
TUGboat, Volume 14 (1993), No. 4 395

Bibliography Prettyprinting and Syntax
Checking

Nelson H. F. Beebe

Contents

1 Introduction 395

2 BibTEX needs improvement 396

3 Run-time options 397

4 Prettyprinting 399

5 Pattern matching and initialization
files 400

6 Lexical analysis 403

7 Portability 404

8 Scribe bibliography format 405

9 Recommendations for BibTEX design 405

10 A lexical grammar for BibTEX 407

11 A parsing grammar for BibTEX 410

12 Software availability 414

References 414

Index 415

List of Tables

1 Sample bibclean initialization file. 401
2 Escape sequences in quoted strings. 401
3 Initialization file pattern characters. 402

1 Introduction

BibTEX [18, Appendix B] is a convenient tool for
solving the vexing issue of bibliography format-
ting. The user identifies fields of bibliography en-
tries via field/value pairs and provides a unique ci-
tation key and a document type for each entry. A
simple string substitution facility makes it easy to
reuse frequently-occurring strings. A typical exam-
ple looks like this:
@String{pub-AW =

"Ad{\-d}i{\-s}on-Wes{\-l}ey"}

@Book{Lamport:LDP85,
author = "Leslie Lamport",
title = "{\LaTeX}---A Document

Preparation System---User’s

396 TUGboat, Volume 14 (1993), No. 4

Guide and Reference Manual",
publisher = pub-AW,
year = "1985",
ISBN = "0-201-15790-X",

}

The TEX file contains citations of the form
\cite{Lamport:LDP85}, together with a \bibli-
ographystyle command to choose a citation and
bibliography style, and a \bibliography command
to specify which BibTEX files are to be used. TEX
records this information in an auxiliary file.

A subsequent BibTEX job step reads this auxil-
iary file, extracts the requested bibliographic entries
from the specified BibTEX files, and outputs the en-
tries into a bibliography file formatted according to
the specified style. Several dozen such styles are cur-
rently available to help cope with the bizarre vari-
ations in bibliography formats that publishers have
invented.

In a second TEX step, the \cite commands are
not correctly expandable until the \bibliography
command is processed and the bibliography file out-
put by BibTEX is read. However, at that point, the
desired form of the citations is finally known, and
at the end of the job, an updated auxiliary file is
written.

A third TEX step finally has the necessary infor-
mation from the auxiliary file and the bibliography
file to correctly typeset the \cite commands and
the bibliography in the specified style.

With the GNU Emacs text editor [7, 27], pow-
erful BibTEX editing support makes it simple to gen-
erate bibliography entry descriptions via templates
that can be inserted with a couple of keystrokes, or
on workstations, selected from a pop-up menu. This
editor is freely available on UNIX, VAX VMS, and
the larger members of the IBM PC family under
PC-DOS.

The major benefits of using BibTEX are the po-
tential for data reuse, the separation of form and
content (like the descriptive markup of LATEX and
SGML[6, 31]), and the many stylistic variants of
the typeset bibliography. During the preparation of
this article, a scan of our Mathematics Department
workstation file system located about 14 000 TEX
files, and 445 BibTEX files. The latter contained
about 870 000 lines and almost 94 000 bibliography
entries. These files form a valuable resource that au-
thors and researchers can use to track and properly
cite literature in their publications.

During my term as TUG President, I initiated
a project to collect BibTEX styles and bibliography
data base files of material related to TEX and its
uses, and electronic document production and ty-

pography in general. This dynamic collection also
covers a few journals, including more than 1000 en-
tries for TUGboat. A snapshot of part of the col-
lection was published in the 1991 TUG Resource
Directory [4, 5].

One drawback of BibTEX is that errors in a bib-
liography file, such as unmatched quotation marks
around a value string, can sometimes be hard to
locate, because the current version of the program
raises an error at the end of a scan when internal ta-
bles overflow after gobbling several thousand char-
acters of input. The result is that the error location
is completely bogus, and actually lies much earlier
in the file. We can hope that this serious deficiency
will be remedied in the final version of BibTEX, 1.0,
which is expected to appear when the LATEX 3.0 de-
velopment is completed.

Another drawback is that such bibliography
files are normally prepared by human typists, and
consequently there are formatting variations that
reduce readability, and inconsistencies that persist
into the final typeset bibliography. Some examples
of such inconsistencies are variations in naming of
publishers and journals, spacing around author and
editor initials, and variations in letter case in titles.
In addition, there are usually numerous typograph-
ical errors of omission, doubling, spelling, transcrip-
tion, translation, and transposition.

In the fall of 1990, faced with a growing collec-
tion of BibTEX files, I set out to write a software
tool to deal with these problems. This program is
called bibclean. It is a syntax checker, portabil-
ity verifier, and prettyprinter, and was made freely
available in 1991. In the fall of 1992, after consider-
able experience with the first version, I embarked on
a set of enhancements that produced major version
2.0, and the purpose of this paper is to describe the
new version, and to widely advertise its existence to
the TEX community.

2 BibTEX needs improvement

BibTEX, like TEX, assumes that its input is pre-
pared correctly, and works best when that is the
case. Both programs attempt to recover from er-
rors, but that recovery may be unsuccessful, and er-
rors may be detected only after lengthy processing.
In neither case is the output of these programs suit-
able for input to them. That is, their knowledge of
how their input streams are to be parsed is available
only to them, and cannot be applied independently
and used by other software. Both programs have a
hazily-defined input syntax, and TEX’s is extensible,
making it even harder to give a precise description
to the user.

TUGboat, Volume 14 (1993), No. 4 397

The trend of compiler technology development
of the last two decades, largely on UNIX systems,
has been to separate the compilation task into sev-
eral steps.

The first is generally called lexical analysis, or
lexing. It breaks the input stream up into identifi-
able tokens that can be represented by small integer
constants and constant strings.

The second step is called parsing, which in-
volves the verification that the tokens streaming
from the lexer conform to the grammatical require-
ments of the language, that is, that they make sense.

As parsing proceeds, an intermediate represen-
tation is prepared that is suitable for the third step,
namely, code generation or interpretation.

This division into subtasks diminishes the com-
plexity of writing a compiler, reduces its memory re-
quirements, and importantly, partitions the job into
two parts: a language-dependent, but architecture-
independent, part consisting of lexing and pars-
ing, and a language-independent, but architecture-
dependent, part where code is generated or inter-
preted.

This makes it possible to write a front end for
each language, and a back end for each architec-
ture, and by combining them, obtain compilers for
all languages and all architectures. The most suc-
cessful example of this approach at present is al-
most certainly the Free Software Foundation’s GNU
Project compilers, which support all common com-
puter architectures with the back ends, and C, C++,
and Objective C with the front ends. Additional
front ends for several other popular languages are in
preparation.

When a lexer is available as a separate program,
its output can be conveniently used by other pro-
grams for tasks such as database lookup, floating-
point precision conversion, language translation, lin-
guistic analysis, portability verification, prettyprint-
ing, and checking of grammar, syntax, and spelling.

In response to a command-line request, bib-
clean will function as a lexer instead of as a pretty-
printer. An example is given later in Section 6.

3 Run-time options

On several operating systems, bibclean is run by a
command of the form
bibclean [options] bibfile(s) >newfile

One or more bibliography files can be specified; if
none are given, input is taken from the standard
input stream. A specific example is:
bibclean -no-fix-name mybib.bib >mybib.new

Command-line switches may be abbreviated to
a unique leading prefix, and letter case is not sig-
nificant. All options are parsed before any input
bibliography files are read, no matter what their or-
der on the command line. Options that correspond
to a yes/no setting of a flag have a form with a pre-
fix no- to set the flag to no. For such options, the
last setting determines the flag value used. This is
significant when options are also specified in initial-
ization files (see Section 5).

On VAX VMS and IBM PC-DOS, the lead-
ing hyphen on option names may be replaced by a
slash; however, the hyphen option prefix is always
recognized.
-author Display an author credit on the standard

error unit, stderr. Sometimes an executable
program is separated from its documentation
and source code; this option provides a way to
recover from that.

-error-log filename Redirect stderr to the in-
dicated file, which will then contain all of the
error and warning messages. This option is pro-
vided for those systems that have difficulty redi-
recting stderr.

-help or -? Display a help message on stderr,
giving a sample command usage, and option de-
scriptions similar to the ones here.

-init-file filename Provide an explicit value
pattern initialization file. It will be processed
after any system-wide and job-wide initializa-
tion files found on the PATH (for VAX VMS,
SYS$SYSTEM) and BIBINPUTS search paths, re-
spectively, and may override them. It in turn
may be overridden by a subsequent file-specific
initialization file. The initialization file name
can be changed at compile time, or at run time
through a setting of the environment variable
BIBCLEANINI, but defaults to .bibcleanrc on
UNIX, and to bibclean.ini elsewhere. For
further details, see Section 5.

-max-width nnn Normally, bibclean limits out-
put line widths to 72 characters, and in the
interests of consistency, that value should not
be changed. Occasionally, special-purpose ap-
plications may require different maximum line
widths, so this option provides that capability.
The number following the option name can be
specified in decimal, octal (starting with 0), or
hexadecimal (starting with 0x). A zero or neg-
ative value is interpreted to mean unlimited, so
-max-width 0 can be used to ensure that each
field/value pair appears on a single line.

When -no-prettyprint requests bibclean
to act as a lexical analyzer, the default line

398 TUGboat, Volume 14 (1993), No. 4

width is unlimited, unless overridden by this
option.

When bibclean is prettyprinting, line wrap-
ping will be done only at a space. Conse-
quently, an extremely long non-blank charac-
ter sequence may result in the output exceed-
ing the requested line width. Such sequences
are extremely unlikely to occur, at least in
English-language text, since even the 45-letter
giant [16, p. 451] pneumonoultramicroscopicsil-
icovolcanoconiosis will fit in bibclean’s stan-
dard 72-character output line, and so will 58-
letter Welsh city names.

When bibclean is lexing, line wrapping is
done by inserting a backslash-newline pair when
the specified maximum is reached, so no line
length will ever exceed the maximum.

-[no-]check-values With the positive form,
apply heuristic pattern matching to field val-
ues in order to detect possible errors (e.g. year
= "192" instead of year = "1992"), and issue
warnings when unexpected patterns are found.

This checking is usually beneficial, but if it
produces too many bogus warnings for a par-
ticular bibliography file, you can disable it with
the negative form of this option. Default: yes.

-[no-]delete-empty-values With the positive
form, remove all field/value pairs for which the
value is an empty string. This is helpful in
cleaning up bibliographies generated from text
editor templates. Compare this option with -
[no-]remove-OPT-prefixes described below.
Default: no.

-[no-]file-position With the positive form,
give detailed file position information in warn-
ing and error messages. Default: no.

-[no-]fix-font-changes With the positive form,
supply an additional brace level around font
changes in titles to protect against downcasing
by some BibTEX styles. Font changes that al-
ready have more than one level of braces are
not modified.

For example, if a title contains the Latin
phrase {\em Dictyostelium Discoideum} or
{\em {D}ictyostelium {D}iscoideum}, then
downcasing will incorrectly convert the phrase
to lower-case letters. Most BibTEX users
are surprised that bracing the initial let-
ters does not prevent the downcase action.
The correct coding is {{\em Dictyostelium
Discoideum}}. However, there are also le-
gitimate cases where an extra level of brac-
ing wrongly protects from downcasing. Con-
sequently, bibclean will normally not supply

an extra level of braces, but if you have a bib-
liography where the extra braces are routinely
missing, you can use this option to supply them.

