this:

func f(x) {
global sigma;
return (1/(sigma*sqrt(2*PI)))* exp(-x*x/(2*sigma**2))

}

func q(a,b) {
n = 10240
h = (b - a)/n
area = 0
for (k = 0; k < n; ++k) \

area += h*f(a + (k + 0.5)*h);
return area

}

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 39 / 82

The Central-Limit Theorem . . .

sigma = 3
for (k = 1; k < 8; ++k) \

printf "%d %.9f\n", k, q(-k*sigma,k*sigma)
1 0.682689493
2 0.954499737
3 0.997300204
4 0.999936658
5 0.999999427
6 0.999999998
7 1.000000000

In computer management, 99.999% (five 9’s) availability is
five minutes downtime per year.
In manufacturing, Motorola’s 6σ reliability with 1.5σ drift is about
three defects per million (from q(−(6− 1.5) ∗ σ, +(6− 1.5) ∗ σ)/2).

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 41 / 82

The Central-Limit Theorem . . .

It is remarkable that the Central-Limit Theorem applies also to nonuniform
distributions. Here is a demonstration with sums from exponential and
normal distributions:

0
100
200
300
400
500
600
700

5 10 15 20

C
ou

nt

Sum of 10 samples

Sums from Exponential Distribution

0
100
200
300
400
500
600
700

5 10 15 20
C

ou
nt

Sum of 10 samples

Sums from Normal Distribution

Superimposed on the histograms are rough fits by eye of normal
distribution curves 650 exp(−(x − 12.6)2/4.7) and
550 exp(−(x − 13.1)2/2.3).

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 42 / 82

The Central-Limit Theorem . . .

Not everything looks like a normal distribution. Here is a similar
experiment, using differences of successive pseudo-random numbers,
bucketizing them into 40 bins from the range [−1.0, +1.0]:

10 000 experiments (counts scaled by 1/100)
k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Yk

1
3

3
5

6
1

8
8

1
1
3

1
3
8

1
6
3

1
8
7

2
1
1

2
3
6

2
6
2

2
9
0

3
1
2

3
3
9

3
6
1

3
8
7

4
1
4

4
3
7

4
6
4

4
8
7

4
8
7

4
6
7

4
3
7

4
1
4

3
8
5

3
6
5

3
3
7

3
1
2

2
8
8

2
6
1

2
3
6

2
1
2

1
8
8

1
6
2

1
3
7

1
1
3

8
7

6
3

3
6

1
2

This one is known from theory: it is a triangular distribution. A similar
result is obtained if one takes pair sums instead of differences.

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 44 / 82

Digression: Poisson distribution

The Poisson distribution arises in time series when the probability of an
event occurring in an arbitrary interval is proportional to the length of the
interval, and independent of other events:

P(X = n) =
λn

n!
e−λ

In 1898, Ladislaus von Bortkiewicz collected Prussian army data on the
number of soldiers killed by horse kicks in 10 cavalry units over 20 years:
122 deaths, or an average of 122/200 = 0.61 deaths per unit per year.

λ = 0.61
Deaths Kicks Kicks

(actual) (Poisson)
0 109 108.7
1 65 66.3
2 22 20.2
3 3 4.1
4 1 0.6

0

20

40

60

80

100

120

-1 0 1 2 3 4 5

H
or

se
 k

ic
ks

Deaths

Cavalry deaths by horse kick (1875--1894)

lambda = 0.61

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 45 / 82

The Central-Limit Theorem . . .

Measurements of physical phenomena often form normal distributions:

0

250

500

750

1000

1250

32 34 36 38 40 42 44 46 48

C
ou

nt
 o

f s
ol

di
er

s

Inches

Chest girth of Scottish soldiers (1817)

0

500

1000

1500

2000

56 58 60 62 64 66 68 70

C
ou

nt
 o

f s
ol

di
er

s

Inches

Height of French soldiers (1851--1860)

0

1000

2000

3000

4000

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

C
ou

nt
 o

f c
oi

ns

Grains from average

Weights of 10,000 gold sovereigns (1848)

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 46 / 82

The Central-Limit Theorem . . .

