
Pseudo-random numbers:︷ ︸︸ ︷
mostly

a line
of code︸ ︷︷ ︸

at a time

Nelson H. F. Beebe
Center for Scientific Computing

University of Utah
Department of Mathematics, 110 LCB

155 S 1400 E RM 233
Salt Lake City, UT 84112-0090

USA

Email: beebe@math.utah.edu, beebe@acm.org,
beebe@computer.org, beebe@ieee.org (Internet)

WWW URL: http://www.math.utah.edu/~beebe
Telephone: +1 801 581 5254

FAX: +1 801 581 4148

16 February 2004

1 What are random numbers good for?

❏ Decision making (e.g., coin flip).

❏ Generation of numerical test data.

❏ Generation of unique cryptographic keys.

❏ Search and optimization via random walks.

❏ Selection: quicksort (C. A. R. Hoare, ACM Algorithm 64: Quicksort,
Comm. ACM. 4(7), 321, July 1961) was the first widely-used divide-
and-conquer algorithm to reduce an O(N2) problem to (on average)
O(N lg(N)). Cf. Fast Fourier Transform (Gauss 1866 (Latin), Runge
1906, Danielson and Lanczos (crystallography) 1942, Cooley-Tukey
1965). See Figure 1.

❏ Simulation.

1

Figure 1: Abu ’Abd Allah Muhammad ibn Musa al-Khwarizmi (ca. 780–850)
is the father of algorithm and of algebra, from his book Hisab Al-Jabr wal
Mugabalah (Book of Calculations, Restoration and Reduction). He is cele-
brated in this 1200-year anniversary Soviet Union stamp.

❏ Sampling: unbiased selection of random data in statistical computa-
tions (opinion polls, experimental measurements, voting, Monte Carlo
integration, …). The latter is done like this:

∫ b
a
f (x)dx ≈


(b − a)

N

N∑
k=1

f (xk)


+O(1/√N) (xk random in (a, b))

Here is an example of a simple, smooth, and exactly integrable func-
tion, and the relative error of its Monte Carlo integration.

0.000

0.050

0.100

0.150

0.200

-10 -8 -6 -4 -2 0 2 4 6 8 10

f(
x)

N

f(x) = 1/sqrt(x2 + c2) [c = 5]

-7
-6
-5
-4
-3
-2
-1
0

0 20 40 60 80 100

lo
g(

R
el

E
rr

)

N

Convergence of Monte Carlo integration

-7
-6
-5
-4
-3
-2
-1
0

0 1 2 3 4 5

lo
g(

R
el

E
rr

)

log(N)

Convergence of Monte Carlo integration

2

2 One-time pad encryption

% hoc -q crypto.hoc

** Demonstration of a simple one-time pad symmetric-key encryption algorithm **

--
The encryption does not reveal message length, although it DOES reveal
common plaintext prefixes:

encrypt(123,"A")

2b04aa0f ef15ce59 654a0dc6 ba409618 daef6924 5729580b af3af319 f579b0bc

encrypt(123,"AB")

2b47315b 22fdc9f1 b90d4fdb 1eb8302a 4944eddb e7dd1bff 8d0d1f10 1e46b93c

encrypt(123,"ABC")

2b47752c 286a4724 40bf188f c08caffa 1007d4cc 2c2495f9 cd999566 abfe0c2d

encrypt(123,"ABCD")

2b477571 f970b4a2 7346ca58 742e8379 e0ce97b3 1d69dc73 c7d921dc 018bc480

--
The encryption does not reveal letter repetititions:

encrypt(123,"AA")

2b46736e 3b83cd28 777d88c8 ad1b12dc c28010ef 407d3513 e1ed75bc 5737fd71
6e68fb7d 4ac31248 94f21f9f d009455f 6d299f

--
Now encrypt a famous message from American revolutionary history:

ciphertext = encrypt(123, \

3

"One if by land, two if by sea: Paul Revere’s Ride, 16 April 1775")
println ciphertext

3973974d 63a8ac49 af5cb3e8 da3efdbb f5b63ece 68a21434 19cca7e0 7730dc80
8e9c265c 5be7476c c51605d1 af1a6d82 9114c057 620da15b 0670bb1d 3c95c30b
ed

--
Attempt to decrypt the ciphertext with a nearby key. Decryption DOES
reveal the message length, although that flaw could easily be fixed:

decrypt(122, ciphertext)
?^?/?)?D?fN&???w??V???Gj5?????(????1???J???i?i)y?I?-G?????b?o??X?

--
Attempt to decrypt the ciphertext with the correct key:

decrypt(123, ciphertext)
One if by land, two if by sea: Paul Revere’s Ride, 16 April 1775

--
Attempt to decrypt the ciphertext with another nearby key:

decrypt(124, ciphertext)
??$???W?????N????????!?Z?U???????Q??????3?B}‘<?O ?P5%??VdNv??kS??