If you think that you need this option, it
is strongly recommended that you apply bib-
clean to your bibliography file with and with-
out -fix-font-changes, then compare the two
output files to ensure that extra braces are not
being supplied in titles where they should not
be present. You will have to decide which of
the two output files is the better choice, then
repair the incorrect title bracing by hand.

Since font changes in titles are uncommon,
except for cases of the type which this option
is designed to correct, it should do more good
than harm. Default: no.

-[no-]fix-initials With the positive form, in-
sert a space after a period following author ini-
tials. Default: yes.

-[no-]fix-names With the positive form, reorder
author and editor name lists to remove commas
at brace level zero, placing first names or initials
before last names. Default: yes.

-[no-]par-breaks With the negative form, a
paragraph break (either a formfeed, or a line
containing only spaces) is not permitted in
value strings, or between field/value pairs. This
may be useful to quickly trap runaway strings
arising from mismatched delimiters. Default:
yes.

-[no-]prettyprint Normally, bibclean func-
tions as a prettyprinter. However, with the neg-
ative form of this option, it acts as a lexical
analyzer instead, producing a stream of lexical
tokens. See Section 6 for further details. De-
fault: yes.

-[no-]print-patterns With the positive form,
print the value patterns read from initialization
files as they are added to internal tables. Use
this option to check newly-added patterns, or
to see what patterns are being used.

When bibclean is compiled with native
pattern-matching code (the default), these pat-
terns are the ones that will be used in checking
value strings for valid syntax, and all of them
are specified in initialization files, rather than
hard-coded into the program. For further de-
tails, see Section 5. Default: no.

-[no-]read-init-files With the negative form,
suppress loading of system-, user-, and file-
specific initialization files. Initializations will
come only from those files explicitly given by
-init-file filename options. Default: yes.

TUGboat, Volume 14 (1993), No. 4 399

-[no-]remove-OPT-prefixes With the positive
form, remove the OPT prefix from each field
name where the corresponding value is not an
empty string. The prefix OPT must be entirely
in upper-case to be recognized.

This option is for bibliographies generated
with the help of the GNU Emacs BibTEX edit-
ing support, which generates templates with op-
tional fields identified by the OPT prefix. Al-
though the function M-x bibtex-remove-OPT
normally bound to the keystrokes C-c C-o does
the job, users often forget, with the result
that BibTEX does not recognize the field name,
and ignores the value string. Compare this
option with -[no-]delete-empty-values de-
scribed above. Default: no.

-[no-]scribe With the positive form, accept
input syntax conforming to the Scribe docu-
ment system. The output will be converted to
conform to BibTEX syntax. See Section 8 for
further details. Default: no.

-[no-]trace-file-opening With the positive
form, record in the error log file the names of
all files which bibclean attempts to open. Use
this option to identify where initialization files
are located. Default: no.

-[no-]warnings With the positive form, allow
all warning messages. The negative form is not
recommended since it may mask problems that
should be repaired. Default: yes.

-version Display the program version number on
stderr. This will also include an indication of
who compiled the program, the host name on
which it was compiled, the time of compilation,
and the type of string-value matching code se-
lected, when that information is available to the
compiler.

4 Prettyprinting

A prettyprinter for any language must be able to
deal with more than just those files that strictly con-
form to the language grammar. For programming
languages, most compilers implement language ex-
tensions that prettyprinters must recognize and try
to deal with gracefully. bibclean recognizes two
such input languages: BibTEX and Scribe.

Ideally, a prettyprinter should be able to pro-
duce output even in the presence of input errors, dis-
playing it in such a way as to make the location of
the errors more evident. bibclean provides detailed
error and warning messages to help pinpoint errors.
With the -file-position command-line option, it
will flag the byte, column, and line, positions of the

start and end of the current token in both input and
output files.

Here is a summary of the actions taken by bib-
clean on its input stream.
• Space between entries is discarded, and re-

placed by a single blank line.
• Space around string concatenation operators is

standardized.
• Leading and trailing space in value strings is

discarded, and embedded multiple spaces are
collapsed to a single space.

• String lengths are tested against the limit in
standard BibTEX, and warnings issued when
the limit is exceeded. The standard limit has
proven to be too small in practice, and many
sites install enlarged versions of BibTEX. Per-
haps BibTEX version 1.0 will use more realistic
values, or eliminate string length limits alto-
gether.

• Outer parentheses in entries are standardized
to braces.

• Braced value strings are standardized to quoted
value strings.

• Field/value pairs are output on separate lines,
wrapping long lines to not exceed a user-
definable standard width whenever possible.

• A trailing comma is supplied after the last field/
value assignment. This is convenient if assign-
ments are later reordered during editing.

• -fix-font-changes provides for protecting
value string text inside font changes from down-
casing.

• Brace-level zero upper-case acronyms in titles
are braced to protect from downcasing.

• -no-par-breaks provides a way to check for
blank lines in string values, which may be in-
dicative of unclosed delimiter errors.

• Umlaut accents, \"x, inside value strings at
brace-level zero are converted to {\"x}. This
has been found to be a common user error. Bib-
TEX requires embedded quotes to be nested in-
side braces.

• Letter-case usage in entry and field names is
standardized, so for example, mastersthesis
and MASTERSTHESIS become MastersThesis.

• ISBNand ISSN checksums are validated. Bib-
TEX style files that recognize field names for
them are available in the TUG bibliography col-
lection, and the bibliography for this document
uses them.

400 TUGboat, Volume 14 (1993), No. 4

• Name modifiers like Jr, Sr, etc. are recognized
and handled by -fix-names, and names are put
into a standard order, so that Bach, P. D. Q.
becomes P. D. Q. Bach.

• With -fix-initials, uniform spacing is sup-
plied after brace-level zero initials in personal
names.

• With -check-values, citation key and field
values are matched against patterns to catch
irregularities and possible errors.

• Dates of the month, like "July 14", are con-
verted to use month abbreviations, jul #
" 14".

• Page number ranges are converted to use en-
dashes, instead of hyphens or em-dashes.

• With -check-values, year numbers are checked
against patterns, then if no match is found, the
year values are checked against reasonable lim-
its.

• With -trace-file-opening, file open at-
tempts are logged. This helps in the diagnosis
of problems such as missing files, or incorrect
file permissions.

• On lexing or parsing errors, bibclean attempts
to resynchronize by flushing the input until it
finds the next line containing an initial @ char-
acter preceded by nothing other than optional
white space.

• When an @ character begins a line, a new bibli-
ography entry is assumed to have started. The
current brace balance is then tested to make
sure it is zero. A non-zero brace level is strongly
suggestive of an error, so bibclean issues an er-
ror message, and zeros the brace level.

• At end-of-file, the brace level is tested. A non-
zero brace level is very likely an error, and oc-
casions an error message.

5 Pattern matching and initialization files

bibclean can be compiled with one of three different
types of pattern matching; the choice is made by the
installer at compile time:
• The original version uses explicit hand-coded

tests of value-string syntax.
• The second version uses regular-expression

pattern-matching host library routines together
with regular-expression patterns that come en-
tirely from initialization files.

• The third version uses special patterns that
come entirely from initialization files.
The second and third versions are the ones

of most interest here, because they allow the user

to control what values are considered acceptable.
However, command-line options can also be speci-
fied in initialization files, no matter which pattern-
matching choice was selected.

When bibclean starts, it searches for initial-
ization files, finding the first one in the system ex-
ecutable program search path (on UNIX and IBM
PC-DOS, PATH) and the first one in the BIBINPUTS
search path, and processes them in turn. Then,
when command-line arguments are processed, any
additional files specified by -init-file filename
options are also processed. Finally, immediately
before each named bibliography file is processed,
an attempt is made to process an initialization
file with the same name, but with the extension
changed to .ini. The default extension can be
changed by a setting of the environment variable
BIBCLEANEXT. This scheme permits system-wide,
user-wide, session-wide, and file-specific initializa-
tion files to be supported.

When input is taken from stdin, there is no
file-specific initialization.

For precise control, the -no-init-files option
suppresses all initialization files except those explic-
itly named by -init-file filename options, either
on the command line, or in requested initialization
files.

Recursive execution of initialization files with
nested -init-file filename options is permitted;
if the recursion is circular, bibcleanwill finally get a
non-fatal initialization file open failure after opening
too many files. This terminates further initialization
file processing. As the recursion unwinds, the files
are all closed, then execution proceeds normally.

An initialization file may contain empty lines,
comments from percent to end of line (just like
TEX), option switches, and field/pattern or field/
pattern/message assignments. Leading and trailing
spaces are ignored. This is best illustrated by the
short example in Table 1. Long logical lines can be
split into multiple physical lines by breaking at a
backslash-newline pair; the backslash-newline pair
is discarded. This processing happens while charac-
ters are being read, before any further interpretation
of the input stream.

Each logical line must contain a complete op-
tion (and its value, if any), or a complete field/pat-
tern pair, or a field/pattern/message triple.

Comments are stripped during the parsing of
the field, pattern, and message values. The com-
ment start symbol is not recognized inside quoted
strings, so it can be freely used in such strings.

Comments on logical lines that were input as
multiple physical lines via the backslash-newline

TUGboat, Volume 14 (1993), No. 4 401

Table 1: Sample bibclean initialization file.
%% Start with our departmental patterns
-init-file /u/math/bib/.bibcleanrc

%% Make some small additions
chapter = "\"D\"" %% 23

pages = "\"D--D\"" %% 23--27

volume = "\"D \\an\\d D\"" %% 11 and 12

year = \
"\"dddd, dddd, dddd\"" \
"Multiple years specified."

%% 1989, 1990, 1991

-no-fix-names %% do not modify
%% author/editor lists

convention must appear on the last physical line;
otherwise, the remaining physical lines will become
part of the comment.

Pattern strings must be enclosed in quotation
marks; within such strings, a backslash starts an
escape mechanism that is commonly used in UNIX
software. The recognized escape sequences are given
in Table 2. Backslash followed by any other charac-
ter produces just that character. Thus, \" produces
a quotation mark, and \\ produces a single back-
slash.

Table 2: Escape sequences in quoted strings.
\a alarm bell (octal 007)
\b backspace (octal 010)
\f formfeed (octal 014)
\n newline (octal 012)
\r carriage return (octal 015)
\t horizontal tab (octal 011)
\v vertical tab (octal 013)
\ooo character number octal ooo (e.g.

\012 is linefeed). Up to 3 octal
digits may be used.

\0xhh character number hexadecimal hh
(e.g. \0x0a is linefeed). xhh may
be in either letter case. Any num-
ber of hexadecimal digits may be
used.

An ASCII NUL (\0) in a string will terminate
it; this is a feature of the C programming language
in which bibclean is implemented.

Field/pattern pairs can be separated by arbi-
trary space, and optionally, either an equals sign or
colon functioning as an assignment operator. Thus,
the following are equivalent:
pages="\"D--D\""
pages:"\"D--D\""
pages "\"D--D\""

pages = "\"D--D\""
pages : "\"D--D\""

pages "\"D--D\""

Each field name can have an arbitrary number of
patterns associated with it; however, they must be
specified in separate field/pattern assignments.

An empty pattern string causes previously-
loaded patterns for that field name to be forgot-
ten. This feature permits an initialization file to
completely discard patterns from earlier initializa-
tion files.