-1.0

-0.5

0.0

0.5

1.0

-5 -4 -3 -2 -1 0 1 2 3 4 5

U
ni

ts
 in

 th
e

la
st

 p
la

ce

x

Error in erf(x)

0

200

400

600

800

-1.0 -0.5 0.0 0.5 1.0

C
ou

nt
 o

f f
un

ct
io

n
ca

lls

Units in the last place

Error in erf(x), x on [-5,5]

σ = 0.22

-20
-15
-10

-5
0
5

10
15
20

0 1 2 3 4 5 6 7 8 9 10

U
ni

ts
 in

 th
e

la
st

 p
la

ce

x

Error in gamma(x)

0

500

1000

1500

2000

2500

-15 -10 -5 0 5 10 15

C
ou

nt
 o

f f
un

ct
io

n
ca

lls

Units in the last place

Error in gamma(x), x on [0..10]

σ = 3.68

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 47 / 82

The Central-Limit Theorem . . .

-1.0

-0.5

0.0

0.5

1.0

0 1 2 3 4 5 6 7 8 9 10

U
ni

ts
 in

 th
e

la
st

 p
la

ce

x

Error in log(x)

0
100
200
300
400
500
600
700

-1.0 -0.5 0.0 0.5 1.0

C
ou

nt
 o

f f
un

ct
io

n
ca

lls

Units in the last place

Error in log(x), x on (0..10]

σ = 0.22

-1.0

-0.5

0.0

0.5

1.0

0 1 2 3 4 5 6

U
ni

ts
 in

 th
e

la
st

 p
la

ce

x

Error in sin(x)

0

100

200

300

400

-1.0 -0.5 0.0 0.5 1.0

C
ou

nt
 o

f f
un

ct
io

n
ca

lls

Units in the last place

Error in sin(x), x on [0..2π)

σ = 0.19

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 48 / 82

The Normal Curve and Carl-Friedrich Gauß (1777–1855)

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 49 / 82

The Normal Curve and the Quincunx

~
~

~
~
~

quincunx, n.

2. An arrangement or disposition of five objects so placed that four
occupy the corners, and the fifth the centre, of a square or other rectangle;
a set of five things arranged in this manner.
b. spec. as a basis of arrangement in planting trees, either in a single set
of five or in combinations of this; a group of five trees so planted.

Oxford English Dictionary

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 50 / 82

The Normal Curve and the Quincunx . . .

For simulations and other material on the quincunx (Galton’s bean
machine), see:

http://www.ms.uky.edu/~mai/java/stat/GaltonMachine.html

http://www.rand.org/statistics/applets/clt.html

http://www.stattucino.com/berrie/dsl/Galton.html

http://teacherlink.org/content/math/interactive/
flash/quincunx/quincunx.html

http://www.bun.kyoto-u.ac.jp/~suchii/quinc.html

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 51 / 82

Remarks on random numbers

Any one who considers arithmetical methods of producing
random numbers is, of course, in a state of sin.

— John von Neumann (1951)
[The Art of Computer Programming, Vol. 2,

Seminumerical Algorithms, 3rd ed., p. 1]

He talks at random; sure, the man is mad.
— Queen Margaret

[William Shakespeare’s 1 King Henry VI,
Act V, Scene 3 (1591)]

A random number generator chosen
at random isn’t very random.

— Donald E. Knuth (1997)
[The Art of Computer Programming, Vol. 2,
Seminumerical Algorithms, 3rd ed., p. 384]

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 52 / 82

How do we generate pseudo-random numbers?

o Linear-congruential generators (most common):
rn+1 = (arn + c) mod m, for integers a, c , and m, where 0 < m,
0 ≤ a < m, 0 ≤ c < m, with starting value 0 ≤ r0 < m.

o Fibonacci sequence (bad!):
rn+1 = (rn + rn−1) mod m.

o Additive (better): rn+1 = (rn−α + rn−β) mod m.

o Multiplicative (bad):
rn+1 = (rn−α × rn−β) mod m.

o Shift register:
rn+k = ∑k−1

i=0 (ai rn+i (mod 2)) (ai = 0, 1).