--

% cat encrypt.hoc
-*-hoc-*-
==
Demonstrate a simple one-time-pad encryption based on a
pseudo-random number generator.
[23-Jul-2002]
==

Usage: encrypt(key,plaintext)
The returned string is an encrypted text stream: the ciphertext.
func encrypt(key,plaintext) \
{

plaintext = (plaintext char(255)) # add message terminator
while (length(plaintext) < 32) \

plaintext = (plaintext char(randint(1,255))) # pad to 32*n characters
setrand(key) # restart the generator
n = 0
ciphertext = "\n\t"

4

for (k = 1; k <= length(plaintext); ++k) \
{

Output 32-character lines in 4 chunks of 8 characters each

if ((n > 0) && (n % 32 == 0)) \
ciphertext = ciphertext "\n\t" \

else if ((n > 0) && (n % 4 == 0)) \
ciphertext = ciphertext " "

ciphertext = sprintf "%s%02x", ciphertext, \
((ichar(substr(plaintext,k,1)) + randint(0,255)) % 256)

n++
}
ciphertext = ciphertext "\n"
return (ciphertext)

}

% cat decrypt.hoc
-*-hoc-*-
==
Demonstrate a simple one-time-pad decryption based on a
pseudo-random number generator.
[23-Jul-2002]
==

Usage: isprint(c)
Return 1 if c is printable, and 0 otherwise.
func isprint(c) \
{

return ((c == 9) || (c == 10) || ((32 <= c) && (c < 127)))
}

__hex_decrypt = "0123456789abcdef"

Usage: decrypt(key,ciphertext)
Return the decryption of ciphertext, which will be the original
plaintext message if the key is correct.
func decrypt(key,ciphertext) \
{

global __hex_decrypt
setrand(key)
plaintext = ""
for (k = 1; k < length(ciphertext); k++) \
{

n = index(__hex_decrypt,substr(ciphertext,k,1))
if (n > 0) \

5

{ # have hex digit: decode hex pair
k++
c = 16 * (n - 1) + index(__hex_decrypt,substr(ciphertext,k,1)) - 1
n = int((c + 256 - randint(0,255)) % 256) # recover plaintext char
if (n == 255) \

break;
if (!isprint(n)) \

n = ichar("?") # mask unprintable characters
plaintext = plaintext char(n)

}
}
return (plaintext)

}

3 When is a sequence of numbers random?

If the numbers are not random, they are at least higgledy-piggledy.
— George Marsaglia (1984)

❏ Observation: all finite computer numbers (both fixed and floating-
point) are rational and of limited precision and range: irrational and
transcendental numbers are not represented.

❏ Most pseudo-random number generators produce a long sequence,
called the period, of distinct integers: truly random integers would
have occasional repetitions. Thus, any computer-generated sequence
that has no repetitions is strictly not random.

❏ It isn’t enough to conform to an expected distribution: the order that
values appear in must be haphazard. This means that simple tests of
moments (called mean, variance, skewness, kurtosis, … in statistics)
are inadequate, because they examine each value in isolation: tests are
needed to examine the sequence itself for chaos.

❏ Mathematical characterization of randomness is possible, but difficult:
pp. 149–193 of Donald E. Knuth’s The Art of Computer Programming,
vol. 2.

❏ The best that we can usually do is compute statistical measures of close-
ness to particular expected distributions. We examine a particularly-
useful measure in Section 5.

4 Distributions of pseudo-random numbers

❏ Uniform (most common).

6

0.0

0.2

0.4

0.6

0.8

1.0

0 2500 5000 7500 10000

rn
01

()

output n

Uniform Distribution

0.0

0.2

0.4

0.6

0.8

1.0

0 2500 5000 7500 10000

rn
01

()

sorted n

Uniform Distribution

0

50

100

150

0.0 0.2 0.4 0.6 0.8 1.0

co
un

t

x

Uniform Distribution Histogram

❏ Exponential.

0

2

4

6

8

10

0 2500 5000 7500 10000

rn
ex

p(
)

output n

Exponential Distribution

0

2

4

6

8

10

0 2500 5000 7500 10000

rn
ex

p(
)

sorted n

Exponential Distribution

0

200

400

600

800

1000

0 1 2 3 4 5 6
co

un
t

x

Exponential Distribution Histogram

❏ Normal (bell-shaped curve) (see Section 7).

-4
-3
-2
-1
0
1
2
3
4

0 2500 5000 7500 10000

rn
no

rm
()

output n

Normal Distribution

-4
-3
-2
-1
0
1
2
3
4

0 2500 5000 7500 10000

rn
no

rm
()

sorted n

Normal Distribution

0
50

100
150
200
250
300
350
400

-4 -3 -2 -1 0 1 2 3 4

co
un

t

x

Normal Distribution Histogram

❏ Logarithmic: if ran() is uniformly-distributed in (a, b), define randl(x) =
exp(x ran()). Then a randl(ln(b/a)) is logarithmically distributed in
(a, b).