Patterns for value strings are represented in a
tiny special-purpose language that is both conve-
nient and suitable for bibliography value-string syn-
tax checking. While not as powerful as the language
of regular-expression patterns, its parsing can be
portably implemented in less than 3% of the code in
a widely-used regular-expression parser (the GNU
regexp package).

The patterns are represented by the special
characters given in Table 3.

The X pattern character is very powerful, but
generally inadvisable, since it will match almost any-
thing likely to be found in a BibTEX value string.
The reason for providing pattern matching on the
value strings is to uncover possible errors, not mask
them.

There is no provision for specifying ranges or
repetitions of characters, but this can usually be
done with separate patterns. It is a good idea to ac-
company the pattern with a comment showing the
kind of thing it is expected to match. Here is a
portion of an initialization file giving a few of the
patterns used to match number value strings:
number = "\"D\"" %% 23
number = "\"A AD\"" %% PN LPS5001
number = "\"A D(D)\"" %% RJ 34(49)
number = "\"A D\"" %% XNSS 288811
number = "\"A D\\.D\"" %% Version 3.20
number = "\"A-A-D-D\"" %% UMIAC-TR-89-11
number = "\"A-A-D\"" %% CS-TR-2189
number = "\"A-A-D\\.D\"" %% CS-TR-21.7

For a bibliography that contains only Article en-
tries, this list should probably be reduced to just
the first pattern, so that anything other than a digit
string fails the pattern-match test. This is easily

402 TUGboat, Volume 14 (1993), No. 4

Table 3: Initialization file pattern characters.
 one or more spaces
a exactly one letter
A one or more letters
d exactly one digit
D one or more digits
r exactly one Roman numeral
R one or more Roman numerals (i.e.

a Roman number)
w exactly one word (one or more

letters and digits)
W one or more words, separated by

space, beginning and ending with
a word

. one ‘special’ character, one of the
characters !#()*+,-./:;?[]~,
a subset of punctuation charac-
ters that are typically used in
string values

: one or more ‘special’ characters
X one or more ‘special’-separated

words, beginning and ending with
a word

\x exactly one x (x is any character),
possibly with an escape sequence
interpretation given earlier

x exactly the character x (x is any-
thing but one of these pattern
characters: aAdDrRwW.: \)

done by keeping bibliography-specific patterns in a
corresponding file with extension .ini, since that
file is read automatically. You should be sure to use
empty pattern strings in this pattern file to discard
patterns from earlier initialization files.

The value strings passed to the pattern matcher
contain surrounding quotes, so the patterns should
also. However, you could use a pattern specification
like "\"D" to match an initial digit string followed
by anything else; the omission of the final quota-
tion mark \" in the pattern allows the match to
succeed without checking that the next character in
the value string is a quotation mark.

Because the value strings are intended to be
processed by TEX, the pattern matching ignores
braces, and TEX control sequences, together with
any space following those control sequences. Spaces
around braces are preserved. This convention allows
the pattern fragment A-AD-D to match the value
string TN-K\slash 27-70, because the value is im-
plicitly collapsed to TN-K27-70 during the matching
operation.

bibclean’s normal action when a string value
fails to match any of the corresponding patterns is to
issue a warning message similar to this: Unexpected
value in ‘‘year = "192"’’. In most cases, that
is sufficient to alert the user to a problem. In some
cases, however, it may be desirable to associate a dif-
ferent message with a particular pattern. This can
be done by supplying a message string following the
pattern string. Format items %% (single percent), %e
(entry name), %f (field name), %k (citation key), and
%v (string value) are available to get current values
expanded in the messages. Here is an example:
chapter = "\"D:D\"" \

"Colon found in ‘‘%f = %v’’" %% 23:2

To be consistent with other messages output by
bibclean, the message string should not end with
punctuation.

If you wish to make the message an error, rather
than just a warning, begin it with a query (?), like
this:
chapter = "\"D:D\"" \

"?Colon found in ‘‘%f = %v’’" %% 23:2

The query will not be included in the output mes-
sage.

Escape sequences are supported in message
strings, just as they are in pattern strings. You can
use this to advantage for fancy things, such as termi-
nal display mode control. If you rewrite the previous
example as
chapter = "\"D:D\"" \

"?\033[7mColon found \
in ‘‘%f = %v’’\033[0m" %% 23:2

the error message will appear in inverse video on
display screens that support ANSI terminal control
sequences. Such practice is not normally recom-
mended, since it may have undesirable effects on
some output devices. Nevertheless, you may find it
useful for restricted applications.

For some types of bibliography fields, bibclean
contains special-purpose code to supplement or re-
place the pattern matching:
• ISBN and ISSN field values are handled this way

because their validation requires evaluation of
checksums that cannot be expressed by simple
patterns; no patterns are even used in these two
cases.

• When bibclean is compiled with pattern-
matching code support, chapter, number,
pages, and volume values are checked only by
pattern matching.

• month values are first checked against the stan-
dard BibTEX month name abbreviations, and
only if no match is found are patterns then used.

TUGboat, Volume 14 (1993), No. 4 403

• year values are first checked against patterns,
then if no match is found, the year numbers
are found and converted to integer values for
testing against reasonable bounds.
Values for other fields are checked only against

patterns. You can provide patterns for any field
you like, even ones bibclean does not already know
about. New ones are simply added to an internal ta-
ble that is searched for each string to be validated.

The special field, key, represents the biblio-
graphic citation key. It can be given patterns, like
any other field. Here is an initialization file pattern
assignment that will match an author name, a colon,
an alphabetic string, and a two-digit year:
key = "A:Add" %% Knuth:TB86

Notice that no quotation marks are included in the
pattern, because the citation keys are not quoted.
You can use such patterns to help enforce uniform
naming conventions for citation keys, which is in-
creasingly important as your bibliography data base
grows.

6 Lexical analysis

The command-line option -no-prettyprint re-
quests bibclean to function as a lexical analyzer
instead of as a prettyprinter. Its output is then a
stream of lines, each of which contains one token.
For the bibliography entries shown in Section 1, here
is what the output looks like; the long lines have
been wrapped by a backslash-newline to fit in these
narrow journal columns:
line 1 "stdin"
2 AT "@"
18 STRING "String"
11 LBRACE "{"
1 ABBREV "pub-AW"
6 EQUALS "="
line 2 "stdin"
19 VALUE "\"Ad{\\-d}i{\\-s}on-Wes{\
\\-l}ey\""
15 RBRACE "}"
line 4 "stdin"
13 NEWLINE "\n"
13 NEWLINE "\n"
2 AT "@"
5 ENTRY "Book"
11 LBRACE "{"
10 KEY "Lamport:LDP85"
3 COMMA ","
13 NEWLINE "\n"
line 5 "stdin"
7 FIELD "author"
6 EQUALS "="

19 VALUE "\"Leslie Lamport\""
3 COMMA ","
13 NEWLINE "\n"
line 6 "stdin"
7 FIELD "title"
6 EQUALS "="
line 8 "stdin"
19 VALUE "\"{\\LaTeX}---{A} Docume\
nt Preparation System---User’s Guide and \
Reference Manual\""
3 COMMA ","
13 NEWLINE "\n"
line 9 "stdin"
7 FIELD "publisher"
6 EQUALS "="
1 ABBREV "pub-AW"
3 COMMA ","
13 NEWLINE "\n"
line 10 "stdin"
7 FIELD "year"
6 EQUALS "="
19 VALUE "\"1985\""
3 COMMA ","
13 NEWLINE "\n"
line 11 "stdin"
7 FIELD "ISBN"
6 EQUALS "="
19 VALUE "\"0-201-15790-X\""
3 COMMA ","
13 NEWLINE "\n"
line 12 "stdin"
15 RBRACE "}"
line 13 "stdin"
13 NEWLINE "\n"

Each line begins with a small integer token type
number for the convenience of computer programs,
then a token type name for human readers, followed
by a quoted token string.

Lines beginning with a sharp, #, are ANSI/ISO
Standard C preprocessor line-number directives [3,
Section 3.8.4] to record the input line number and
file name.

There are currently 19 token types defined in
the documentation that accompanies bibclean. Be-
cause BibTEX styles can define new field names,
there is little point in the lexical analyzer of attempt-
ing to classify field names more precisely; that job
is left for other software.

Inside quoted strings, the ANSI/ISO Standard
C [3, Section 3.1.3.4] backslash escape sequences
shown in Table 2 on page 401 are used to encode
non-printable characters. In this way, a multi-line
string value can be represented on a single line. This
is convenient for string-searching applications. If the

404 TUGboat, Volume 14 (1993), No. 4

long output lines prove a problem on some systems,
the -max-width nnn command-line option can be
used to wrap lines at a specified column number by
the insertion of a backslash-newline pair.

As a simple example of how this token stream
might be processed, the UNIX command pipeline
bibclean -no-prettyprint mylib.bib | \

awk ’$2 == "KEY" {print $3}’ | \
sed -e ’s/"//g’ | \
sort

will extract a sorted list of all citation keys in the
file mylib.bib.

As a more complex example, consider locating
duplicate abbreviations and citation keys in a large
collection of bibliography files. This is a daunting
task if it must be done by visual scanning of the files.
It took me less than 10 minutes to write and debug
a 35-line nawk [1] program (15 lines of comments, 20
of code) that processed the token stream from bib-
clean and printed warnings about such duplicates.

The processing steps can be represented by the
simple UNIX pipeline
bibclean -no-prettyprint bibfiles | \

tr ’[A-Z]’ ’[a-z]’ | \
nawk -f bibdup.awk

which is most conveniently encapsulated in a com-
mand script so that it can be invoked more simply
as
bibdup *.bib

to produce output like this:
Duplicate string abbreviation ["pub-aw"]:

line 1 "ll.bib"
line 141 "master.bib"

Duplicate key ["lamport:ldp85"]:
line 4 "ll.bib"
line 4172 "master.bib"

...

BibTEX’s grammar is somewhat hazy, so it is
not easy to perform a lexical analysis without some
context sensitivity. bibclean therefore produces the
lexical token stream merely as an alternate output
format. In particular, this means that any requested
run-time formatting options will have been applied
to the tokens before they are output to the lexical
token stream. For example, a Scribe bibliography
file can be converted to a BibTEX token stream so
that software that processes bibclean’s output need
not be Scribe-aware.

7 Portability

bibclean is written in ANSI/ISO Standard C [3]
with great care taken to produce maximum porta-

bility. It has been successfully tested with more than
30 different compilers on all major workstation, and
one mainframe, UNIX systems, plus VAX VMS,
PC-DOS, OS/2, and Atari TOS.

The C programming language has become the
language of choice today for most personal computer
and UNIX software development, and the increasing
availability of C implementations conforming to the
1989 Standard [3] makes it easier to write code that
will compile and run without modification on a wide
variety of systems.

C does not have Pascal’s problems with char-
acter strings and dynamic memory allocation that
forced Don Knuth to implement the WEB string pool
feature and to use compile-time array allocation in
the TEX software development. C’s rich operator
syntax, its powerful run-time library, and generally
excellent operating-system interfaces have made it
widely popular. More than a million copies of the
first edition of The C Programming Language book
[13] have been sold, and the second edition [14] may
do even better.

Nevertheless, C has some serious problems.
Philippe Kahn, the founder of Borland Interna-
tional, has called C a write-only language. Two
books have been written about its syntactical pe-
culiarities [9, 17], and one of them has already ap-
peared in a second edition.