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 53 / 82

How do we generate pseudo-random numbers?

o Linear-congruential generators (most common):
rn+1 = (arn + c) mod m, for integers a, c , and m, where 0 < m,
0 ≤ a < m, 0 ≤ c < m, with starting value 0 ≤ r0 < m.

o Fibonacci sequence (bad!):
rn+1 = (rn + rn−1) mod m.

o Additive (better): rn+1 = (rn−α + rn−β) mod m.

o Multiplicative (bad):
rn+1 = (rn−α × rn−β) mod m.

o Shift register:
rn+k = ∑k−1

i=0 (ai rn+i (mod 2)) (ai = 0, 1).

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 53 / 82

How do we generate pseudo-random numbers?

o Linear-congruential generators (most common):
rn+1 = (arn + c) mod m, for integers a, c , and m, where 0 < m,
0 ≤ a < m, 0 ≤ c < m, with starting value 0 ≤ r0 < m.

o Fibonacci sequence (bad!):
rn+1 = (rn + rn−1) mod m.

o Additive (better): rn+1 = (rn−α + rn−β) mod m.

o Multiplicative (bad):
rn+1 = (rn−α × rn−β) mod m.

o Shift register:
rn+k = ∑k−1

i=0 (ai rn+i (mod 2)) (ai = 0, 1).

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 53 / 82

How do we generate pseudo-random numbers?

o Linear-congruential generators (most common):
rn+1 = (arn + c) mod m, for integers a, c , and m, where 0 < m,
0 ≤ a < m, 0 ≤ c < m, with starting value 0 ≤ r0 < m.

o Fibonacci sequence (bad!):
rn+1 = (rn + rn−1) mod m.

o Additive (better): rn+1 = (rn−α + rn−β) mod m.

o Multiplicative (bad):
rn+1 = (rn−α × rn−β) mod m.

o Shift register:
rn+k = ∑k−1

i=0 (ai rn+i (mod 2)) (ai = 0, 1).

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 53 / 82

How do we generate pseudo-random numbers?

o Linear-congruential generators (most common):
rn+1 = (arn + c) mod m, for integers a, c , and m, where 0 < m,
0 ≤ a < m, 0 ≤ c < m, with starting value 0 ≤ r0 < m.

o Fibonacci sequence (bad!):
rn+1 = (rn + rn−1) mod m.

o Additive (better): rn+1 = (rn−α + rn−β) mod m.

o Multiplicative (bad):
rn+1 = (rn−α × rn−β) mod m.

o Shift register:
rn+k = ∑k−1

i=0 (ai rn+i (mod 2)) (ai = 0, 1).

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 53 / 82

How do we generate pseudo-random numbers? . . .

Given an integer r ∈ [A, B), x = (r − A)/(B − A + 1) is on [0, 1).
However, interval reduction by A + (r − A) mod s to get a distribution in
(A, C), where s = (C − A + 1), is possible only for certain values of s.
Consider reduction of [0, 4095] to [0, m], with m ∈ [1, 9]: we get equal
distribution of remainders only for m = 2q − 1:

m counts of remainders k mod (m + 1), k ∈ [0, m]
OK 1 2048 2048

2 1366 1365 1365
OK 3 1024 1024 1024 1024

4 820 819 819 819 819
5 683 683 683 683 682 682
6 586 585 585 585 585 585 585

OK 7 512 512 512 512 512 512 512 512
8 456 455 455 455 455 455 455 455 455
9 410 410 410 410 410 410 409 409 409 409

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 54 / 82

How do we generate pseudo-random numbers? . . .