% hoc
a = 1
b = 1000000

7

for (k = 1; k <= 10; ++k) \
printf "%16.8f\n", a*randl(ln(b/a))
664.28612484

199327.86997895
562773.43156449
91652.89169494

34.18748767
472.74816777
12.34092778
2.03900107

44426.83813202
28.79498121

0

200000

400000

600000

800000

1000000

0 2500 5000 7500 10000

ra
nd

l()

output n

Logarithmic Distribution

0

200000

400000

600000

800000

1000000

0 2500 5000 7500 10000

ra
nd

l()

sorted n

Logarithmic Distribution

0

100

200

300

400

500

0 50 100 150 200 250

co
un

t
x

Logarithmic Distribution Histogram

5 Goodness of fit: the χ2 measure

Given a set of n independent observations with measured values Mk and
expected values Ek, then

∑n
k=1 |(Ek −Mk)| is a measure of goodness of fit.

So is
∑n
k=1(Ek − Mk)2. Statisticians use instead a measure introduced by

Pearson (1900):

χ2 measure =
n∑
k=1

(Ek −Mk)2

Ek

Equivalently, if we have s categories expected to occur with probability
pk, and if we take n samples, counting the number Yk in category k, then

χ2 measure =
s∑
k=1

(npk − Yk)2
npk

The theoretical χ2 distribution depends on the number of degrees of
freedom, and table entries look like this (boxed entries are referred to later):

8

D.o.f. p = 1% p = 5% p = 25% p = 50% p = 75% p = 95% p = 99%

ν = 1 0.00016 0.00393 0.1015 0.4549 1.323 3.841 6.635
ν = 5 0.5543 1.1455 2.675 4.351 6.626 11.07 15.09
ν = 10 2.558 3.940 6.737 9.342 12.55 18.31 23.21
ν = 50 29.71 34.76 42.94 49.33 56.33 67.50 76.15

This says that, e.g., for ν = 10, the probability that the χ2 measure is
no larger than 23.21 is 99%.

For example, coin toss has ν = 1: if it is not heads, then it must be tails.

for (k = 1; k <= 10; ++k) print randint(0,1), ""
0 1 1 1 0 0 0 0 1 0

This gave four 1s and six 0s:

χ2 measure = (10× 0.5− 4)2 + (10× 0.5− 6)2

10× 0.5
= 2/5 = 0.40

From the table, we expect a χ2 measure no larger than 0.4549 half of the
time, so our result is reasonable.

On the other hand, if we got nine 1s and one 0, then we have

χ2 measure = (10× 0.5− 9)2 + (10× 0.5− 1)2

10× 0.5
= 32/5 = 6.4

This is close to the tabulated value 6.635 at p = 99%. That is, we should
only expect nine-of-a-kind about once in every 100 experiments.

If we had all 1s or all 0s, the χ2 measure is 10 (probability p = 0.998).
If we had equal numbers of 1s and 0s, then theχ2 measure is 0, indicating

an exact fit.
Let’s try 100 similar experiments, counting the number of 1s in each

experiment:

for (n = 1; n <= 100; ++n) \
{sum = 0; for (k = 1; k <= 10; ++k) sum += randint(0,1);
print sum, ""}
4 4 7 3 5 5 5 2 5 6 6 6 3 6 6 7 4 5 4 5 5 4 3 6 6 9 5 3
4 5 4 4 4 5 4 5 5 4 6 3 5 5 3 4 4 7 2 6 5 3 6 5 6 7 6 2
5 3 5 5 5 7 8 7 3 7 8 4 2 7 7 3 3 5 4 7 3 6 2 4 5 1 4 5
5 5 6 6 5 6 5 5 4 8 7 7 5 5 4 5

The measured frequencies of the sums are:

9

100 experiments
k 0 1 2 3 4 5 6 7 8 9 10

Yk 0 1 5
1
2

1
9

3
1

1
6

1
2 3 1 0

Notice that nine-of-a-kind occurred once each for 0s and 1s, as predicted.
A simple one-character change on the outer loop limit produces the next

experiment:

1000 experiments
k 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65

Yk 1 2 3 3 8 7
1
6

1
4

2
9

5
1

4
3

6
2

6
2

7
9

8
4

9
3

8
4

7
6

5
4

5
9

2
9

4
3

3
1

2
1

1
8

1
0 7 6 1 1 0

Another one-character change gives us this:

10 000 experiments
k 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

Yk 0 0 3 1 7 7
1
2

2
7

3
0

8
5

9
9

1
6
8

2
2
4

2
9
5

4
2
0

4
8
4

5
8
8

6
6
3

7
6
6

7
9
9

8
0
4

7
5
5

7
6
6

6
2
8

5
5
9

4
7
0

4
1
3

2
9
8

2
0
7

1
5
0

9
3

7
0

4
8

2
0

1
5

1
2 8 4 1 0 0

A final one-character change gives us this result for one million coin tosses:

10

100 000 experiments
k 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

Yk 1 4
1
2

3
4

4
7

7
0

1
1
8

2
4
2

4
1
8

8
0
2

1
0
8
6

1
6
3
3

2
2
5
9

3
1
1
2

3
9
8
7

4
8
8
0

5
6
0
9

6
5
8
7

7
3
2
0

8
1
1
3

8
2
2
7

7
8
2
8

7
1
7
1

6
6
0
7

5
6
0
4

4
7
4
0

3
9
6
2

3
0
2
9

2
2
1
2

1
5
4
4

9
9
6

6
5
4

4
7
4

2
5
7

1
4
1

1
0
7

4
3

3
7

2
1 5 5

In the magazine Science 84 (November 1984), the chi-square test was
ranked among the top twenty scientific discoveries of the 20th Century that
changed our lives:

1900–1919 1 Bakelite 11 Fission
2 IQ test 12 Red Shift
3 Non-Newtonian physics 13 DDT
4 Blood groups 14 Television
5 Chi-square test 1940–1959 15 Birth control pills
6 Vacuum tubes 16 Colossus and Eniac
7 Hybrid corn 17 Pschoactive drugs
8 Airfoil theory 18 Transistor

1920–1939 9 Antibiotics 19 Double helix
10 Taung skull 20 Masers and lasers

6 Randomness of digits of π

Here are χ2 results for the digits of π from recent computational records
(χ2(ν = 9, P = 0.99) ≈ 21.67):

π
Digits Base χ2 P(χ2)

6B 10 9.00 0.56
50B 10 5.60 0.22

200B 10 8.09 0.47
1T 10 14.97 0.91
1T 16 7.94 0.46

11

1/π
Digits Base χ2 P(χ2)

6B 10 5.44 0.21
50B 10 7.04 0.37

200B 10 4.18 0.10

Whether the fractional digits of π , and most other transcendentals, are
normal (≈ equally likely to occur) is an outstanding unsolved problem in
mathematics.

De Morgan suspected that Shanks’ 1872–73 computation of π to 707
decimal digits was wrong because the frequency of the digit 7 was low. De
Morgan was right, but it took a computer calculation by Ferguson in 1946
to show the error at Shanks’ digit 528.

7 The Central-Limit Theorem

The
normal

law of error
stands out in the

experience of mankind
as one of the broadest

generalizations of natural
philosophy � It serves as the

guiding instrument in researches
in the physical and social sciences and

in medicine agriculture and engineering �
It is an indispensable tool for the analysis and the

interpretation of the basic data obtained by observation and experiment.

— W. J. Youdon (1956)
[from Stephen M. Stigler, Statistics on the Table (1999), p. 415]

The famous Central-Limit Theorem (de Moivre 1718, Laplace 1810, and
Cauchy 1853), says:

A suitably normalized sum of independent random variables
is likely to be normally distributed, as the number of variables
grows beyond all bounds. It is not necessary that the variables all
have the same distribution function or even that they be wholly
independent.

— I. S. Sokolnikoff and R. M. Redheffer
Mathematics of Physics and Modern Engineering, 2nd ed.

In mathematical terms, this is

12

P(nµ+r1
√
n ≤ X1+X2+· · ·+Xn ≤ nµ+r2

√
n) ≈ 1

σ
√

2π

∫ r2

r1

exp(−t2/(2σ 2))dt

where the Xk are independent, identically distributed, and bounded random
variables, µ is their mean value, and σ 2 is their variance (not further defined
here).

The integrand of this probability function looks like this:

0.0

0.5

1.0

1.5

2.0

-10.0 -5.0 0.0 5.0 10.0

N
or

m
al

(x
)

x

The Normal Distribution

σ = 0.2

σ = 0.5

σ = 1.0

σ = 2.0

σ = 5.0

The normal curve falls off very rapidly. We can compute its area in
[−x,+x] with a simple midpoint quadrature rule like this:

func f(x) {global sigma;
return (1/(sigma*sqrt(2*PI)))*exp(-x*x/(2*sigma**2))}

func q(a,b){n = 10240; h = (b - a)/n; s = 0;
for (k = 0; k < n; ++k) s += h*f(a + (k + 0.5)*h);
return s}

sigma = 3
for (k = 1; k < 8; ++k) printf "%d %.9f\n", k, q(-k*sigma,k*sigma)

1 0.682689493
2 0.954499737
3 0.997300204
4 0.999936658
5 0.999999427

13

6 0.999999998
7 1.000000000

In computers, 99.999% (five 9’s) availability is 5 minutes downtime per
year. In manufacturing, Motorola’s 6σ reliability with 1.5σ drift is about
3.4 defects per million (from q(4.5∗ σ)/2).

It is remarkable that the Central-Limit Theorem applies also to nonuni-
form distributions: here is a demonstration with sums from exponential and
normal distributions. Superimposed on the histograms are rough fits by eye
of normal distribution curves 650 exp(−(x−12.6)2/4.7) and 550 exp(−(x−
13.1)2/2.3).

0
100
200
300
400
500
600
700

5 10 15 20

C
ou

nt

Sum of 10 samples

Sums from Exponential Distribution

0
100
200
300
400
500
600
700

5 10 15 20

C
ou

nt

Sum of 10 samples

Sums from Normal Distribution

Not everything looks like a normal distribution. Here is a similar experi-
ment, using differences of successive pseudo-random numbers, bucketizing
them into 40 bins from the range [−1.0,+1.0]:

10 000 experiments (counts scaled by 1/100)
k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Yk
1
3

3
5

6
1

8
8

1
1
3

1
3
8

1
6
3

1
8
7

2
1
1

2
3
6

2
6
2

2
9
0

3
1
2

3
3
9

3
6
1

3
8
7

4
1
4

4
3
7

4
6
4

4
8
7

4
8
7

4
6
7

4
3
7

4
1
4

3
8
5

3
6
5

3
3
7

3
1
2

2
8
8

2
6
1

2
3
6

2
1
2

1
8
8

1
6
2

1
3
7

1
1
3

8
7

6
3

3
6

1
2

This one is known from theory: it is a triangular distribution. A similar
result is obtained if one takes pair sums instead of differences.