The only way to overcome these problems is
meticulous care in programming, and experience
with as many compilers and computer architectures
as possible. Several books offer valuable advice on
C portability [10, 11, 19, 23, 24, 26, 29].

C++ [8, 30] is an extension of C to support
object-oriented programming, and has an enthusias-
tic following. ANSI/ISO standardization efforts are
in progress, sadly while the language is still evolving.

From the point of view of a C programmer, the
advantage of C++ over C is its much stricter check-
ing of type conversions and intermodule interfaces.
bibclean has been carefully written to be compil-
able under C++ as well as C, and to date, has been
tested with more than a dozen C++ and Objective
C (another C superset) compilers.

All of the extra features of the C++ language
are strictly avoided, because using them would se-
riously limit bibclean’s portability. Not only is
the syntax of the C++ language under evolution,
but the C++ class libraries are for the most part
completely dependent on the particular implemen-
tation. Microsoft’s 1020-page documentation of its
C++ class library is 10% larger than that of its C
run-time library.

TUGboat, Volume 14 (1993), No. 4 405

Nevertheless, I strongly recommend use of C++
compilers in preference to C compilers, so as to catch
bugs at compile time that would otherwise not be
found until post-mortem dump time, or when the
code is ported to a new architecture.

8 Scribe bibliography format

The Scribe document formatting system [25]
greatly influenced LATEX and BibTEX, as well as the
GNU Emacs TEXinfo system.

With care, it is possible to share bibliogra-
phy files between Scribe and BibTEX. Neverthe-
less, there are some differences, so here is a sum-
mary of features of the Scribe bibliography file for-
mat. We record them because they are difficult to
determine from the published manual, and because
readers may sometimes acquire files in this format
without having prior exposure to Scribe.

1. Letter case is not significant in field names and
entry names, but case is preserved in value
strings.

2. In field/value pairs, the field and value may be
separated by one of three characters: =, /, or
(space). Space may optionally surround these
separators.

3. Value delimiters are any of these seven pairs:
{ }, [], (), < >, ’ ’, " ", and ‘ ‘.

4. Value delimiters may not be nested, even
though with the first four delimiter pairs,
nested balanced delimiters would be unambigu-
ous.

5. Delimiters can be omitted around values that
contain only letters, digits, sharp (#), amper-
sand (&), period (.), and percent (%).

6. Outside of delimited values, a literal at-sign (@)
is represented by doubled at-signs (@@).

7. Bibliography entries begin with @name, as for
BibTEX, but any of the seven Scribe value de-
limiter pairs may be used to surround the values
in field/value pairs. As in (4), nested delimiters
are forbidden.

8. Arbitrary space may separate entry names from
the following delimiters.

9. @Comment is a special command whose delim-
ited value is discarded. As in (4), nested delim-
iters are forbidden.

10. The special form

@Begin{comment}
...
@End{comment}

permits encapsulating arbitrary text contain-
ing any characters or delimiters, other than

@End{comment}. Any of the seven delimiter
pairs may be used around the word com-
ment following the @Begin or @End; the de-
limiters in the two cases need not be the
same, and consequently, @Begin{comment}/
@End{comment} pairs may not be nested.

11. The key field is required in each bibliography
entry.

12. A backslashed quote in a string will be as-
sumed to be a TEX accent, and braced appro-
priately. While such accents do not conform to
Scribe syntax, Scribe-format bibliographies
have been found that appear to be intended for
TEX processing.
Because of this loose syntax, bibclean’s nor-

mal error detection heuristics are less effective, and
consequently, Scribe mode input is not the default;
it must be explicitly requested.

9 Recommendations for BibTEX design

The documentation available for BibTEX leaves sev-
eral points about the input syntax unclear, and I
had to obtain answers to the following questions by
experiment:
• Can an at-sign occur inside a @Comment{...}?

No.
• Can string abbreviation names be used on the

right-hand side of string definitions? Yes.
• Can the argument of @String be empty? No.
• Can a citation key be omitted in an entry? No.
• Can the list of assignments in an entry be

empty? Yes.
• Can a @Comment{...} occur between arbitrary

tokens? No.
• Are newlines preserved in the argument of a
@Preamble{...}? The answer is relevant if the
user includes TEX comments in the preamble
material. No.

I view the experimental answers to these questions
as pure happenstance, and could reasonably argue
for the opposite answers to the ones obtained.

Grammar

The most important recommendation that I can
make for the next version of BibTEX is that it must
have a rigorous grammar, including a well-defined
comment syntax.

The grammar can almost be of the simple class
LL(0) [2], requiring no lookahead during parsing,
and one-character lookahead during lexical analysis.
However, the presence of the string concatenation
operator complicates things sufficiently to require
at least an LL(1) grammar.

406 TUGboat, Volume 14 (1993), No. 4

Such grammars are straightforward to handle
with either hand-coded parsers, or with parsers au-
tomatically generated from grammar files by com-
piler development tools like the UNIX lex [20] and
yacc [12, 21, 22, 28] programs, or the Free Software
Foundation equivalents, flex and bison.

yacc and bison implement LALR(1) parsers;
the acronym stands for “Look-Ahead at most 1 to-
ken with a Left-to-Right derivation”. These are sim-
pler than the LR(k) grammars introduced by none
other than the author of TEX in the fundamental pa-
per on the theory of parsing [15]. Nevertheless, they
are sufficient for a broad class of language grammars,
including most major programming languages, and
importantly, they produce compact, efficient, fast,
and reliable parsers. LL(1) grammars are a special
case of LALR(1) grammars, and we will later define
a BibTEX grammar in LALR(1) form in Section 11.

Comment syntax

The comment syntax should preferably be identical
to that of TEX, so that a comment runs from per-
cent to end-of-line, and then additionally gobbles all
leading horizontal space on the next line, up to, but
not including, its end-of-line. This permits break-
ing of long lines without having to destroy inden-
tation that is so necessary for readability. Percent-
initiated comments are already supported in BibTEX
style files, though such comments end after the first
following newline.

For Scribe compatibility, BibTEX should also
support a @Comment{...} entry type. This will re-
quire additions to all BibTEX style files, since the
entry types are known there, and not in the Bib-
TEX code itself. BibTEX 0.99c already knows about
@Comment{...}, but the WEB code section “Process
a comment command” will have to be extended to
deal with the grammar changes.

It is important that BibTEX not discard @Com-
ment{...} entries, because it would then not be pos-
sible to write a BibTEX style file that converted a
bibliography file to another format without loss of
information. One such style already exists to con-
vert BibTEX files to UNIX bib/refer format.

Characters in names

The characters that can appear in key, entry, and
field names must be defined by enumeration, rather
than by exclusion, as is currently done [18, Sec-
tion B.1.3]. The reason is that character sets vary
between computers, and the new, and very much
larger, ISO10646M character set may be widely
available in this decade. These variations make
the set of admissible name characters vary between

systems, compromising portability. I strongly rec-
ommend following the conventions for identifiers in
widely-used programming languages to define the
grammar of key, entry, and field names. It seems
to me that letters, digits, colon, hyphen, and possi-
bly plus and slash, should be adequate, and names
should be required to begin with a letter. ‘Letter’
here should include only the 26 Roman letters ‘A’
through ‘Z’, because allowing letters from other al-
phabets opens a horrid can of worms that will se-
riously impact portability of bibliography files until
the computer world has a single uniform character
set.

I tested this set of characters against 92 500
entries in local bibliography files, and found only a
few keys that used other characters: the new ones
were period and apostrophe (e.g. O’Malley:TB92).
They might therefore be permitted as well, though
I would prefer to omit them, and retrofit changes in
a few citation keys.

The characters permitted in citation keys
should be the same as those in entry and field names,
so as to avoid user confusion.

Error reporting

When BibTEX begins to collect a token, it should
record the current line number. When an unclosed
string later causes internal buffer overflow, it could
report something like String buffer overflow on
input lines 24--82 that would better help locate
the offending string by giving its starting and ending
line numbers.

To simplify error recovery in such cases, Bib-
TEX could additionally require that the @ character
that starts a new entry must be the first non-space
character on a line.

File inclusion

BibTEX sorely needs a file inclusion facility. With
BibTEX 0.99c, this feature is available in a crude
fashion by listing several files in the \bibliography
command. However, this is not sufficiently general,
and requires unnecessary knowledge on the part of
the user of the bibliography.

The author of a BibTEX file should be free to
restructure it into subfiles without requiring modifi-
cations to all documents that use it. File inclusion
is important to allow sharing of common material,
such as @String{...} definitions.

Scribe uses the form
@Include{filename}

TUGboat, Volume 14 (1993), No. 4 407

and BibTEX should too. It must be possible to nest
file inclusions to a reasonable depth, at least five
levels.

10 A lexical grammar for BibTEX

To test the recommendations of Section 9, I wrote
and tested a lex grammar for BibTEX. It took just
22 rules to identify the 19 basic token types. The
complete lex file was about 510 lines long, with
about 340 lines of C code mostly concerned with the
input and output of strings, and 120 lines of function
and variable declarations. After lex processing, the
complete C program was about 1130 lines long; with
flex, it is 1700 lines long. This program is named
biblex, and its output is compatible with that of
bibclean with the -no-prettyprint option. How-
ever, it offers none of bibclean’s other services.

The lex grammar is presented in this section
in the style of literate programming, with grammar
rules interspersed with descriptive text. The index
at the end of this document provides an essential
feature of a literate program. To my knowledge,
no WEB facility yet exists for lex and yacc, so this
literate program must be handcrafted.

File structure

A lex file has this general structure:
definitions
%%
rules
%%
user functions

C declarations and definitions can be included
in the declarations part if they are enclosed in %{
and %}. Such text is copied verbatim to the out-
put code file, together with additional lex-supplied
header code.

Running lex on this file produces a C file that
can be compiled and linked with a main program
from the lex library to produce a working lexical
analyzer. Alternatively, the user can write a cus-
tomized main program which is linked with the lex-
generated code to make a functional lexer.

In the following subsections, we describe the
contents of the definitions and rules parts, but omit
the user functions, since they are not relevant to un-
derstanding the grammar.

Macro definitions

The lex grammar begins with macro definitions.
lex macros are single letters followed by a regular
expression that defines them.

In regular expressions, square brackets delimit
sets of characters, hyphen is used for character
ranges inside sets, asterisk means zero or more of
the preceding pattern, and plus means one or more.
A period represents any character other than a new-
line.

lex macro names are braced to request expan-
sion when they are used in grammar rules.

The first macro, N, represents the set of char-
acters permitted in BibTEX names of abbreviations,
citation keys, entries, and fields. If this set is ever
modified, this is the only place where that job has
to be done.
N [A-Za-z][---A-Za-z0-9:.+/’]*

It is not reasonable to make this set differ for
these four different uses, because the differences are
insufficient to distinguish between them lexically.
We’ll see later that we have to examine surround-
ing context to tell them apart.

Macro O represents the set of open delimiters
that start a BibTEX entry argument. We could ex-
tend this grammar for Scribe by adding additional
characters to the set.
O [({]

Macro W represents a single horizontal space
character.
W [\f\r\t\013]

Notice that we include formfeed, \f, and vertical
tab, \v, in the set of horizontal space characters,
even though they produce vertical motion on an out-
put device. The reason is that we want to treat them
just like blanks, and distinguish them from newlines,
which are handled separately. lex does not recog-
nize the escape sequence \v, so we have to reencode
it in octal as \013.