Samples from other distributions can usually be obtained by some suitable
transformation. Here is the simplest generator for the normal distribution,
assuming that randu() returns uniformly-distributed values on (0, 1]:

func randpmnd() \
{ ## Polar method for random deviates

Algorithm P, p. 122, from Donald E. Knuth,
The Art of Computer Programming, vol. 2, 3/e, 1998
while (1) \
{
v1 = 2*randu() - 1 # v1 on [-1,+1]
v2 = 2*randu() - 1 # v2 on [-1,+1]
s = v1*v1 + v2*v2 # s on [0,2]
if (s < 1) break # exit loop if s inside unit circle

}
return (v1 * sqrt(-2*ln(s)/s))

}

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 56 / 82

Period of a sequence

All pseudo-random number generators eventually reproduce the starting
sequence; the period is the number of values generated before this
happens.
Widely-used historical generators have periods of a few tens of thousands
to a few billion, but good generators are now known with very large
periods:

> 10449 Matlab’s rand() (≈ 21492: Columbus generator),
> 102894 Marsaglia’s Monster-KISS (2000),
> 106001 Matsumoto and Nishimura’s Mersenne Twister (1998) (used

in hoc), and
> 1014100 Deng and Xu (2003).

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 58 / 82

Period of a sequence

All pseudo-random number generators eventually reproduce the starting
sequence; the period is the number of values generated before this
happens.
Widely-used historical generators have periods of a few tens of thousands
to a few billion, but good generators are now known with very large
periods:

> 10449 Matlab’s rand() (≈ 21492: Columbus generator),

> 102894 Marsaglia’s Monster-KISS (2000),
> 106001 Matsumoto and Nishimura’s Mersenne Twister (1998) (used

in hoc), and
> 1014100 Deng and Xu (2003).

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 58 / 82

Period of a sequence

All pseudo-random number generators eventually reproduce the starting
sequence; the period is the number of values generated before this
happens.
Widely-used historical generators have periods of a few tens of thousands
to a few billion, but good generators are now known with very large
periods:

> 10449 Matlab’s rand() (≈ 21492: Columbus generator),
> 102894 Marsaglia’s Monster-KISS (2000),

> 106001 Matsumoto and Nishimura’s Mersenne Twister (1998) (used
in hoc), and

> 1014100 Deng and Xu (2003).

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 58 / 82

Period of a sequence

All pseudo-random number generators eventually reproduce the starting
sequence; the period is the number of values generated before this
happens.
Widely-used historical generators have periods of a few tens of thousands
to a few billion, but good generators are now known with very large
periods:

> 10449 Matlab’s rand() (≈ 21492: Columbus generator),
> 102894 Marsaglia’s Monster-KISS (2000),
> 106001 Matsumoto and Nishimura’s Mersenne Twister (1998) (used

in hoc), and

> 1014100 Deng and Xu (2003).

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 58 / 82

Period of a sequence

All pseudo-random number generators eventually reproduce the starting
sequence; the period is the number of values generated before this
happens.
Widely-used historical generators have periods of a few tens of thousands
to a few billion, but good generators are now known with very large
periods:

> 10449 Matlab’s rand() (≈ 21492: Columbus generator),
> 102894 Marsaglia’s Monster-KISS (2000),
> 106001 Matsumoto and Nishimura’s Mersenne Twister (1998) (used

in hoc), and
> 1014100 Deng and Xu (2003).

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 58 / 82

Reproducible sequences

In computational applications with pseudo-random numbers, it is essential
to be able to reproduce a previous calculation. Thus, generators are
required that can be set to a given initial seed :

% hoc
for (k = 0; k < 3; ++k) \
{

setrand(12345)
for (n = 0; n < 10; ++n) print int(rand()*100000),""
println ""

}
88185 5927 13313 23165 64063 90785 24066 37277 55587 62319
88185 5927 13313 23165 64063 90785 24066 37277 55587 62319
88185 5927 13313 23165 64063 90785 24066 37277 55587 62319

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 60 / 82

Reproducible sequences . . .

If the seed is not reset, different sequences are obtained for each test run.
Here is the same code as before, with the setrand() call disabled:

for (k = 0; k < 3; ++k) \
{

setrand(12345)
for (n = 0; n < 10; ++n) print int(rand()*100000),""
println ""

}
36751 37971 98416 59977 49189 85225 43973 93578 61366 54404
70725 83952 53720 77094 2835 5058 39102 73613 5408 190
83957 30833 75531 85236 26699 79005 65317 90466 43540 14295

In practice, software must have its own source-code implementation
of the generators: vendor-provided ones do not suffice.