Here is another type, the Poisson distribution, which arises in time se-
ries when the probability of an event occurring in an arbitrary interval is

14

proportional to the length of the interval, and independent of other events:

P(X = n) = λn

n!
e−λ

In 1898, Ladislaus von Bortkiewicz collected Prussian army data on the num-
ber of soldiers killed by horse kicks in 10 cavalry units over 20 years: 122
deaths, or an average of 122/200 = 0.61 deaths per unit per year.

λ = 0.61
Deaths Kicks (actual) Kicks (Poisson)

0 109 108.7
1 65 66.3
2 22 20.2
3 3 4.1
4 1 0.6

0

20

40

60

80

100

120

-1 0 1 2 3 4 5

H
or

se
 k

ic
ks

Deaths

Cavalry deaths by horse kick (1875--1894)

lambda = 0.61

Measurements of physical phenomena often form normal distributions:

0

250

500

750

1000

1250

32 34 36 38 40 42 44 46 48

C
ou

nt
 o

f s
ol

di
er

s

Inches

Chest girth of Scottish soldiers (1817)

0

500

1000

1500

2000

56 58 60 62 64 66 68 70

C
ou

nt
 o

f s
ol

di
er

s

Inches

Height of French soldiers (1851--1860)

15

0

1000

2000

3000

4000

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

C
ou

nt
 o

f c
oi

ns

Grains from average

Weights of 10,000 gold sovereigns (1848)

-1.0

-0.5

0.0

0.5

1.0

-5 -4 -3 -2 -1 0 1 2 3 4 5

U
ni

ts
 in

 th
e

la
st

 p
la

ce

x

Error in erf(x)

0

200

400

600

800

-1.0 -0.5 0.0 0.5 1.0

C
ou

nt
 o

f f
un

ct
io

n
ca

lls

Units in the last place

Error in erf(x), x on [-5,5]

σ = 0.22

-20
-15
-10
-5
0
5

10
15
20

0 1 2 3 4 5 6 7 8 9 10

U
ni

ts
 in

 th
e

la
st

 p
la

ce

x

Error in gamma(x)

0

500

1000

1500

2000

2500

-15 -10 -5 0 5 10 15

C
ou

nt
 o

f f
un

ct
io

n
ca

lls

Units in the last place

Error in gamma(x), x on [0..10]

σ = 3.68

16

-1.0

-0.5

0.0

0.5

1.0

0 1 2 3 4 5 6 7 8 9 10

U
ni

ts
 in

 th
e

la
st

 p
la

ce

x

Error in log(x)

0
100
200
300
400
500
600
700

-1.0 -0.5 0.0 0.5 1.0

C
ou

nt
 o

f f
un

ct
io

n
ca

lls

Units in the last place

Error in log(x), x on (0..10]

σ = 0.22

-1.0

-0.5

0.0

0.5

1.0

0 1 2 3 4 5 6

U
ni

ts
 in

 th
e

la
st

 p
la

ce

x

Error in sin(x)

0

100

200

300

400

-1.0 -0.5 0.0 0.5 1.0

C
ou

nt
 o

f f
un

ct
io

n
ca

lls

Units in the last place

Error in sin(x), x on [0..2π)

σ = 0.19

8 How do we generate pseudo-random numbers?

Any one who considers arithmetical methods of producing random
numbers is, of course, in a state of sin.

— John von Neumann (1951)
[The Art of Computer Programming, Vol. 2,

Seminumerical Algorithms, 3rd ed., p. 1]

He talks at random; sure, the man is mad.
— Margaret, daughter to Reignier,
afterwards married to King Henry

in William Shakespeare’s 1 King Henry VI, Act V,
Scene 3 (1591)

A random number generator chosen at random isn’t very random.
— Donald E. Knuth

[The Art of Computer Programming, Vol. 2,

17

Seminumerical Algorithms, 3rd ed., p. 384]

❏ Linear-congruential generators (most common): rn+1 = (arn+c) mod
m, for integers a, c, and m, where 0 < m, 0 ≤ a < m, 0 ≤ c < m,
with starting value 0 ≤ r0 < m. Under certain known conditions, the
period can be as large as m, unless c = 0, when it is limited to m/4.

❏ Fibonacci sequence (bad!): rn+1 = (rn + rn−1) mod m.

❏ Additive (better): rn+1 = (rn−α + rn−β) mod m.

❏ Multiplicative (bad): rn+1 = (rn−α × rn−β) mod m.

❏ Shift register: rn+k =
∑k−1
i=0 (airn+i (mod 2)) (ai = 0,1).