Carriage return, \r, is not normally used in
UNIX text files, but is common in some other op-
erating systems. On the Apple Macintosh, carriage
return is used instead of newline as an end-of-line
marker. Fortunately, this will be transparent to us,
because the C language requires [3, Section 2.2.2]
that the implementation map host line terminators
to newline on input, and newline back to host line
terminators on output, so we will never see carriage
returns on that system.

The last macro, S, represents optional horizon-
tal space.
S {W}*

Format of grammar rules

The remainder of the grammar consists of pairs of
regular expression patterns and C code to execute

408 TUGboat, Volume 14 (1993), No. 4

when the pattern is matched. lex uses a “maximal
munch” strategy in matching the longest possible
sequence to handle the case where two rules have
common leading patterns.

In the grammar file, the pairs are each written
on a single line, but we wrap lines here to fit in the
narrow journal columns, with the backslash-newline
convention used earlier.

@ token

The first grammar rule says that an @ character
should be recognized as the token named TOKEN_AT.
[@] RETURN (out_token(TOKEN_AT));

On a successful match, the output function op-
tionally emits the token, then returns its argument
as a function value which the lexer in turn returns
to the parser.

The C return statement is hidden inside the
RETURN macro, because for yacc and bison, we need
to bias bibclean’s small integer token values to
move them beyond the range of character ordinals.

Comment, Include, Preamble, and String
tokens

The next four rules ignore letter case in matching
the words Comment, Include, Preamble, or String.
If they follow an @ character, they are identified as
special tokens; otherwise, they are regarded as string
abbreviation names.
[Cc][Oo][Mm][Mm][Ee][Nn][Tt] \

RETURN ((last_token == TOKEN_AT) ?
out_token(TOKEN_COMMENT) :
out_token(TOKEN_ABBREV));

[Ii][Nn][Cc][Ll][Uu][Dd][Ee]/{S}{O} \
RETURN ((last_token == TOKEN_AT) ?

out_token(TOKEN_INCLUDE) :
out_token(TOKEN_ABBREV));

[Pp][Rr][Ee][Aa][Mm][Bb][Ll][Ee]/{S}{O} \
RETURN ((last_token == TOKEN_AT) ?

out_token(TOKEN_PREAMBLE) :
out_token(TOKEN_ABBREV));

[Ss][Tt][Rr][Ii][Nn][Gg]/{S}{O} \
RETURN ((last_token == TOKEN_AT) ?

out_token(TOKEN_STRING) :
out_token(TOKEN_ABBREV));

Although lex supports examination of trail-
ing context in order to identify tokens more pre-
cisely, the presence of arbitrary whitespace and in-
line comments in this grammar makes it impossible
to use this feature. The output routines remember

the last non-space, non-comment token seen in or-
der to make use of leading context to assist in token
identification.

Abbreviation, entry, field, and key tokens

Several token types are recognized by a match with
the name macro, N. Since the same set of charac-
ters can occur in abbreviations, entry names, field
names, and key names, we have to use the record of
leading context to distinguish between the various
possibilities.
{N} {

if (last_object == TOKEN_STRING)
RETURN(out_token(TOKEN_ABBREV));

switch (last_token)
{
case TOKEN_COMMA:

RETURN(out_token(TOKEN_FIELD));
case TOKEN_LBRACE:

RETURN(out_token(TOKEN_KEY));
case TOKEN_AT:

RETURN(out_token(TOKEN_ENTRY));
default:

RETURN(out_token(TOKEN_ABBREV));
}

}

In the event of errors in the input stream, this
identification of token types may be unreliable; such
errors will be detected later in the parsing program.

Digit string

A digit string is an undelimited value string. The
output function will supply the missing quotation
mark delimiters, so that all strings take a standard
form.
[0-9]+ RETURN (out_protected_string(\

TOKEN_VALUE));

In-line comment token

A percent initiates an in-line comment that con-
tinues to the end of line and then over all leading
horizontal space on the next line.
[%].*[\n]{S} \

RETURN (out_token(TOKEN_INLINE));

Because this pattern marks the start of a new
token, the previous token has already been termi-
nated. Thus, an line-line comment cannot split a
token. The same is true for TEX macros, though
not for ordinary TEX text.

String concatenation token

A sharp sign is the BibTEX string concatenation op-
erator.

TUGboat, Volume 14 (1993), No. 4 409

[#] RETURN (out_token(TOKEN_SHARP));

Delimited string token

A quotation mark initiates a delimited string.
["] RETURN (out_string());

The complete string must be collected by the C
function out_string() because regular expressions
cannot count balanced delimiters.

BibTEX’s quoted string syntax is a little un-
usual, in that an embedded quote is not represented
by double quotes, as in Fortran, or by an escape se-
quence, as in C, but rather by putting the quote
character in braces.

Brace tokens

Left and right braces are recognized as single tokens.
[{] RETURN (out_lbrace());

[}] RETURN (out_rbrace());

The output functions keep track of the current
brace level to distinguish between outer braces de-
limiting a BibTEX entry, and inner braces delimit-
ing a string value, and return TOKEN_LBRACE, TO-
KEN_LITERAL, TOKEN_RBRACE, or TOKEN_STRING, de-
pending on preceding context.

TOKEN_LITERAL is used for the argument of a
Comment and Include entries, and contains the de-
limiting braces.

Parenthesis tokens

In order to simplify the parser grammar, we remap
outer parentheses delimiting arguments of BibTEX
entries to braces. However, if the parentheses are
not preceded by a valid entry name, they are out-
put instead as single-character tokens of type TO-
KEN_LITERAL. They cannot legally occur in this con-
text, but that error will be detected during the pars-
ing stage. During lexical analysis, we do not want
to have any error conditions.
[(] RETURN (out_lparen());

[)] RETURN (out_rparen());

To support Scribe, we would need to add pat-
terns for other delimiters here.

Assignment and separator tokens

The assignment operator and assignment separator
are returned as single tokens.
[=] RETURN (out_token(TOKEN_EQUALS));

[,] RETURN (out_token(TOKEN_COMMA));

Newline token

A newline is returned as a separate token because
we want to be able to preserve line boundaries so
that filter tools that make minimal perturbations
on the input stream can be constructed.
[\n] RETURN (out_token(TOKEN_NEWLINE));

Horizontal space token

Consecutive horizontal space characters are re-
turned as a single space token, for the same reason
that newlines are recognized as distinct tokens by
the preceding rule.
{W}+ RETURN (out_token(TOKEN_SPACE));

Unclassifiable tokens

Finally, we have a catch-all rule: any character not
recognized by one of the preceding rules is returned
as a literal single-character token, and will cause
an error during the parsing. The regular-expression
character period matches anything but a newline,
and we already have a rule for newline.
. RETURN (out_token(TOKEN_LITERAL));

Lexical grammar summary

We now have a complete lexical grammar suitable
for lex that can complete tokenize an arbitrary in-
put stream containing any character values what-
ever.

The associated C code functions normalize en-
tries by changing outer parentheses to braces, brace
string delimiters to quotes, and undelimited digit
strings to quoted strings.

All string tokens of type TOKEN_VALUE output
by the lexer will contain surrounding quotes, and
any nested quotes will be braced, with proper care
taken to handle \" accent control sequences prop-
erly.

All special characters inside the quoted strings
will be represented by the escape sequences given
in Table 2 on page 401. Thus, even with a binary
input stream, the output of the lexer will contain
only printable characters.

It must be observed that lex is not capable of
handling all 256 8-bit characters. In particular, it
treats an ASCII NUL (\0) in a string as an end-
of-file condition. Older versions of lex are not 8-
bit clean; they will not reliably handle characters
128–255. This latter deficiency is being remedied by
the X/Open Consortium activities to international-
ize and standard UNIX applications [32].

410 TUGboat, Volume 14 (1993), No. 4

11 A parsing grammar for BibTEX

To complete the job, I wrote a yacc grammar for
BibTEX. This was considerably more work than the
lex grammar, mostly due to my relative inexperi-
ence with writing LALR(1) grammars, and it took
several days to understand the process well enough
to eliminate the grammatical ambiguities that ini-
tially plagued me.

The final complete yacc program is about 270
lines long, and produces a parser of 760 (yacc) to
1000 (bison) lines, excluding the lexer. The gram-
mar contains just 35 rules. Ten of these rules could
be eliminated if we arranged for the lexer to dis-
card space and in-line comments, but for a pretty-
printer and other BibTEX tools, they must be pre-
served. This parsing program is called bibparse;
it can be used with the output of either bibclean
-no-prettyprint, or biblex.

The complete BibTEX grammar is given below,
expressed as yacc rules, again in literate program-
ming style. It must be augmented by about 180 lines
of C code to provide a working parser.

File structure

A yacc file has this general structure:
declarations
%%
rules
%%
user functions

C declarations and definitions can be included
in the declarations part if they are enclosed in %{ and
%}. Such text is copied verbatim to the output code
file, together with additional yacc-supplied header
code.

Running yacc on this file produces a C file that
can be compiled and linked with the lexical analyzer
code to produce a working parser.

In the following subsections, we describe the
contents of the declarations and rules parts, but
omit the declaration C code and the user functions,
since they are not relevant to understanding the
grammar.

Format of grammar rules

The grammar rules will be presented in top-down
order, from most general, to most particular, since
this seems to be the best way to understand the over-
all structure of the grammar, and to ensure that it
describes current BibTEX usage, plus our suggested
extensions and clarifications.

The colon in a grammar rule should be read “is”
or “produces”, because the rule is also known as a

production. A vertical bar separates alternatives,
and can be read “or”. A semicolon terminates the
rule.

Lower-case letters are used for non-terminals,
which are names of rules in the parser grammar.
Upper-case letters are used for terminals, which are
names of tokens recognized by the lexer.

The spacing shown is arbitrary, but conven-
tional for yacc grammars: each rule starts a new
line, with the right-hand side indented from the mar-
gin, and the semicolon occupies a separate line.

Token declarations

The %token declarations merely provide symbolic
names for the integer token types returned by the
lexer. The values are arbitrary, except that they
must exceed 257, and must agree with the definitions
in the lexer code. We simply increment the token
types output from bibclean by 1000, matching the
offset added in the RETURN macro in the lexer.
%token TOKEN_ABBREV 1001
%token TOKEN_AT 1002
%token TOKEN_COMMA 1003
%token TOKEN_COMMENT 1004
%token TOKEN_ENTRY 1005
%token TOKEN_EQUALS 1006
%token TOKEN_FIELD 1007
%token TOKEN_INCLUDE 1008
%token TOKEN_INLINE 1009
%token TOKEN_KEY 1010
%token TOKEN_LBRACE 1011
%token TOKEN_LITERAL 1012
%token TOKEN_NEWLINE 1013
%token TOKEN_PREAMBLE 1014
%token TOKEN_RBRACE 1015
%token TOKEN_SHARP 1016
%token TOKEN_SPACE 1017
%token TOKEN_STRING 1018
%token TOKEN_VALUE 1019

Precedence declarations

The %nonassoc declaration makes the assignment
operator non-associative, so input of the form a =
b = c is illegal.
%nonassoc TOKEN_EQUALS

The first %left declaration makes space, in-line
comment, and newline tokens left associative, and of
equal precedence.
%left TOKEN_SPACE TOKEN_INLINE \

TOKEN_NEWLINE

TUGboat, Volume 14 (1993), No. 4 411

The second %left declaration makes the Bib-
TEX string concatenation character, #, left associa-
tive, and of higher precedence than space, in-line
comment, and newline.
%left TOKEN_SHARP

These precedence settings are crucial for resolv-
ing conflicts in this grammar which arise in assign-
ments when the parser has seen an assignment op-
erator and a value. Without the operator prece-
dences, it cannot decide whether to complete the
assignment, or to read ahead looking for a concate-
nation operator.