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 62 / 82

The correlation problem

Random numbers fall mainly in the planes
— George Marsaglia (1968)

Linear-congruential generators are known to have correlation of successive
numbers: if these are used as coordinates in a graph, one gets patterns,
instead of uniform grey:

Good Bad

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The number of points plotted is the same in each graph.

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 63 / 82

The correlation problem . . .

The good generator is Matlab’s rand(). Here is the bad generator:

% hoc

func badran() {

global A, C, M, r;

r = int(A*r + C) % M;

return r }

M = 2^15 - 1; A = 2^7 - 1 ; C = 2^5 - 1

r = 0 ; r0 = r ; s = -1 ; period = 0

while (s != r0) {period++; s = badran(); print s, "" }

31 3968 12462 9889 10788 26660 ... 22258 8835 7998 0

Show the sequence period

println period

175

Show that the sequence repeats

for (k = 1; k <= 5; ++k) print badran(),""

31 3968 12462 9889 10788

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 65 / 82

The correlation problem . . .

Marsaglia’s (2003) family of xor-shift generators:

y ^= y << a; y ^= y >> b; y ^= y << c;

l-003 l-007

0e+00

1e+09

2e+09

3e+09

4e+09

0e+00 1e+09 2e+09 3e+09 4e+09
0e+00

1e+09

2e+09

3e+09

4e+09

0e+00 1e+09 2e+09 3e+09 4e+09

l-028 l-077

0e+00

1e+09

2e+09

3e+09

4e+09

0e+00 1e+09 2e+09 3e+09 4e+09
0e+00

1e+09

2e+09

3e+09

4e+09

0e+00 1e+09 2e+09 3e+09 4e+09

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 67 / 82

Generating random integers

When the endpoints of a floating-point uniform pseudo-random number
generator are uncertain, generate random integers in [low,high] like this:

func irand(low, high) \

{

Ensure integer endpoints

low = int(low)

high = int(high)

Sanity check on argument order

if (low >= high) return (low)

Find a value in the required range

n = low - 1

while ((n < low) || (high < n)) \

n = low + int(rand() * (high + 1 - low))

return (n)

}

for (k = 1; k <= 20; ++k) print irand(-9,9), ""

-9 -2 -2 -7 7 9 -3 0 4 8 -3 -9 4 7 -7 8 -3 -4 8 -4

for (k = 1; k <= 20; ++k) print irand(0, 10^6), ""

986598 580968 627992 379949 700143 734615 361237

322631 116247 369376 509615 734421 321400 876989

940425 139472 255449 394759 113286 95688

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 69 / 82

Generating random integers in order

% hoc

func bigrand() { return int(2^31 * rand()) }

select(m,n): select m pseudo-random integers from (0,n) in order

proc select(m,n) \

{

mleft = m

remaining = n

for (i = 0; i < n; ++i) \

{

if (int(bigrand() % remaining) < mleft) \

{

print i, ""

mleft--

}

remaining--

}

println ""

}

See Chapter 12 of Jon Bentley, Programming Pearls, 2nd ed.,
Addison-Wesley (2000), ISBN 0-201-65788-0. [ACM TOMS 6(3),
359–364, September 1980].

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 71 / 82

Generating random integers in order . . .

Here is how the select() function works:

select(3,10)
5 6 7

select(3,10)
0 7 8

select(3,10)
2 5 6

select(3,10)
1 5 7

select(10,100000)
7355 20672 23457 29273 33145 37562 72316 84442 88329 97929

select(10,100000)
401 8336 41917 43487 44793 56923 61443 90474 92112 92799

select(10,100000)
5604 8492 24707 31563 33047 41864 42299 65081 90102 97670

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 73 / 82

Testing pseudo-random number generators

Most tests are based on computing a χ2 measure of computed and
theoretical values.
If one gets values p < 1% or p > 99% for several tests, the
generator is suspect.
Marsaglia Diehard Battery test suite (1985): 15 tests.
Marsaglia/Tsang tuftest suite (2002): 3 tests.
All produce p values that can be checked for reasonableness.
These tests all expect uniformly-distributed pseudo-random numbers.