Given an integer r ∈ [A, B), x = (r −A)/(B −A+ 1) is on [0,1).
However, interval reduction by A + (r − A) mod s to get a distribution

in (A,C), where s = (C − A + 1), is possible only for certain values of s.
Consider reduction of [0,4095] to [0,m], with m ∈ [1,9]: we get equal
distribution of remainders only for m = 2q − 1:

m counts of remainders kmod (m+ 1), k ∈ [0,m]
OK 1 2048 2048

2 1366 1365 1365
OK 3 1024 1024 1024 1024

4 820 819 819 819 819
5 683 683 683 683 682 682
6 586 585 585 585 585 585 585

OK 7 512 512 512 512 512 512 512 512
8 456 455 455 455 455 455 455 455 455
9 410 410 410 410 410 410 409 409 409 409

Samples from other distributions can usually be obtained by some suit-
able transformation. Here is the simplest generator for the normal distribu-
tion, assuming that randu() returns uniformly-distributed values on (0,1]:

func randpmnd() \
{

Polar method for random deviates
Algorithm P, p. 122, from Donald E. Knuth, The Art
of Computer Programming, 3rd edition, 1998

while (1) \
{

v1 = 2*randu() - 1
v2 = 2*randu() - 1
s = v1*v1 + v2*v2
if (s < 1) break

18

}
return (v1 * sqrt(-2*ln(s)/s))

(v2 * sqrt(-2*ln(s)/s)) is also normally distributed,
but is wasted, since we only need one return value

}

9 Period of a sequence

All pseudo-random number generators eventually reproduce the starting
sequence; the period is the number of values generated before this hap-
pens. Good generators are now known with periods > 10449 (e.g., Matlab’s
rand()).

10 Reproducible sequences

In computational applications with pseudo-random numbers, it is essential
to be able to reproduce a previous calculation. Thus, generators are required
that can be set to a given initial seed :

% hoc
for (k = 0; k < 3; ++k) \
{

setrand(12345)
for (n = 0; n < 10; ++n) print int(rand()*100000), ""
println ""

}
88185 5927 13313 23165 64063 90785 24066 37277 55587 62319
88185 5927 13313 23165 64063 90785 24066 37277 55587 62319
88185 5927 13313 23165 64063 90785 24066 37277 55587 62319

for (k = 0; k < 3; ++k) \
{

setrand(12345)
for (n = 0; n < 10; ++n) print int(rand()*100000), ""
println ""

}
36751 37971 98416 59977 49189 85225 43973 93578 61366 54404
70725 83952 53720 77094 2835 5058 39102 73613 5408 190
83957 30833 75531 85236 26699 79005 65317 90466 43540 14295

In practice, this means that software must have its own source-code
implementation of the generators: vendor-provided ones do not suffice.

19

11 The correlation problem

Random numbers fall mainly in the planes
— George Marsaglia (1968)

Linear-congruential generators are known to have correlation of succes-
sive numbers: if these are used as coordinates in a graph, one gets patterns,
instead of uniform grey. The number of points plotted in each is the same
in both graphs:

Good Bad

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The good generator is Matlab’s rand(). Here is the bad generator:

% hoc
func badran() { global A, C, M, r; r = int(A*r + C) % M;

return r }

M = 2^15 - 1
A = 2^7 - 1
C = 2^5 - 1
r = 0
r0 = r
s = -1
period = 0

while (s != r0) {period++; s = badran(); print s, "" }
31 3968 12462 9889 10788 26660 ...
22258 8835 7998 0

Show the sequence period
println period

175

Show that the sequence repeats

20

for (k = 1; k <= 5; ++k) print badran(), ""
31 3968 12462 9889 10788

12 The correlation problem [cont.]

Marsaglia’s (Xorshift RNGs, J. Stat. Software 8(14) 1–6, 2003) family of gen-
erators:
y ^= y << a; y ^= y >> b; y ^= y << c;

l.003 l.007

0e+00

1e+09

2e+09

3e+09

4e+09

0e+00 1e+09 2e+09 3e+09 4e+09
0e+00

1e+09

2e+09

3e+09

4e+09

0e+00 1e+09 2e+09 3e+09 4e+09

l.028 l.077

0e+00

1e+09

2e+09

3e+09

4e+09

0e+00 1e+09 2e+09 3e+09 4e+09
0e+00

1e+09

2e+09

3e+09

4e+09

0e+00 1e+09 2e+09 3e+09 4e+09

13 Generating random integers

When the endpoints of a floating-point uniform pseudo-random number
generator are uncertain, generate random integers in [low,high] like this:

func irand(low, high) \
{

Ensure integer endpoints
low = int(low)

21

high = int(high)

Sanity check on argument order
if (low >= high) return (low)

Find a value in the required range
n = low - 1
while ((n < low) || (high < n)) \

n = low + int(rand() * (high + 1 - low))

return (n)
}

for (k = 1; k <= 20; ++k) print irand(-9,9), ""
-9 -2 -2 -7 7 9 -3 0 4 8 -3 -9 4 7 -7 8 -3 -4 8 -4

for (k = 1; k <= 20; ++k) print irand(0, 10^6), ""
986598 580968 627992 379949 700143 734615 361237
322631 116247 369376 509615 734421 321400 876989
940425 139472 255449 394759 113286 95688

14 Generating random integers in order

See Chapter 12 of Jon Bentley, Programming Pearls, 2nd ed., Addison-Wes-
ley (2000), ISBN 0-201-65788-0. [Published in ACM Trans. Math. Software
6(3), 359–364, September 1980].