BibTEX file

The beginning of the grammar rules is indicated by
a pair of percent characters.
%%

The first rule defines what we are going to
parse, namely, a BibTEX file. The left-hand side of
the first rule is known as the grammar’s start sym-
bol.
bibtex_file:

opt_space
| opt_space object_list opt_space
;

This rule says that a BibTEX file contains either
optional space, or optional space followed by a list of
objects followed by optional space. This definition
permits a file to be empty, or contain only space
tokens, or have leading and trailing space.

Object lists

A list of objects is either a single object, or a list
of such objects, separated by optional space from
another object.
object_list:

object
| object_list opt_space object
;

For LL(1) parsers, usually implemented by
hand-coded recursive descent programs, this kind
of left-recursive rule must be rewritten by standard
methods [2, pp. 47–48, 176–178] to avoid an infinite
loop in the parser. In this rule, we would instead de-
fine a list as an object, separated by optional space
from another list. However, for LALR(1) parsers,
left-recursive definitions are preferable, because they
avoid parser stack overflow with long lists.

Objects

An object is one of the BibTEX @name{...} con-
structs. Notice that we allow optional space between
the @ and the name.
object:

TOKEN_AT opt_space at_object
;

In this grammar, we will consistently allow op-
tional space between any pair of BibTEX tokens;
space is described more precisely below. This con-
vention is easy to remember, and easy to implement
in the grammar rules.

While it would be possible to include the @ as
part of the name, making @name a single lexical to-
ken, both BibTEX and Scribe permit intervening
space, so we cannot collapse the two into a single
token.

Entry types and error recovery

Here are the possibilities for the name following an
@, which we call an at_object.
at_object:

comment
| entry
| include
| preamble
| string
| error TOKEN_RBRACE
;

Comment, Include, Preamble, and Stringmust
be handled separately from other types of entries,
like Article and Book, because their braced argu-
ments have a different syntax.

The rule with error is a special one supported
by yacc and bison. It says that if an at_object
cannot be recognized at the current state of the
parse, then the input should be discarded until a
right brace is found. An error message will be issued
when this happens, but recovery will be attempted
following that right brace. Without this error han-
dling, any input error will immediately terminate
the parser, hardly a user-friendly thing to do.

This is the only place where we will attempt er-
ror repair, although we could certainly do so in other
rules, such as in the assignment rule below. The
goal here is to present a rigorous complete gram-
mar, without additional embellishments that would
complicate understanding.

Comment entry

A BibTEX @Comment{...} is special in that the only
requirement on the argument is that delimiters be
balanced. The lexer returns the delimited argument

412 TUGboat, Volume 14 (1993), No. 4

as a single literal string, including the delimiters,
and standardizes the delimiters to braces.
comment:

TOKEN_COMMENT opt_space
TOKEN_LITERAL

;

Bibliography entry

A BibTEX bibliography entry is braced text contain-
ing a citation key, a comma, and a list of assign-
ments. The rules provide for an optional assign-
ment list, and for an optional trailing comma. To
shorten the rules, we introduce a subsidiary rule,
entry_head, to represent their common prefix.
entry: entry_head

assignment_list
TOKEN_RBRACE

| entry_head
assignment_list
TOKEN_COMMA opt_space
TOKEN_RBRACE

| entry_head TOKEN_RBRACE
;

entry_head:
TOKEN_ENTRY opt_space

TOKEN_LBRACE opt_space
key_name opt_space
TOKEN_COMMA opt_space

;

There is no opt_space item following assign-
ment_list because it is included in the definition
of the latter. This infelicity seems to be necessary
to obtain a grammar that conforms to the LALR(1)
requirements of yacc and bison.

Key name

Because of intervening newlines and in-line com-
ments, the lexical analyzer cannot always correctly
recognize a citation key from trailing context. It
might instead erroneously identify the token as an
abbreviation. We therefore need to account for both
possibilities:
key_name:

TOKEN_KEY
| TOKEN_ABBREV
;

Include entry

The Include entry is followed by a file name en-
closed in balanced braces.
include:

TOKEN_INCLUDE opt_space
TOKEN_LITERAL

;

Because file names are operating-system depen-
dent, the only restrictions that are placed on the file
name are that it cannot contain unbalanced braces,
and that it cannot contain leading or trailing space.
However, the file name can have embedded space if
the operating system permits.

BibTEX should discard the delimiting braces
and surrounding space in the TOKEN_LITERAL to iso-
late the file name. It should search for this file in its
standard input path, so that the file name need not
contain an absolute directory path. This feature is
not supported in BibTEX 0.99c, but bibclean and
the lexer and parser recognize it in anticipation of
its eventual incorporation.

Preamble entry

The Preamble entry argument is a braced BibTEX
string value. BibTEX outputs the argument verba-
tim, minus the outer delimiters, to the .bbl file for
TEX to process.
preamble:

TOKEN_PREAMBLE opt_space
TOKEN_LBRACE opt_space
value opt_space
TOKEN_RBRACE

;

String entry

The String entry argument is a braced single as-
signment.
string:

TOKEN_STRING opt_space
TOKEN_LBRACE opt_space
assignment opt_space
TOKEN_RBRACE

;

Value string

A BibTEX value is a string, which may be a simple
value, or a list of strings separated by the string
concatenation operator.
value: simple_value

| value opt_space
TOKEN_SHARP opt_space
simple_value

;

TUGboat, Volume 14 (1993), No. 4 413

Simple values

A simple value is either a delimited string, returned
by the lexer as a TOKEN_VALUE, or a string abbrevi-
ation, returned as a TOKEN_ABBREV.
simple_value:

TOKEN_VALUE
| TOKEN_ABBREV
;

The lexer can distinguish between these two be-
cause of the string delimiters. It is up to the parser
support code to verify that an abbreviation is actu-
ally defined before it is used.

Assignment list

The body of most BibTEX entries consists of a list
of one or more assignments, separated by commas.
Notice that this definition does not provide for an
optional trailing comma after the last assignment.
We handled that above in the rules for entry.
assignment_list:

assignment
| assignment_list

TOKEN_COMMA opt_space
assignment

;

Assignment

An assignment has a left-hand side separated from
a value by the assignment operator, =.
assignment:

assignment_lhs opt_space
TOKEN_EQUALS opt_space value
opt_space

;

Trailing optional space is included here, and
omitted before the comma in assignment_list, in
order to allow the LALR(1) parser to successfully
distinguish between space between a value and a
comma, and space between a value and a string con-
catenation operator.

My initial version of this grammar did not have
this optional space item, and the resulting parser
proved unable to recognize input in which a space
separated a value from a comma or closing brace;
it took quite a bit of experimentation to determine
how to rewrite the grammar to remove this problem.

The left-hand side of an assignment is either a
field name, like author or title, or a string abbre-
viation name. The lexer must distinguish between
the two by remembering the last entry type seen,
because they are made up of exactly the same set of
possible characters.

assignment_lhs:
TOKEN_FIELD

| TOKEN_ABBREV
;

Optional space

Optional space is either an empty string, here indi-
cated by the /*...*/ comment, or space.
opt_space:

/* empty */
| space
;

Space

Space is an important part of the grammar. It is
one or more single spaces.
space: single_space

| space single_space
;

We include space handling to support tools that
process BibTEX files and wish to preserve the input
form. In normal compiler design, space is recognized
by the lexer, and discarded, so the parser never has
to deal with it, and the grammar can be considerably
simpler.

Single space

The final rule of the grammar defines a single space
as a literal space character, or an in-line comment,
or a literal newline character.
single_space:

TOKEN_SPACE
| TOKEN_INLINE
| TOKEN_NEWLINE
;

Although we could arrange for the lexer to
merge TOKEN_SPACE and TOKEN_NEWLINE into a sin-
gle token, this would interfere with heuristics used
by a prettyprinter to detect empty lines inside string
values, which are possibly indicative of missing de-
limiters.

Parsing grammar summary

We have now completed a yacc grammar for Bib-
TEX that provides a rigorous grammatical analysis
of a stream of tokens recognized by the lexers in
Sections 6 and 10.

Notice that there is no character-string process-
ing whatever in the parser, because it has all been
done in the lexer. Parsing operations just manipu-
late small integer values.

In this version, no actions have been supplied
as C code fragments in the yacc grammar. The only

414 TUGboat, Volume 14 (1993), No. 4

output of the parser will be the token stream from
the lexer, interspersed by error messages when the
input fails to match a grammar rule.

Error recovery has been kept simple: input
is flushed to the next closing brace, which is pre-
sumably the end of an entry. Braces of type
TOKEN_LBRACE and TOKEN_RBRACE do not occur ex-
cept around apparent entries in the lexer output;
other braces are returned as tokens of type TOKEN_
LITERAL.

No more than one token of lookahead is required
by this grammar, although the lexer often looked
several characters ahead to examine trailing context
in order to distinguish between otherwise similar to-
kens.

BibTEX users should be able to read this gram-
mar and decide whether a questionable BibTEX con-
struct is legal or not, without having to resort to
software experiments as I did to clarify fuzzy gram-
matical points.

12 Software availability

The source code and documentation for bibclean
are in the public domain, in the interests of the
widest availability and greatest benefit to the TEX
community. Commercial vendors of TEXware are
encouraged to include bibclean with their distribu-
tions.

The distribution also includes the separate com-
plete lexer and parser grammar and code, which can
be processed by lex or flex, and yacc or bison,
respectively. The output C code from these tools
is included so that recipients need not have them
installed to actually compile and run the lexer and
parser.

If you have Internet anonymous ftp access, you
can retrieve the distribution in a variety of archive
formats from the machine ftp.math.utah.edu in
the directory pub/tex/bib. Major TEX Internet
archive hosts around the world will also have bib-
clean, but the author’s site will always have the
most up-to-date version. If you lack ftp capabil-
ity but have electronic mail access, a message to
tuglib@math.utah.edu with the text
help
send index from tex/bib

will get you started.
The bibclean distribution includes a substan-

tial collection of torture tests that should be run at
installation time to verify correctness. As with the
TEX trip and METAFONT trap tests, this testing
has proved valuable in uncovering problems before
the code is installed for general use.

References

[1] Alfred V. Aho, Brian W. Kernighan, and Pe-
ter J. Weinberger. The AWK Programming
Language. Addison-Wesley, Reading, MA,
USA, 1988. ISBN 0-201-07981-X.

[2] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ull-
man. Compilers—Principles, Techniques, and
Tools. Addison-Wesley, Reading, MA, USA,
1986. ISBN 0-201-10088-6.

[3] American National Standards Institute, 1430
Broadway, New York, NY 10018, USA. Ameri-
can National Standard Programming Language
C, ANSI X3.159-1989, December 14 1989.

[4] Nelson H. F. Beebe. Publications about TEX
and typography. TUGBoat, Supplement to 12
(2):176–183, May 1991.

[5] Nelson H. F. Beebe. Publications prepared with
TEX. TUGBoat, Supplement to 12(2):183–194,
May 1991.