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 74 / 82

Testing nonuniform pseudo-random number generators

How do you test a generator that produces pseudo-random numbers in
some other distribution? You have to figure out a way to use those values
to produce an expected uniform distribution that can be fed into the
standard test programs.
For example, take the negative log of exponentially-distributed values,
since − log(exp(−random)) = random.
For normal distributions, consider successive pairs (x , y) as a
2-dimensional vector, and express in polar form (r , θ): θ is then uniformly
distributed in [0, 2π), and θ/(2π) is in [0, 1).

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 75 / 82

The Marsaglia/Tsang tuftest tests

Just three tests instead of the fifteen of the Diehard suite:

o b’day test (generalization of Birthday Paradox).

o Euclid’s (ca. 330–225BC) gcd test.

o Gorilla test (generalization of monkey’s typing random streams of
characters).

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 76 / 82

The Marsaglia/Tsang tuftest tests

Just three tests instead of the fifteen of the Diehard suite:

o b’day test (generalization of Birthday Paradox).

o Euclid’s (ca. 330–225BC) gcd test.

o Gorilla test (generalization of monkey’s typing random streams of
characters).

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 76 / 82

The Marsaglia/Tsang tuftest tests

Just three tests instead of the fifteen of the Diehard suite:

o b’day test (generalization of Birthday Paradox).

o Euclid’s (ca. 330–225BC) gcd test.

o Gorilla test (generalization of monkey’s typing random streams of
characters).

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 76 / 82

Digression: The Birthday Paradox

The birthday paradox arises from the question How many people do you
need in a room before the probability is at least half that two of
them share a birthday?
The answer is just 23, not 365/2 = 182.5.
The probability that none of n people are born on the same day is

P(1) = 1

P(n) = P(n− 1)× (365− (n− 1))/365

The n-th person has a choice of 365− (n− 1) days to not share a
birthday with any of the previous ones. Thus, (365− (n− 1))/365 is the
probability that the n-th person is not born on the same day as any of the
previous ones, assuming that they are born on different days.

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 77 / 82

Digression: The Birthday Paradox . . .

Here are the probabilities that n people share a birthday (i.e., 1− P(n)):

% hoc128

PREC = 3

p = 1

for (n = 1;n <= 365;++n) \

{p *= (365-(n-1))/365; println n,1-p}

1 0

2 0.00274

3 0.00820

4 0.0164

...

22 0.476

23 0.507

24 0.538

...

100 0.999999693

...

P(365) ≈ 1.45× 10−157 [cf. 1080 particles in universe].

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 79 / 82

Digression: Euclid’s algorithm (ca. 300BC)

This is the oldest surviving nontrivial algorithm in mathematics.

func gcd(x,y) \
{ ## greatest common denominator of integer x, y

r = abs(x) % abs(y)
if (r == 0) return abs(y) else return gcd(y, r)

}

func lcm(x,y) \
{ ## least common multiple of integer x,y

x = int(x)
y = int(y)
if ((x == 0) || (y == 0)) return (0)
return ((x * y)/gcd(x,y))

}

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 81 / 82

Digression: Euclid’s algorithm . . .

Complete rigorous analysis of Euclid’s algorithm was not achieved until
1970–1990!
The average number of steps is

A (gcd(x , y)) ≈
(
(12 ln 2)/π2

)
ln y

≈ 1.9405 log10 y

and the maximum number is

M (gcd(x , y)) = blogφ ((3− φ)y)c
≈ 4.785 log10 y + 0.6723

where φ = (1 +
√

5)/2 ≈ 1.6180 is the golden ratio.

Nelson H. F. Beebe (University of Utah) Pseudo-random numbers 11 October 2005 82 / 82