% hoc
func bigrand() { return int(2^31 * rand()) }

select(m,n): select m pseudo-random integers
from (0,n) in order
proc select(m,n) \
{

mleft = m
remaining = n
for (i = 0; i < n; ++i) \
{

if (int(bigrand() % remaining) < mleft) \
{

print i, ""
mleft--

}
remaining--

}

22

println ""
}

select(3,10)
5 6 7

select(3,10)
0 7 8

select(3,10)
2 5 6

select(3,10)
1 5 7

select(10,100000)
7355 20672 23457 29273 33145 37562 72316 84442 88329 97929

select(10,100000)
401 8336 41917 43487 44793 56923 61443 90474 92112 92799

select(10,100000)
5604 8492 24707 31563 33047 41864 42299 65081 90102 97670

15 Testing pseudo-random number generators

Most of the tests of pseudo-random number distributions are based on com-
puting a χ2 measure of computed and theoretical values. If one gets values
p < 1% or p > 99% for several tests, the generator is suspect.

Knuth devotes about 100 pages to the problem of testing pseudo-random
number generators. Unfortunately, most of the easily-implemented tests do
not distinguish good generators from bad ones. The better tests are much
harder to implement.

The Marsaglia Diehard Battery test suite (1985) has 15 tests that can
be applied to files containing binary streams of pseudo-random numbers.
The Marsaglia/Tsang tuftest suite (2002) has only three, and requires only
functions, not files, but a pass is believed (empirically) to imply a pass of
the Diehard suite. All of these tests produce p values that can be checked
for reasonableness.

These tests all expect uniformly-distributed pseudo-random numbers.
How do you test a generator that produces pseudo-random numbers in
some other distribution? You have to figure out a way to use those val-
ues to produce an expected uniform distribution that can be fed into the
standard test programs. For example, take the negative log of exponentially-
distributed values, since − log(exp(−random)) = random. For normal dis-

23

tributions, consider successive pairs (x,y) as a 2-dimensional vector, and
express in polar form (r , θ): θ is then uniformly distributed in [0,2π), and
θ/(2π) is in [0,1).

16 Digression: The Birthday Paradox

The birthday paradox arises from the question “How many people do you
need in a room before the probability is at least half that two of them share
a birthday?”

The answer surprises most people: it is just 23, not 365/2 = 182.5.
The probability that none of n people are born on the same day is

P(1) = 1

P(n) = P(n− 1)× (365− (n− 1))/365

The n-th person has a choice of 365− (n− 1) days to not share a birthday
with any of the previous ones. Thus, (365− (n− 1))/365 is the probability
that the n-th person is not born on the same day as any of the previous
ones, assuming that they are born on different days.

Here are the probabilities that n people share a birthday (i.e., 1− P(n)):

% hoc128
PREC = 3
p = 1; for (n = 1;n <= 365;++n) \

{p *= (365-(n-1))/365; println n,1-p}
1 0
2 0.00274
3 0.00820
4 0.0164
...
22 0.476
23 0.507
24 0.538
...
30 0.706
...
40 0.891
...
50 0.970
...
70 0.999
...
80 0.9999
...

24

90 0.999994
...
100 0.999999693
...
110 0.999999989
...
120 0.99999999976
...
130 0.9999999999962
...
140 0.999999999999962
...
150 0.99999999999999978
...
160 0.99999999999999999900
...
170 0.9999999999999999999975
...
180 0.9999999999999999999999963
...
190 0.9999999999999999999999999967
...
200 0.9999999999999999999999999999984
...
210 0.99999999999999999999999999999999952
...
365 1.0 - 1.45e-157
366 1.0

[Last two results taken from 300-digit computation in Maple.]

17 The Marsaglia/Tsang tuftest tests

The first tuftest test is the b’day test, a generalization of the Birthday
Paradox to a much longer year. Here are two reports for it:

Good generator

Birthday spacings test: 4096 birthdays, 2^32 days in year
Table of Expected vs. Observed counts:

Duplicates 0 1 2 3 4 5 6 7 8 9 >=10

Expected 91.6 366.3 732.6 976.8 976.8 781.5 521.0 297.7 148.9 66.2 40.7
Observed 87 385 748 962 975 813 472 308 159 61 30

25

(O-E)^2/E 0.2 1.0 0.3 0.2 0.0 1.3 4.6 0.4 0.7 0.4 2.8
Birthday Spacings: Sum(O-E)^2/E= 11.856, p= 0.705

Bad generator

Birthday spacings test: 4096 birthdays, 2^32 days in year
Table of Expected vs. Observed counts:

Duplicates 0 1 2 3 4 5 6 7 8 9 >=10

Expected 91.6 366.3 732.6 976.8 976.8 781.5 521.0 297.7 148.9 66.2 40.7
Observed 0 0 0 0 1 3 18 53 82 144 4699