[6] Martin Bryan. SGML—An Author’s Guide
to the Standard Generalized Markup Language.
Addison-Wesley, Reading, MA, USA, 1988.
ISBN 0-201-17535-5.

[7] Debra Cameron and Bill Rosenblatt. Learn-
ing GNU Emacs. O’Reilly & Associates, Inc.,
981 Chestnut Street, Newton, MA 02164, USA,
1991. ISBN 0-937175-84-6.

[8] Margaret A. Ellis and Bjarne Stroustrup. The
Annotated C++ Reference Manual. Addison-
Wesley, Reading, MA, USA, 1990. ISBN 0-201-
51459-1.

[9] Alan R. Feuer. The C Puzzle Book. Prentice-
Hall, Englewood Cliffs, NJ 07632, USA, second
edition, 1989. ISBN 0-13-115502-4.

[10] Samuel P. Harbison and Guy L. Steele Jr. C—
A Reference Manual. Prentice-Hall, Englewood
Cliffs, NJ 07632, USA, third edition, 1991.
ISBN 0-13-110933-2.

[11] Rex Jaeschke. Portability and the C Language.
Hayden Books, 4300 West 62nd Street, Indi-
anapolis, IN 46268, USA, 1989. ISBN 0-672-
48428-5.

[12] Steven C. Johnson. Yacc: Yet another com-
piler compiler. In UNIX Programmer’s Manual,
volume 2, pages 353–387. Holt, Reinhart, and
Winston, New York, NY, USA, 1979. AT&T
Bell Laboratories Technical Report, July 31,
1978.

[13] Brian W. Kernighan and Dennis M. Ritchie.
The C Programming Language. Prentice-Hall,
Englewood Cliffs, NJ 07632, USA, 1978. ISBN
0-13-110163-3.

TUGboat, Volume 14 (1993), No. 4 415

[14] Brian W. Kernighan and Dennis M. Ritchie.
The C Programming Language. Prentice-Hall,
Englewood Cliffs, NJ 07632, USA, second edi-
tion, 1988. ISBN 0-13-110362-8.

[15] Donald E. Knuth. On the translation of lan-
guages from left to right. Information and Con-
trol, 8(6):607–639, 1965. This is the original
paper on the theory of LR(k) parsing.

[16] Donald E. Knuth. The TEXbook, volume A of
Computers and Typesetting. Addison-Wesley,
Reading, MA, USA, 1986. ISBN 0-201-13447-
0.

[17] Andrew Koenig. C Traps and Pitfalls. Addi-
son-Wesley, Reading, MA, USA, 1989. ISBN
0-201-17928-8.

[18] Leslie Lamport. LATEX—A Document Prepa-
ration System—User’s Guide and Reference
Manual. Addison-Wesley, Reading, MA, USA,
1985. ISBN 0-201-15790-X.

[19] J. E. Lapin. Portable C and UNIX Program-
ming. Prentice-Hall, Englewood Cliffs, NJ
07632, USA, 1987. ISBN 0-13-686494-5.

[20] Michael E. Lesk and Eric Schmidt. Lex—a lexi-
cal analyzer generator. In UNIX Programmer’s
Manual, volume 2, pages 388–400. Holt, Rein-
hart, and Winston, New York, NY, USA, 1979.
AT&T Bell Laboratories Technical Report in
1975.

[21] John R. Levine, Tony Mason, and Doug Brown.
lex & yacc. O’Reilly & Associates, Inc., 981
Chestnut Street, Newton, MA 02164, USA, sec-
ond edition, 1992. ISBN 1-56592-000-7. 400 pp.
US$29.95.

[22] Tony Mason and Doug Brown. lex & yacc.
O’Reilly & Associates, Inc., 981 Chestnut
Street, Newton, MA 02164, USA, 1990. ISBN
0-937175-49-8.

[23] P. J. Plauger. The Standard C Library. Pren-
tice-Hall, Englewood Cliffs, NJ 07632, USA,
1992. ISBN 0-13-838012-0.

[24] Henry Rabinowitz and Chaim Schaap. Portable
C. Prentice-Hall, Englewood Cliffs, NJ 07632,
USA, 1990. ISBN 0-13-685967-4.

[25] Brian Reid. Scribe User’s Manual. Carnegie-
Mellon University, Pittsburgh, PA, USA, third
edition, 1980.

[26] Marc J. Rochkind. Advanced UNIX Program-
ming. Prentice-Hall, Englewood Cliffs, NJ
07632, USA, 1985. ISBN 0-13-011818-4 (hard-
back), 0-13-011800-1 (paperback).

[27] Michael A. Schoonover, John S. Bowie, and
William R. Arnold. GNU Emacs: UNIX Text

Editing and Programming. Addison-Wesley,
Reading, MA, USA, 1992. ISBN 0-201-56345-2.
610 pp. LCCN QA76.76.T49S36.

[28] Axel T. Schreiner and H. George Friedman,
Jr. Introduction to Compiler Construction Un-
der UNIX. Prentice-Hall, Englewood Cliffs, NJ
07632, USA, 1985. ISBN 0-13-474396-2. 224
pp.

[29] W. Richard Stevens. UNIX Network Program-
ming. Prentice-Hall, Englewood Cliffs, NJ
07632, USA, 1990. ISBN 0-13-949876-1.

[30] Bjarne Stroustrup. The C++ Programming
Language. Addison-Wesley, Reading, MA,
USA, second edition, 1991. ISBN 0-201-53992-
6.

[31] Eric van Herwijnen. Practical SGML. Kluwer
Academic Publishers Group, Norwell, MA,
USA, 1990. ISBN 0-7923-0635-X. xviii + 307
pp. £24.90 (1990).

[32] X/Open Company, Ltd. X/Open Portabil-
ity Guide, XSI Commands and Utilities, vol-
ume 1. Prentice-Hall, Englewood Cliffs, NJ
07632, USA, 1989. ISBN 0-13-685835-X.

Index

., 402

.bbl, 412

.bibcleanrc, 397

.ini, 400, 402
/* empty */ rule, 413
/*...*/, 413
:, 402
?, 402
@, 400
%{, 407, 410
%}, 407, 410
%%, 402, 407, 410
%e, 402
%f, 402
%k, 402
%left, 410, 411
%nonassoc, 410
%token, 410
%v, 402
\", 401, 402, 409
@, 405, 406, 408, 411
@Begin, 405
@Begin{comment}, 405
@Comment, 405
@Comment{...}, 405, 406, 411
@End, 405
@End{comment}, 405
@Preamble{...}, 405
@String, 405
@String{...}, 406

416 TUGboat, Volume 14 (1993), No. 4

@@, 405
@name, 405, 411
@name{...}, 411
\\, 401
\0x0a, 401
\0xhh, 401
8-bit clean, 409

\0, 401, 409
\012, 401
\013, 407

A, 402
\a, 401
a, 402
abbreviation, 408, 413
accent control sequence, 409
Aho, Alfred V., 404, 405, 411
anonymous ftp, 414
ANSI/ISO Standard C, 403, 404, 407
apostrophe

in citation key, 406
Apple Macintosh, 407
archive hosts

Internet, 414
Article, 411
assignment, 413

list, 412
operator, 409, 413

associativity of, 410
rule

error recovery in, 411
separator, 409

assignment rule, 412, 413
assignment_lhs rule, 413
assignment_list, 412, 413
assignment_list rule, 412, 413
associativity, 410
at-sign, 405
at_object rule, 411
Atari, 404
-author, 397
author, 413
author name

period after initials, 398
reordering, 398

auxiliary file, 396

\b, 401
Bach, P. D. Q., 400
back end, 397
backslash-newline, 398, 400, 403, 404, 408
backslash-quote, 405
Beebe, Nelson H. F., 396
bib, 406
bibclean, 395–405, 407, 408, 410, 412, 414
bibclean.ini, 397
BIBCLEANEXT, 400
BIBCLEANINI, 397

bibdup, 404
bibdup.awk, 404
BIBINPUTS, 397, 400
biblex, 407, 410
bibliography

entry, 412
file, 396, 397
style, 396

\bibliography, 396, 406
bibliography-specific pattern, 402
\bibliographystyle, 396
bibparse, 410
bibtex_file rule, 411
bison, 406, 408, 410–412, 414
Book, 411
Borland International, 404
brace, 409

ignored in pattern matching, 402
space around, 402

Brown, Doug, 406
Bryan, Martin, 396
buffer overflow, 406

C++, 397, 404
Cameron, Debra, 396
carriage return, 407
chapter, 402
-check-values, 398, 400
checksum

in ISBN and ISSN, 402
citation

key, 395, 403, 412
problems in recognizing, 412

style, 396
\cite, 396
class library, 404
code generation, 397
colon, 410
comma, 412

optional after assignment, 413
command-line options, see options
Comment, 408, 409, 411
comment

entry, 411
in-line, 408, 410, 412, 413

associativity of, 410
precedence of, 411

syntax, 406
comment, 405
comment rule, 411, 412
concatenation, see string
control sequence

\bibliography, 396, 406
\bibliographystyle, 396
\cite, 396

core dump, 405

D, 402
d, 402

TUGboat, Volume 14 (1993), No. 4 417

decimal, 397
-delete-empty-values, 398, 399
delimited string, 409, 413
delimiters

in Scribe, 405
mismatched, 398, 413

digit string, 408
documentation, 414
dump

post-mortem, 405

editor, see Emacs
editor name

period after initials, 398
reordering, 398

electronic mail server, 414
Ellis, Margaret A., 404
Emacs, 396, 399, 405
embedded quote, 409
empty

pattern, 402
string, 413
values

deleting, 398
entry

name, 408
entry rule, 411–413
entry_head rule, 412
environment variable, 397
error

log file, 399
message, 411

redirecting, 397
recovery, 411
reporting, 406

error rule, 411
-error-log filename, 397
escape sequence, 401, 403, 405, 409

in message text, 402
table, 401

\f, 401, 407
Feuer, Alan R., 404
field name, 408, 413
file

.bbl, 412

.bibcleanrc, 397

.ini, 400, 402
bibclean, 404
bibclean.ini, 397
BIBCLEANEXT, 400
BIBCLEANINI, 397
bibdup, 404
bibdup.awk, 404
BIBINPUTS, 397, 400
bibliography, 396, 397
error log, 399
ftp.math.utah.edu, 414
inclusion, 406, 412

initialization, 397, 398, 400
locating, 399
nested, 400
pattern characters, 402
patterns in, 398

name
space in, 412
syntax of, 412

nawk, 404
PATH, 397, 400
pub/tex/bib, 414
regexp, 401
sample initialization, 401
stderr, 397, 399
stdin, 400
SYS$SYSTEM, 397
tr, 404
tuglib@math.utah.edu, 414

-file-position, 398, 399
-fix-font-changes, 398, 399
-fix-initials, 398, 400
-fix-names, 398, 400
flex, 406, 407, 414
font changes

fixing, 398
format

item, 402
%%, 402
%e, 402
%f, 402
%k, 402
%v, 402

of grammar rules, 407, 410
formfeed, 407
Free Software Foundation, 397, 406
Friedman, Jr., H. George, 406
front end, 397
ftp, 414
ftp.math.utah.edu, 414
function

out_lbrace(), 409
out_lparen(), 409
out_protected_string(), 408
out_rbrace(), 409
out_rparen(), 409
out_string(), 409
out_token(), 408, 409

GNU
Emacs, 396, 399, 405
regexp package, 401
TEXinfo, 405

grammar, 405
format of rules, 407, 410
formatting conventions, 410
LALR(1), 406, 412
lexical, 407
LL(0), 405
LL(1), 405, 406

418 TUGboat, Volume 14 (1993), No. 4

LR(k), 406
parsing, 410
size of, 407, 410

Harbison, Samuel P., 404
help, 414
-help or -?, 397
Herwijnen, Eric van, 396
hexadecimal, 397
horizontal space character, 407, 409

in-line comment, 408, 410, 412, 413
associativity of, 410
precedence of, 411

Include, 408, 409, 411, 412
include rule, 411, 412
-init-file filename, 397, 398, 400
initialization file, 397, 398, 400

locating, 399
nested, 400
pattern characters, 402
patterns in, 398
sample, 401

Internet archive hosts, 414
interpretation of code, 397
ISBN, 402
ISBN (International Standard Book Number), 399
ISO10646M character set, 406
ISSN, 402
ISSN (International Standard Serial Number), 399

Jaeschke, Rex, 404
Johnson, Steven C., 406

Kahn, Philippe, 404
Kernighan, Brian W., 404
key, 403, 405
key name, 408, 412
key_name rule, 412
Knuth, Donald E., 398, 404, 406
Koenig, Andrew, 404

LALR(1)
grammar, 406, 412
parser, 406

Lamport, Leslie, 395, 396, 403, 406
Lapin, J. E., 404
last_object, 408
last_token, 408
%left, 410, 411
left-recursive rule, 411
Lesk, Michael E., 406
Levine, John R., 406
lex, 406–410, 414
lexer, see lexical analyzer
lexical analysis, 397
lexical analyzer, 397, 398, 403
lexical grammar, 407
line

number, 406
number directive, 403
width limit, 397
wrapping, 398, 404, 408

list
of assignments, 412
of objects, 411

literate programming, 407, 410
LL(0) grammar, 405
LL(1)

grammar, 405, 406
parser, 411

LR(k) grammar, 406

Macintosh
Apple, 407

macro, see also control sequence
N, 407, 408
O, 407
RETURN, 408–410
S, 407
W, 407

macro definition
lex, 407

macro use
lex, 407

Mason, Tony, 406
-max-width 0, 397
-max-width nnn, 397, 404
menu

pop-up, 396
message

disabling warning, 399
error, 411
help, 397
redirecting, 397

mismatched delimiters, 398, 413
month, 402

N, 407, 408
\n, 401
name, 411
nawk, 404
newline, 409, 412, 413

associativity of, 410
-no-check-values, 398
-no-delete-empty-values, 398, 399
-no-file-position, 398
-no-fix-font-changes, 398
-no-fix-initials, 398
-no-fix-names, 398
-no-init-files, 400
-no-par-breaks, 398, 399
-no-prettyprint, 397, 398, 403, 407, 410
-no-print-patterns, 398
-no-read-init-files, 398
-no-remove-OPT-prefixes, 398, 399
-no-scribe, 399
-no-trace-file-opening, 399

TUGboat, Volume 14 (1993), No. 4 419

-no-warnings, 399
non-terminal, 410

/* empty */, 413
assignment, 412, 413
assignment_lhs, 413
assignment_list, 412, 413
at_object, 411
bibtex_file, 411
comment, 411, 412
entry, 411–413
entry_head, 412
error, 411
include, 411, 412
key_name, 412
object, 411
object_list, 411
opt_space, 411–413
preamble, 411, 412
simple_value, 412, 413
single_space, 413
space, 413
string, 411, 412
value, 412, 413

%nonassoc, 410
NUL (0)

in string, 401, 409
number, 401, 402

O, 407
object, 411

list, 411
object rule, 411
object-oriented programming, 404
object_list rule, 411
Objective C, 397, 404
octal, 397
\ooo, 401
operator

assignment, 409, 413
string concatenation, 408, 411, 412

OPT- prefix
removing, 399

opt_space, 412
opt_space rule, 411–413
option

-author, 397
-check-values, 398, 400
-delete-empty-values, 398, 399
-error-log filename, 397
-file-position, 398, 399
-fix-font-changes, 398, 399
-fix-initials, 398, 400
-fix-names, 398, 400
-help or -?, 397
-init-file filename, 397, 398, 400
-max-width 0, 397
-max-width nnn, 397, 404
-no-check-values, 398
-no-delete-empty-values, 398, 399

-no-file-position, 398
-no-fix-font-changes, 398
-no-fix-initials, 398
-no-fix-names, 398
-no-init-files, 400
-no-par-breaks, 398, 399
-no-prettyprint, 397, 398, 403, 407, 410
-no-print-patterns, 398
-no-read-init-files, 398
-no-remove-OPT-prefixes, 398, 399
-no-scribe, 399
-no-trace-file-opening, 399
-no-warnings, 399
-par-breaks, 398
-prettyprint, 398
-print-patterns, 398
-read-init-files, 398
-remove-OPT-prefixes, 398, 399
-scribe, 399
-trace-file-opening, 399, 400
-version, 399
-warnings, 399

options, 400
OS/2, 404
out_lbrace(), 409
out_lparen(), 409
out_protected_string(), 408
out_rbrace(), 409
out_rparen(), 409
out_string(), 409
out_token(), 408, 409
overflow of string buffer, 406

pages, 402
-par-breaks, 398
parenthesis, 409
parser

LALR(1), 406
LL(1), 411

parsing, 397
parsing grammar, 410
Pascal, 404
PATH, 397, 400
pattern

bibliography-specific, 402
changing warning message, 402
empty, 402
quotes in, 402

pattern matching, 400
brace ignored in, 402
regular expression, 400

PC-DOS, 396, 397, 400, 404
period

in citation key, 406
in regular expression, 407, 409

pipeline, 404
Plauger, P. J., 404
pop-up menu, 396
portability, 404

420 TUGboat, Volume 14 (1993), No. 4

post-mortem dump, 405
Preamble, 408, 411, 412
preamble rule, 411, 412
precedence declaration, 410
preprocessor, 403
-prettyprint, 398
prettyprinter, 397, 398, 403
prettyprinting, 399
-print-patterns, 398
program

search path, 400
version, 399

pub/tex/bib, 414

query (?)
in messages, 402

quote
embedded, 409
in pattern, 402

R, 402
\r, 401, 407
r, 402
Rabinowitz, Henry, 404
-read-init-files, 398
recovery

from error, 411
recursion, 400
refer, 406
regexp, 401
regular expression

pattern matching, 400
syntax of, 407

Reid, Brian, 405
-remove-OPT-prefixes, 398, 399
RETURN, 408–410
return, 408
Ritchie, Dennis M., 404
Rochkind, Marc J., 404
Rosenblatt, Bill, 396
run-time options, see options
runaway string argument, 398, 406

S, 407
Schaap, Chaim, 404
Schickele, Peter, 400
Schmidt, Eric, 406
Schreiner, Axel T., 406
Scribe, 395, 399, 404–407, 409, 411, 417
-scribe, 399
search path, 400
semicolon, 410
send, 414
separator

assignment, 409
Sethi, Ravi, 405, 411
SGML, 396
sharp (#), 403, 408
simple value, 413

simple_value rule, 412, 413
single space, 413
single_space rule, 413
source code, 414
space, 410, 413

associativity of, 410
between tokens, 411
precedence of, 411

space rule, 413
standard error unit, 397
stderr, 397, 399
stdin, 400
Steele Jr., Guy L., 404
Stevens, W. Richard, 404
String, 408, 411, 412
string

concatenation operator, 408, 411, 412
pool, 404
runaway, 398, 406
substitution, 395

string rule, 411, 412
Stroustrup, Bjarne, 404
style

bibliography, 396
SYS$SYSTEM, 397

\t, 401
template

editor, 396
terminal, 410

TOKEN_ABBREV, 403, 408, 410, 412, 413
TOKEN_AT, 403, 408, 410, 411
TOKEN_COMMA, 403, 408–410, 412, 413
TOKEN_COMMENT, 408, 410, 412
TOKEN_ENTRY, 403, 408, 410, 412
TOKEN_EQUALS, 403, 409, 410, 413
TOKEN_FIELD, 403, 408, 410, 413
TOKEN_INCLUDE, 408, 410, 412
TOKEN_INLINE, 408, 410, 413
TOKEN_KEY, 403, 408, 410, 412
TOKEN_LBRACE, 403, 409, 410, 412, 414
TOKEN_LITERAL, 409, 410, 412, 414
TOKEN_NEWLINE, 403, 409, 410, 413
TOKEN_PREAMBLE, 408, 410, 412
TOKEN_RBRACE, 403, 409–412, 414
TOKEN_SHARP, 409–412
TOKEN_SPACE, 409, 410, 413
TOKEN_STRING, 403, 408–410, 412
TOKEN_VALUE, 403, 408–410, 413

testing, 404, 414
TEXinfo, 405
text editor, see Emacs
title, 413
token, 397, see terminal

string, 403
type, 403
unclassifiable, 409

TOKEN_ABBREV, 403, 408, 410, 412, 413
TOKEN_AT, 403, 408, 410, 411

TUGboat, Volume 14 (1993), No. 4 421

TOKEN_COMMA, 403, 408–410, 412, 413
TOKEN_COMMENT, 408, 410, 412
TOKEN_ENTRY, 403, 408, 410, 412
TOKEN_EQUALS, 403, 409, 410, 413
TOKEN_FIELD, 403, 408, 410, 413
TOKEN_INCLUDE, 408, 410, 412
TOKEN_INLINE, 408, 410, 413
TOKEN_KEY, 403, 408, 410, 412
TOKEN_LBRACE, 403, 409, 410, 412, 414
TOKEN_LITERAL, 409, 410, 412, 414
TOKEN_NEWLINE, 403, 409, 410, 413
TOKEN_PREAMBLE, 408, 410, 412
TOKEN_RBRACE, 403, 409–412, 414
TOKEN_SHARP, 409–412
TOKEN_SPACE, 409, 410, 413
TOKEN_STRING, 403, 408–410, 412
TOKEN_VALUE, 403, 408–410, 413
TOS, 404
tr, 404
-trace-file-opening, 399, 400
trailing context, 412, 414
trap, 414
trip, 414
TUG bibliography collection, 396, 399
TUG Resource Directory, 396
TUGboat, 396
tuglib@math.utah.edu, 414

Ullman, Jeffrey D., 405, 411
unclassifiable token, 409
UNIX, 396, 397, 400, 401, 404, 406, 407, 409

\v, 401, 407
value, 412
value rule, 412, 413
van Herwijnen, Eric, 396
variable

last_object, 408
last_token, 408

VAX, 396, 397, 404
version

of program, 399
-version, 399
vertical

bar, 410
tab, 407

VMS, 396, 397, 404
volume, 402

W, 402, 407
w, 402
warning message

changing, 402
disabling, 398, 399
redirecting, 397

-warnings, 399
WEB, 404, 406, 407
Weinberger, Peter J., 404
wrapping

of long lines, 398, 404, 408

X, 401, 402
\x, 402
x, 402
X/Open Consortium, 409

yacc, 406–408, 410–414
year, 403

� Nelson H. F. Beebe
Center for Scientific Computing
Department of Mathematics
University of Utah
Salt Lake City, UT 84112
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
Internet: beebe@math.utah.edu