(O-E)^2/E 91.6 366.3 732.6 976.8 974.8 775.5 485.6 201.1 30.0 91.6 533681.1
Birthday Spacings: Sum(O-E)^2/E=538407.147, p= 1.000

The second tuftest test is based on the number of steps to find the
greatest common denominator by Euclid’s (ca. 330–225BC) algorithm (the
world’s oldest surving nontrivial algorithm in mathematics), and on the ex-
pected distribution of the partial quotients.

func gcd(x,y) \
{

rem = abs(x) % abs(y)
if (rem == 0) return abs(y) else return gcd(y, rem)

}

proc gcdshow(x,y) \
{

rem = abs(x) % abs(y)
println x, "=", int(x/y), "*", y, "+", rem
if (rem == 0) return
gcdshow(y, rem)

}

gcd(366,297)
3

gcdshow(366,297)
366 = 1 * 297 + 69
297 = 4 * 69 + 21
69 = 3 * 21 + 6
21 = 3 * 6 + 3
6 = 2 * 3 + 0

This took k = 5 iterations, and found partial quotients (1,4,3,3,2).
Interestingly, the complete rigorous analysis of the number of steps re-

quired in Euclid’s algorithm was not achieved until 1970–1990! The average

26

number is

A
(
gcd(x,y)

) ≈
(
(12 ln 2)/π2

)
lny

≈ 1.9405 log10y

and the maximum number is

M
(
gcd(x,y)

) = blogφ
(
(3−φ)y)c

≈ 4.785 log10y + 0.6723

where φ = (1+√5)/2 ≈ 1.6180 is the golden ratio. For our example above,
we find

A(gcd(366,297)) ≈ 4.798

M (gcd(366,297)) ≈ 12.50

Here are two tuftest reports:

Good generator

Euclid’s algorithm:
p-value, steps to gcd: 0.452886
p-value, dist. of gcd’s: 0.751558

Bad generator

Euclid’s algorithm:
p-value, steps to gcd: 1.000000
p-value, dist. of gcd’s: 1.000000

The third tuftest test is a generalization of the monkey test: a monkey
typing randomly produces a stream of characters, some of which eventually
form words, sentences, paragraphs, ….

Good generator

Gorilla test for 2^26 bits, positions 0 to 31:
Note: lengthy test---for example, ~20 minutes for 850MHz PC
Bits 0 to 7---> 0.797 0.480 0.096 0.660 0.102 0.071 0.811 0.831
Bits 8 to 15---> 0.731 0.110 0.713 0.624 0.019 0.405 0.664 0.892
Bits 16 to 23---> 0.311 0.463 0.251 0.670 0.854 0.414 0.221 0.563
Bits 24 to 31---> 0.613 0.562 0.191 0.830 0.284 0.752 0.739 0.356
KS test for the above 32 p values: 0.289

27

Bad generator

Gorilla test for 2^26 bits, positions 0 to 31:
Note: lengthy test---for example, ~20 minutes for 850MHz PC
Bits 0 to 7---> 0.000 0.000 0.000 0.000 0.000 1.000 1.000 1.000
Bits 8 to 15---> 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Bits 16 to 23---> 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Bits 24 to 31---> 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
KS test for the above 32 p values: 1.000

18 Further reading

The definitive work on computer generation of sequences of pseudo-random
number is Chapter 3 of Donald E. Knuth, The Art of Computer Programming,
Vol. 2, Seminumerical Algorithms, 3rd ed., Addison-Wesley (1998), ISBN 0-
201-89684-2.

Douglas Lehmer and George Marsaglia have probably written more tech-
nical papers on the subject than anyone else: look for them with bibsearch
and in the MathSciNet database.

Marsaglia’s Diehard Battery test suite is available at:

http://www.stat.fsu.edu/pub/diehard/

Marsaglia and Tsang’s tuftest package is described in Some Difficult-
to-pass Tests of Randomness, J. Stat. Software 7(1) 1–8 (2002):

http://www.jstatsoft.org/v07/i03/tuftests.pdf
http://www.jstatsoft.org/v07/i03/tuftests.c

For a history of the Central-Limit Theorem, see

http://mathsrv.ku-eichstaett.de/MGF/homes/didmath/seite/
1850.pdf

For a real-time demonstration of the Central-Limit Theorem based on
balls threading through a grid of pins, visit

http://www.rand.org/methodology/stat/applets/clt.html

For another live demonstration based on dice throws, visit

http://www.math.csusb.edu/faculty/stanton/probstat/clt.html

See Simon Singh’s The Code Book: the evolution of secrecy from Mary,
Queen of Scots, to quantum cryptography, Doubleday (1999), ISBN 0-385-
49531-5, for a fine introduction to cryptography through the ages. Journals
in the field are: Cryptologia, Designs, Codes, and Cryptography, and Journal
of Cryptology.

28

For generation of truly-random sequences, see Peter Gutmann’s book
Cryptographic Security Architecture: Design and Verification, Springer-Ver-
lag (2002) ISBN 0-387-95387-6. Chapter 6 of his Ph.D. thesis is available
at

http://www.cryptoengines.com/~peter/06_random.pdf

29

